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Abstract. In this short note, we show that under a mild number-theoretic
conjecture, recovering an integer from its Jacobi signature modulo N =
p2q, for primes p and q, is as hard as factoring N .

1 Introduction

In 1988, Damg̊ard [5] proposed a pair of cryptographic pseudorandom generators,
based on quadratic characters. For a fixed natural number N , he speculated that
the function that maps x ∈ Z∗

N to the sequence of Jacobi symbols[(
x+ 1

N

)
,

(
x+ 2

N

)
, . . . ,

(
x+ ℓ

N

)]
∈ {−1, 1}ℓ,

for some ℓ ∈ N, is a pseudorandom generator. Following prior work [4], we refer to
this sequence of Jacobi symbols as the length-ℓ Jacobi signature of x modulo N .
Damg̊ard also considered the case when the modulus is a prime p; in that case
we replace Jacobi symbols with Legendre symbols and refer to the sequence as
the Legendre signature of x modulo p.

He left as an open question whether is is possible to relate the task of breaking
these pseudorandom generators to any other number-theoretic problem.

This work. In this short note, we consider Damg̊ard’s pseudorandom generator
based on Jacobi symbols modulo N = p2q, for primes p and q. We show that
this function is a one-way function if:

– factoring integers of the form p2q is hard, and

– if every number modulo p has a unique Legendre signature of length log2(p).

Under a much stronger (and less plausible) number-theoretic assumption, we
can show that finding collisions in Damg̊ard’s Jacobi pseudorandom generator
is as hard as factoring.

Both results are based on the simple observation that Jacobi symbol of x
modulo N = p2q is equal to the Legendre symbol of x modulo q. Thus, if we
give an attacker the Jacobi signature of a secret value x modulo N , we reveal
no information to the attacker about the Legendre signature of x modulo p.

If the attacker succeeds at inverting the Jacobi-signature function modulo N ,
we then get a value x′ ∈ Z∗

N such that x and x′ have the same Legendre signa-
ture modulo q. Under a standard number-theoretic conjecture on the uniqueness
of Legendre signatures [4], this implies that x = x′ mod q. At the same time,



since the attacker has no information about x mod p2, it is extremely likely that
x ̸= x′ mod p2. In this case, the the greatest common divisor of x − x′ and the
modulus N will yield a non-trivial factor of N .

Related work. Peralta and Okamoto [12] use Jacobi signatures modulo N =
p2q to speed up the elliptic-curve factoring algorithm. In particular, they use
Jacobi signatures modulo N to quickly search a list of integers x1, x2, . . . , xk ∈
Z∗
N for a pair whose difference has a non-trivial greatest common divisor with N .

Several cryptosystems have also based their security on the hardness of factoring
moduli of the form p2q [7, 11].

Adleman and McCurley [1] discuss the problem of finding the smallest prime q
whose Legendre symbols modulo the first ℓ primes matches a prescribed pattern
in {−1, 1}ℓ. Solving this problem, they note, is as hard as factoring numbers
of the form N = p2q, provided that the signature length ℓ is long enough to
uniquely identify the prime q. Adleman and McCurley’s problem becomes easy
if we ask only for some prime q (and not the smallest) that matches the given
Legendre pattern.

Grassi et al. [9] propose using a variant of Damg̊ard’s construction as a pseu-
dorandom function. For a fixed prime p, key k ∈ Z∗

p, and input x ∈ Z∗
p, the

function’s output is the Legendre symbol of (k+x) modulo p. This function has
a small arithmetic circuit over Fp, which makes it useful in multiparty compu-
tation [2, 6, 9]. Several recent works have also studied the concrete hardness of
the Legendre pseudorandom function [3, 10].

2 Preliminaries

Throughout this work, we write λ ∈ N to denote a security parameter. We say
that an algorithm is efficient if it runs in probabilistic polynomial time in the
length of its input. We say that a function f(λ) is negligible if f = o(λ−c) for all
constants c ∈ N; we denote this by writing f = negl(λ). To denote the greatest
common divisor of natural numbers x and y, we write gcd(x, y). For a natural
number λ, we let Primesλ denote the set of λ-bit primes.

2.1 Legendre and Jacobi Signatures

We now recall the concept of a Legendre signature and a Jacobi signature.

Definition 2.1 (Jacobi and Legendre Signatures). For an integer N and
x ∈ Z∗

N , let
(

x
N

)
∈ {−1, 1} denote the Jacobi symbol of x modulo N . Then,

for a positive integer N and signature length ℓ, we define the Jacobi-signature
function JN,ℓ : Z∗

N → {−1, 1}ℓ as the function

JN,ℓ(x) :=

[(
x+ 1

N

)
,

(
x+ 2

N

)
, . . . ,

(
x+ ℓ

N

)]
∈ {−1, 1}ℓ.

When p is a prime, we refer to the function Jp,ℓ as the “Legendre signature.”
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Fact 2.2 (Jacobi Signatures with N = p2q). For odd primes p, q and N =
p2q, for all x ∈ Z∗

N and ℓ ∈ Z, JN,ℓ(x) = Jq,ℓ(x).

Proof. The statement follows because the Jacobi symbol is multiplicative and
takes on values in {−1, 1}:( x

N

)
=

(
x

p

)2 (
x

q

)
=

(
x

q

)
.

2.2 Standard Cryptographic Definitions

We recall a few standard cryptographic definitons.

Definition 2.3 (One-Way Function). For a family of functions F = {Fλ}λ∈N,
where each function f ∈ Fλ has the type f : Xλ → Yλ, define the advantage of
an algorithm A at breaking the one-wayness of F as:

OWFAdv[A,F ](λ) := Pr

[
f(x) = f(x′) :

f ←R Fλ, x←R Xλ

x′ ← A(f, f(x))

]
Definition 2.4 (Collision Resistance). For a family of functions F = {Fλ}λ∈N,
where each function f ∈ Fλ has the type f : Xλ → Yλ, define the advantage of
an algorithm A at breaking the collision resistance of F as:

CRHFAdv[A,F ](λ) := Pr

[
f(x) = f(x′) and x ̸= x′ :

f ←R Fλ

(x, x′)← A(f)

]
Definition 2.5 (Factoring N = p2q). We define the advantage of an algo-
rithm A at factoring integers of the form p2q, for primes p and q, as

FactAdv[A](λ) := Pr

[
1 < gcd(t,N) < N :

p, q ←R Primesλ.
t← A(p2q)

]

3 One-Wayness of Jacobi Signatures

Our first result relies on a conjecture of Boneh and Lipton [4], which states that,
for a fixed prime p, each value in Z∗

p has a unique Legendre signature of length

⌈2 log2 p⌉:
Conjecture 3.1 (Boneh and Lipton [4]). For all sufficiently large primes p,
for all distinct x, x′ ∈ Z∗

p, and for ℓ = ⌈2 log2 p⌉, it holds that Jp,ℓ(x) ̸= Jp,ℓ(x
′).

Our results also hold under a weaker conjecture, where the signature length
is ℓ = logc(p), for any c > 2.

Under Conjecture 3.1, we can show that inverting the Jacobi-signature func-
tion modulo an integer N = p2q, for primes p and q, is as hard as hard as
factoring N , provided that the Jacobi-signature length is at least ⌈2 log2 N⌉.
Specifically, we define J OWF

λ to be

J OWF
λ = {JN,2λ2 | p, q ←R Primesλ;N ← p2 · q}.

We then have:
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Proposition 3.2 (One-Wayness of Jacobi Signatures). Under Conjecture 3.1,
for every efficient algorithm A that breaks the one-wayness of J OWF = {J OWF

λ }λ∈N
with advantage OWFAdv[A,J OWF](λ), there is an efficient algorithm B for fac-
toring integers of the form p2q, for primes p and q, with advantage FactAdv[B](λ)
where

OWFAdv[A,J OWF](λ) ≤ FactAdv[B](λ) + negl(λ).

Proof. Suppose there exists an efficient adversary A that breaks one-wayness of
J OWF with advantage ε = OWFAdv[A,J OWF](λ). We construct an algorithm B
for factoring integers of the form p2q as follows:

– On input the modulus N , Algorithm B samples x ←R ZN and computes
t = gcd(x,N). If t ̸= 1, then Algorithm B outputs t.

– If gcd(x,N) = 1, then x ∈ Z∗
N , so Algorithm B runs x′ ← A(JN,ℓ, JN,ℓ(x))

where ℓ = 2λ2 is the signature length.

– Algorithm B computes t = gcd(N, x− x′).

To complete the proof, we analyze the advantage of algorithm B:
– By definition, the challenger samples N = p2q, where p and q are odd primes.

– Consider the initial value x that Algorithm B samples. If gcd(x,N) ̸= 1,
then Algorithm B successfully factored N . If gcd(x,N) = 1, then the distri-
bution of x is uniform over Z∗

N . By assumption, with probability at least ε,
Algorithm A then outputs x′ such that JN,ℓ(x

′) = JN,ℓ(x).

– By Fact 2.2, JN,ℓ(x
′) = Jq,ℓ(x

′) = Jq,ℓ(x) = JN,ℓ(x). By Conjecture 3.1, this
means x = x′ mod q.

– Next, consider the view of adversary A. Again by Fact 2.2,

JN,ℓ(x) = Jq,ℓ(x) = Jq,ℓ(x mod q).

Since JN,ℓ(x) is only a function of x mod q, we conclude via the Chinese
Remainder Theorem that JN,ℓ(x) information-theoretically hides the value
of x mod p2. This means the value of x′ mod p2 that Algorithm B chooses
is independent of x mod p2. Moreover, since the distribution of x is uniform
over Z∗

N , the value of x mod p2 is uniform over Z∗
p2 . Thus,

Pr[x = x′ mod p2] =
1

|Z∗
p2 |

=
1

p(p− 1)
= negl(λ).

Thus, with probability 1 − negl(λ), it holds that x ̸= x′ mod p2. If x =
x′ mod q and x ̸= x′ mod p2, then it follows that gcd(x− x′, N) ∈ {q, pq} so
algorithm B produces a non-trivial factor of N .

We conclude that algorithm B succeeds in factoring N with probability

FactAdv[B](λ) ≥ ε− negl(λ) = OWFAdv[A,J OWF
λ ](λ)− negl(λ).

4 Collision Resistance of Jacobi Signatures

In this section, we show that if:
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– factoring numbers of the form N = p2q, for primes p and q, is hard, and

– there exists a constant k ∈ (2, 3) such that for most primes p, all Legendre
signatures of length ⌈k log p⌉ are unique

then the Jacobi-signature function modulo N is collision resistant when the
signature length is ⌈k3 logN⌉.

More precisely, our argument for collision resistance relies on the following
number-theoretic assumption:

Assumption 4.1. There exists a constant k ∈ (2, 3) such that for a random
λ-bit prime p, for all distinct x, x′ ∈ Z∗

p, and for ℓ = ⌈k log p⌉, it holds that
Jp,ℓ(x) ̸= Jp,ℓ(x

′), except with probability negligible in λ. More formally, we
assume that for ℓ = ⌈k log p⌉, there exists a negligible function negl(·) such that
for all λ ∈ N,

Pr[∃x ̸= x′ : Jp,ℓ(x) = Jp,ℓ(x
′) | p← Primesλ] = negl(λ).

This assumption differs from Conjecture 3.1 in two ways. In particular,

1. this assumption considers Legendre signatures of length O(log p) whereas
Conjecture 3.1 considers Legendre signatures of length Ω(log2 p), and

2. this assumption is a statement about a large fraction of primes p, whereas
Conjecture 3.1 is a statement about all large enough primes p.

We need the first modification since for the Jacobi-signature function JN,ℓ to be
compressing, the signature length ℓ must satisfy ℓ < logN . When N = p2q, this
requires k < 3. For our argument to go through, we must argue about relatively
short Legendre signatures. We consider values k > 2 to evade the birthday
bound. Specifically, for a prime p, if we heuristically model the Jacobi signatures
Jp,ℓ(x) for each x ∈ Z∗

p as uniform random strings drawn from {−1, 1}ℓ, then
by the birthday bound, with constant probability, there will exist two distinct
x, x′ ∈ Z∗

p with a common Jacobi signature. However, if we consider signatures of
length ℓ = (2+ε)⌈log p⌉ for any constant ε > 0 and again heuristically modeling
the Jacobi signatures as uniform random strings, then the probability that there
exist x ̸= x′ with the same Jacobi signature is at most p2/p2+ε = 1/pε = negl(λ).

The second modification is also necessary, since the conclusion of the assump-
tion does not hold for all primes p. That is, there are infinitely many primes p for
which there exist pairs x, x′ ∈ Z∗

p whose Legendre signatures of length ⌈100 log p⌉
are identical. This follows from the fact that there are infinitely many primes p
for which the least quadratic non-residue is Ω(log p log log log p) [8]. For such
primes p, the Legendre signatures of the elements “1” and “2” will be identical,
provided that the signature length is O(log p).

It is not at all obvious to us that Assumption 4.1 is true. That said, assump-
tions used in the cryptanalysis of the Legendre-signature-based cryptosystems [3]
imply Assumption 4.1.

Collision resistant hash function from Jacobi signatures.We now give the
main result of this section. Let k ∈ (2, 3) be the constant from Assumption 4.1.
On security parameter λ, let

J CRHF
λ = {JN,kλ | p, q ←R Primesλ; N ← p2 · q}
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be the family of Jacobi-signature functions defined on number of the form N =
p2q. Notice that on modulus N , the signature length is kλ = ⌈k3 logN⌉. For this
signature length, the Jacobi-signature function is compressing.

Claim 4.2 (Collision Resistance of Jacobi Signatures). Under Assump-
tion 4.1, for every efficient algorithm A that breaks the collision-resistance of
the family of Jacobi-signature functions J CRHF = {J CRHF

λ }λ∈N with advantage
CRHFAdv[A,J CRHF](λ), there is an algorithm B for factoring integers of the
form p2q, for primes p and q, that achieves advantage FactAdv[B](λ) where

CRHFAdv[A,J CRHF](λ) ≤ FactAdv[B](λ) + negl(λ).

Proof. Suppose there exists an efficient adversary A that breaks collision resis-
tance of J CRHF with advantage ε = CRHFAdv[A,J CRHF](λ). We use Algorithm A
to construct Algorithm B of the claim. Algorithm B, on input N = p2q, runs the
collision finder (x, x′)← A(JN,ℓ) where ℓ = kλ, and outputs gcd(N, x− x′). We
analyze Algorithm B’s advantage:
– Whenever Algorithm A outputs a valid collision in JN,ℓ, we have JN,ℓ(x) =

JN,ℓ(x
′) and x ̸= x′ mod N .

– Since N is of the form p2q, by Fact 2.2, a collision in the Jacobi signature
modulo N implies a collision in the Legendre signature modulo q: Jq,ℓ(x) =
Jq,ℓ(x

′).

– By Assumption 4.1, if Jq,ℓ(x) = Jq,ℓ(x
′), then

x = x′ mod q =⇒ (x− x′) = 0 mod q,

except with probability negligible in λ.

– However, since x ̸= x′ mod N , it must be that

x ̸= x′ mod p2 =⇒ (x− x′) ̸= 0 mod p2.

Therefore (x − x′) is a multiple of q and not a multiple of p2. This means
gcd(x−x′, N) ∈ {q, pq}, and Algorithm B obtains a factor of N with advan-
tage

FactAdv[B](λ) ≥ ε− negl(λ) = CRHFAdv[A,J CRHF]− negl(λ).

5 Open Problems

This note shows a new connection between the hardness of inverting Jacobi
sequences and factoring. One potential next step would be to show that distin-
guishing a Jacobi sequence from random is as hard as a more traditional number-
theoretic problem (e.g., quadratic residuosity). Another question is whether it
is possible to remove our results’ reliance on number-theoretic conjectures, or to
show hardness under the assumption that factoring integers of the form p · q, for
primes p and q, is intractable.

6



Acknowledgements

We thank Dan Boneh for his comments on a draft of this work, particularly
on the formulation of Assumption 4.1. This work was funded in part by NSF
and gifts from Capital One, Facebook, Google, Microsoft, Mozilla, NASDAQ,
Seagate, and MIT’s FinTech@CSAIL Initiative.

References

[1] Leonard M Adleman and Kevin S McCurley. Open problems in number
theoretic complexity. In Discrete Algorithms and Complexity. 1987.

[2] Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin.
On the complexity of decomposable randomized encodings, or: How friendly
can a garbling-friendly PRF be? In ITCS, 2020.

[3] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto. Crypt-
analysis of the Legendre PRF and generalizations. IACR Transactions on
Symmetric Cryptology, 2020.

[4] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their
application to cryptography (extended abstract). In CRYPTO, 1996.

[5] Ivan Damg̊ard. On the randomness of Legendre and Jacobi sequences. In
CRYPTO, 1988.

[6] Dankard Feist. Legendre pseudo-random function, 2019. https://

legendreprf.org/.
[7] Atsushi Fujioka, Tatsuaki Okamoto, and Shoji Miyaguchi. Esign: An effi-

cient digital signature implementation for smart cards. In EUROCRYPT,
1991.

[8] Sidney West Graham and CJ Ringrose. Lower bounds for least quadratic
non-residues. In Analytic Number Theory, 1990.

[9] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In ACM CCS,
2016.
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