

Sigs. with special properties

Fast one-time signatures and applications

One-time signatures: definition

Suppose signing key is used to sign a <u>single</u> message

Can we give a simple (fast) construction SS=(Gen,S,V) ?

A wins if $V(vk,m,\sigma) = `accept'$ and $m \neq m_1$

Security: for all "efficient" A, $Adv_{1-SIG}[A,SS] = Pr[A wins] \le negl$

Application: authenticating streams

1. Next section: secure one-time sigs ⇒ secure many-time sigs

2. Authenticating a video stream:

Too slow: signing every packet with sk

Solution using a fast one-time sig

(sk,vk): key-pair for a many-time signature scheme

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Packet #0: $(sk_1,vk_1) \leftarrow Gen_{1T}$, $\sigma_0 \leftarrow S(sk, (data_0, vk_1))$

Packet #1: $(sk_2,vk_2) \leftarrow Gen_{1T}$, $\sigma_1 \leftarrow S_{1T}(sk_1, (data_1, vk_2))$

Packet #2: $(sk_3,vk_3) \leftarrow Gen_{1T}$, $\sigma_2 \leftarrow S_{1T}(sk_2, (data_2, vk_3))$

Recipient accepts packet #2 = (data₂, vk₃, σ_2) once it verifies σ_2

How does the recipient verify the signature σ_2 in packet #2?

Accept if σ_0 and σ_1 were valid and:

- $V_{1T}(vk_3, (data_2, vk_3), \sigma_2) = "accept"$
- O V(vk, (data₂, vk₃), σ_2) = "accept"
- $V_{1T}(vk_2, (data_2, vk_3), \sigma_2) = "accept"$
- \vee V(vk₂, (data₂, vk₃), σ_2) = "accept"

Application: authenticating streams

Practical difficulties:

- Packet loss, out of order delivery
- Many solutions: see further reading at end of module

Authenticating streams with a MAC:

Harder, but can be done: TESLA

End of Segment

Sigs. with special properties

Constructing fast one-time signatures

One-time signatures

Secure when sk only signs a single message

Attacker: gets vk and can ask for sig. on any <u>single</u> m_1 of her choice. should be unable to forge signature on $m \neq m_1$

This module: one-time sigs from fast one-way functions (OWF)

- f: X → Y is a OWF if (1) f(x) is efficiently computable,
 (2) hard to invert on random f(x)
- Examples: (1) $f(x) = AES(x, 0^{128})$, (2) f(x) = SHA256(x)

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

$$m = 0 1 1 0 0$$

S(sk, m): σ = (pre-images corresponding to bits of m)

f: X \rightarrow Y a one-way function. Msg space: M = $\{0,1\}^{256}$

Gen: generate 2×256 random elements in X

S(sk, m): $\sigma = (\text{pre-images corresponding to bits of m})$

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

$$\sigma = \begin{bmatrix} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

 $V(vk, m, \sigma)$: accept if all pre-images in σ match values in vk

Very fast signature system. Will prove one-time security in a bit.

Is it two-time secure? That is, if **sk** is used to sign <u>two</u> messages, can an attacker do an existential forgery?

- No, one-time security implies two-time security
- It depends on the one-way function used
- The attacker can ask for a signature on 0¹²⁸ and on 1¹²⁸.
 He gets all of sk which he can use to sign new messages.

Abstraction: cover free set systems

Sets:
$$S_1, S_2, ..., S_{2256} \subseteq \{1, ..., n\}$$

Def:
$$S = \{S_1, S_2, ..., S_{2256}\}$$
 is **cover-free** if $S_i \nsubseteq S_j$ for all $i \neq j$

Example: if all sets in **S** have the same size k then **S** is cover free

Abstract Lamport signatures

f: X \rightarrow Y a one-way function. Msg space: M = $\{0,1\}^{256}$ $\boldsymbol{S} = \{S_1, S_2, ..., S_{2256}\}$ is **cover-free** over $\{1,...,n\}$ H: $\{0,1\}^{256} \rightarrow \boldsymbol{S}$ a bijection (one-to-one)

Gen: generate n random elements in X

Abstract Lamport signatures

f: X
$$\rightarrow$$
 Y a one-way function. Msg space: M = $\{0,1\}^{256}$
 $\boldsymbol{S} = \{S_1, S_2, ..., S_{2256}\}$ is **cover-free** over $\{1,...,n\}$
H: $\{0,1\}^{256} \rightarrow \boldsymbol{S}$ a bijection (one-to-one)

Gen: generate n random elements in X

S(sk, m): $\sigma = (\text{pre-images corresponding to elements of H(m)})$

Why cover free?

Suppose **S** were not cover free

- \Rightarrow exists m_1 , m_2 such that $H(m_1) \subset H(m_2)$
- \Rightarrow signature on m₂ gives signature on m₁

$$\sigma_{m1} = \cdots$$

$$\sigma_{m2} = \cdots$$

$$\cdots$$

$$1$$

$$vk$$

S(sk, m): $\sigma = (\text{pre-images corresponding to elements of H(m)})$

Security statement

<u>Thm</u>: if $f: X \rightarrow Y$ is one-way and S is cover-free then Lamport signatures (Lam) are one-time secure.

 $\forall A \exists B: Adv_{1-SIG}[A,Lam] \leq n \cdot Adv_{OWF}[B,f]$

Proving security:

Parameters $(f: X \rightarrow Y \text{ where } X = Y)$

sig. size = (k elements of X)

$$vk \in Y^n \Rightarrow vk \text{ size } = (n \text{ elements of } Y)$$

Msg-space =
$$\{0,1\}^{256}$$
 \Rightarrow $|S|$ = $\{n \text{ choose k}\} \ge 2^{256}$

- To shrink signature size, choose small k example: k=32 ⇒ n ≥ 3290
- For optimal (sig-size + vk-size) choose n = 261, k = 123 (sig-size + vk-size) $\approx 1.5 \times 256$ elements of X

Further improvement: Winternitz

Gen: generate n random elements in X : $(f: X \rightarrow X)$

Further improvement: Winternitz

$$H: \{0,1\}^{256} \longrightarrow \{0,1,...,d\}^n$$

S(sk, m):
$$\sigma = (pre-images indicated by H(m))$$

Further improvement: Winternitz

ex: $H(0^{256}) = (2, 1, 3, 0, ..., 0, 1)$

$$depth d = \sigma$$

$$f = \sigma$$

$$f = \sigma$$

$$vk \in X^n$$

S(sk, m): $\sigma = (pre-images indicated by H(m))$

 $H: \{0,1\}^{256} \longrightarrow \{0,1,...,d\}^n$

For what H is this a secure one-time signature?

Suppose
$$H(0^{256}) = (2, 1, 3, 0, 0, 1)$$

 $H(1^{256}) = (2, 2, 3, 1, 1, 2)$
Is the signature one-time secure?

- \bigcirc No, from a sig. on 0^{256} one can construct a sig. on 1^{256}
- \bigcirc No, from a sig. on 1^{256} one can construct a sig. on 0^{256}
- Yes, the signature is one-time secure
- It depends on how H behaves at other points

Optimized parameters

For one-time security need that: for all $m_0 \neq m_1$ we have $H(m_0)$ does not "cover" $H(m_1)$

Parameters:

- Time(sign) = Time(verify) = O(n · d)
- vk size = sig. size = (n elements in X)
- msg-space = $\{0,1\}^{256}$ \Rightarrow n > 256 / $\log_2(d)$ (approx.)

(vk size)+(sig. size) $\approx 256 \times (2/\log_2(d))$ elems. of X

For Lamport: (vk size)+(sig. size) $\approx 256 \times (1.5)$ elems. of X

End of Segment

Sigs. with special properties

One-time signatures ⇒ many-time signatures

Review

Recall: one-time signatures need not be 2-time secure

example: Lamport signatures

Goal: convert any one-time signature into a many-time signature

Main tool: collision resistant hash functions

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

Gen:

stateful version)

Gen_{1T}
$$(vk_{0123}, sk_{0123})$$
 (vk_{01}, sk_{01}) (vk_{23}, sk_{23})
 (vk_{0}, sk_{0}) (vk_{1}, sk_{1}) (vk_{2}, sk_{2}) (vk_{3}, sk_{3})

$$(vk_0, sk_0)$$
 (vk_1, sk_1) (vk_2, sk_2) (vk_3, sk_3)

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

• Gen:

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

• Gen:

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

Dan Boneh

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

(Gen_{1T}, S_{1T} , V_{1T}): secure one-time signature (fast)

Four-time signature: (stateful version)

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

More generally: 2^d-time signature

Tree of depth d:

• Every signature contains d+1 one-time signatures along with associated vk's

Tree is generated on-the fly:

Signer stores only d secret keys at a time

Stateful signature:

- Signer maintains a counter indicating which leaf to use for signature
- Every leaf must only be used once!

Optimized 2^d-time signatures

Combined with Lamport signatures:

collision resistant hash funs ⇒ many-time signature

With further optimizations:

• For 2^{40} signatures: signature size is ≈ 5 KB

... signing time is about the same as RSA signatures

Recall: RSA sig size is 256 bytes (2048 bit RSA modulus)

End of Segment

Sigs. with special properties

Super-fast online signatures

Goals

Problem: generating RSA, ECDSA, BLS signatures can be slow

On low power devices

Goal:

- Do heavy signature computation <u>before</u> message is known
- Quickly output signature once user supplies message

Method 1: using one-time sigs

(Gen, S, V): secure many-time signature (slow) $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

- Gen \rightarrow (sk,vk)
- PreSign(sk): $(sk_{1T}, vk_{1T}) \leftarrow Gen_{1T}$, $\sigma \leftarrow S(sk, vk_{1T})$
- $S_{online}((\sigma, sk_{1T}, vk_{1T}), m): \sigma_{1T} \leftarrow S_{1T}(sk_{1T}, m) \leftarrow fast$ output $\sigma^* \leftarrow (vk_{1T}, \sigma, \sigma_{1T})$
- $V_{\text{online}}(vk, m, \sigma^* = (vk_{1T}, \sigma, \sigma_{1T}))$: accept if $V(vk, vk_{1T}, \sigma) = V_{1T}(vk_{1T}, m, \sigma_{1T}) = \text{``accept''}$

slow

Method 1: using one-time sigs

One-time sigs. ⇒ fast-online sigs.

Problem: Lamport results in very long signatures

A more suitable one-time signature:

- Hard Dlog in group G ⇒ secure one-time sigs. with **fast** signing
 - Signature size: if |G|=p then signature is (r,s) ∈ $(Z_p)^2$
 - How: see homework problem

Better method: chameleon hash

G: finite cyclic group of order p. g, $h=g^{\alpha} \in G$ generators.

Define: $H(m,r) = g^r \cdot h^m \subseteq G$

Properties:

- H(m,r) can be efficiently evaluated
- H is collision resistant if Dlog in G is hard (collision $\rightarrow \alpha = Dlog_g(h)$)
- If α is known: given m and t can find r s.t. $H(m,r) = h^t$ $r = (t-m) \cdot \alpha$. Indeed: $H(m,r) = g^r \cdot h^m =$

Fast online signatures

(Gen, S, V): secure many-time signature (slow)

G: finite cyclic group of order p. g, $h=g^{\alpha} \in G$ rand. generators

- Gen \rightarrow (sk,vk) , sk*= (sk, α)
- PreSign(sk*): random $t \leftarrow Z_p$, $\sigma \leftarrow S(sk, h^t)$
- $S_{online}((\sigma, \alpha, t, h^t), m): r \leftarrow (t-m) \cdot \alpha, output \sigma^* \leftarrow (\sigma, h^t, r)$
- $V_{online}(vk, m, \sigma^* = (\sigma, h^t, r))$:

 accept if $V(vk, h^t) = \text{``accept''}$ and $H(m,r) = h^t$

Fast online signatures

Shorter signatures than one-time sigs. method:

- Total overhead is only 64 bytes
- Signature time: one multiplication in Z_p

Security:

- A forger can be used to either
 - (1) forge signatures for (Gen, S, V), or
 - (2) find collisions on H(m,r)

Fast online signatures have a fast <u>online</u> signing time.

If we count the entire signing time (i.e. PreSign + Sign), would the time be better or worse than a standard signature like RSA?

- Online signatures are always faster than regular signatures
- The PreSign step uses a regular signatures, so overall they cannot be faster than a regular signature
- It depends on which online signature is used

Note: signature verification time is always worse than regular sigs.

End of Segment

Sigs. with special properties

Blind signatures

Problem: digital cash (centralized system)

For simplicity, assume only one bank and all coins worth 1\$.

Dan Boneh

Solution: blind signatures

Goal: we want Bank to sign coin_{ID}, but without knowing coin_{ID}

Where:

- (1) σ is a valid signature on m: $V(vk, m, \sigma) = \text{``accept''}$
- (2) $m' \leftarrow Blind(m)$ is independent of m
- That is, m' reveals no "information" about m

Blind signatures: security

New definition of existential forgery:

adversary asks for q blind signatures, and
outputs (q+1) message/signature pairs

A wins if $V(vk,m_i,\sigma_i) = \accept'$ for all i=1,...,q+1

Security: for all "efficient" A, $Adv_{Blind}[A,SS] = Pr[A wins] \le negl$

Blind signatures: applications

Anonymous digital cash

- Anonymous voting systems
 - Election results are known, but not who voted how

Adaptive oblivious transfer (week 4)

Simple Constructions: RSA and BLS

BLS review: G finite group of order p with a pairing

$$sk = \alpha \in Z_p \quad , \quad vk = (g, g^\alpha) \quad , \quad H: M \longrightarrow G$$

$$S(sk, m) = H(m)^\alpha \in G \qquad \qquad Independent \ of \ m$$

$$r \leftarrow Z_p, \quad m' \leftarrow H(m) \cdot g^r \qquad \qquad Bank \\ sk = \alpha$$

$$sk = \alpha$$

$$sk = \alpha$$

$$sk = \alpha$$

$$sk = \alpha$$

Indeed:
$$\sigma = (m')^{\alpha} / (g^{\alpha})^{r} =$$

Same method also works for RSA. Problem: security under strong assumption.

Suppose the signature scheme is changed so that the random r is chosen as $r \leftarrow \{0,1,...,16\}$.

Would the resulting scheme be a secure blind signature?

- No, an attacker can ask one query and generate two signatures
- Yes, this has no impact on security and blindness
- No, the sig. scheme is not blind: m' is not independent of m
- It depends on the hash function H

Further Reading

- Hash Based Digital Signature Schemes. C. Dods, N. Smart, M. Stam, 2005
- One-Time Signatures Revisited: Practical Fast Signatures Using Fractal Merkle Tree Traversal. D. Naor, A. Shenhav, A. Wool, 2006.
- Better than BiBa: Short One-Time Signatures with Fast Signing and Verifying.
 L. Reyzin, N. Reyzin, 2002
- Improved Online/Offline Signature Schemes. A. Shamir, Y. Tauman, 2001
- The Power of RSA Inversion Oracles and the Security of Chaum's RSA-Based Blind Signature Scheme. M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko, 2001
- Compact E-Cash. J. Camenisch, S. Hohenberger, A. Lysyanskaya, 2005

End of Segment