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Abstract. If large-scale quantum computers become com-
monplace, the operating system will have to provide novel
abstractions to capture the power of this bizarre new hard-
ware. In this paper, we consider this and other systems-
level issues that quantum computers would raise, and we
demonstrate that these machines would offer surprising
speed-ups for a number of everyday systems tasks, such
as unit testing and CPU scheduling.

1 Introduction

The last few years have seen tremendous progress to-
wards the construction of non-trivial quantum comput-
ers [7,23,29]. A number of start-ups are working towards
commercializing the technology, NIST is standardizing
new “post-quantum” cryptosystems [41], and industry
giants, including Google [20] and Microsoft [39], are tak-
ing steps today to defend their systems against quantum-
enabled adversaries in the future. Large-scale quantum
computers may exist in our lifetimes.

The first electronic computers—the Mark I, Colossus,
and ENIAC—were expensive, cumbersome, and sluggish
machines, primarily useful to government code-breakers
and weapons designers. Much like the first electronic
computers, the first quantum computers will almost cer-
tainly be costly and slow and, as with the first electronic
computers, the most obvious applications of quantum
computers will be to breaking classical cryptosystems,
such as RSA [44], and physical simulation.

Fortunately for us, over time classical computing hard-
ware became cheaper and faster, and modern operating
systems provided hardware abstractions, virtual memory,
and time-sharing to make computers easier, safer, and
faster to use. Computers became a universal tool, with
applications far beyond the stodgy realms of cryptanal-
ysis and bomb design. If we are lucky, just as classical
computers became smaller, cheaper, and faster over time,
so will quantum computers. When they do, programmers
will again look to the operating system to make these
new and unfamiliar devices easier, safer, and faster for
everyday people to use.

What sort of computer architecture will our quantum
computers employ, and what kind of operating systems
will run on these machines? In this paper, we explore the
possibility of quantum operating systems by asking, and
partially answering, a number of questions related to the
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Figure 1: A classical processor connected to a quantum FPGA.
The classical processor programs the qFPGA with the a descrip-
tion of a quantum circuit C : {0,1}n→ {0,1}n. The CPU can
then send inputs xi ∈ {0,1}n and receive the output C(xi) of the
quantum circuit applied to xi.

design of this new type of system:

• What new abstractions could a quantum operating
system expose to the programmer?
• How could the power of quantum computers improve

the performance of classical software systems?
• What would a distributed system of quantum com-

puters look like? And what new functionality could
such a system provide?

This paper is necessarily (and shamelessly) speculative:
it is far too early to know exactly what sort of quantum
computing hardware will exist in 20, 50, or 100 years.
Even so, we can use the existing models of quantum
computation to project what will likely be possible if
large-scale quantum computers come to exist in the future.

The skeptical reader may—with some cause—view
this paper as a collection of negative results: as far as we
know, there are not too many exciting things that one can
do with a quantum computer that one could not do with a
somewhat larger or faster classical machine. Our purpose
is to simply take the notion of quantum computing to its
logical conclusion and ask: what would happen if we each
had one of these magical quantum machines on our desk?

We dedicate the bulk of the paper to sketching three
possible architectures for quantum computers, arranged
in order from least to most fanciful: we first discuss quan-
tum FPGAs, then quantum x86 machines, and finally,
quantum distributed systems. For each, we consider the
applications that the machine would have to common sys-
tems tasks, such as fuzz testing, CPU scheduling, and
parallel programming. We also discuss the systems-level
challenges that each architecture would present.



2 Background

To set the scene for our discussion, let us first review a
few key results from the quantum computing literature.
Quantum algorithms, in certain settings, provide surpris-
ing speed-ups over classical algorithms. For example,
consider the following computational problem:

Problem 1 (Unstructured Search). Given a function
f : {1, . . . ,N}→ {0,1} find an x∗ ∈ {1, . . . ,N} such that
f (x∗) = 1.

If we treat the function f as a “black box,” the best
classical algorithm for this problem is just brute-force
search: compute f (1), f (2), f (3), and so on, until finding
an x∗ such that f (x∗) = 1. Indeed, any classical algorithm
for this problem must invoke f at least Ω(N) times to
succeed with good probability. In contrast, there is a
quantum algorithm for solving this problem that invokes
f only O(

√
N) times.

Informal Theorem 2 (Grover [35]). There is a quantum
algorithm for the Unstructured Search Problem that in-
vokes f at most O(

√
N) times and that succeeds with

probability at least 2/3.

To explain why such a speed-up is even possible: a
classical algorithm that treats f as a black box can only
evaluate f at a single input at a time—the classical algo-
rithm works locally. In contrast, a quantum algorithm can
essentially evaluate a “black-box” function f at a mixture
of inputs (a “superposition” of inputs) and can thus learns
some global information about f with each invocation.
After only O(

√
N) invocations of f , the quantum algo-

rithm has explored the entire domain of f , which allows
it to recover the target value x∗.

Furthermore, when there are k inputs that cause f to
return 1, Grover’s algorithm finds one such input with
only O(

√
N/k) invocations of f , even if k is not known

in advance [19]. As we describe in the following sections,
we expect that Grover’s algorithm will be one of the most
useful tools in the quantum programmer’s belt.

An important subtlety of quantum computing is that the
only operations that can be performed on a quantum state
are those that are reversible (or invertible). Thus, to im-
plement Grover’s algorithm on a quantum computer, we
must first represent the function f in a reversible manner.
Even though many classical computations are irreversible
(e.g., an AND operation on single-bit inputs), there are
standard techniques to make circuits, Turing machines,
and even RAM programs reversible [9, 36].
What quantum computers are not. Before diving into
the body of our discussion, it is worth emphasizing that
there is no evidence that quantum computers can solve
NP-hard problems in polynomial time [1]. Applying
Grover’s algorithm to 3SAT, for example, yields a slightly

faster-than-brute-force-classical 3SAT algorithm, but both
the quantum and classical algorithms still run in expo-
nential time [6]. Furthermore, we know that Grover’s
algorithm is the best possible quantum algorithm for the
Unstructured Search Problem (Problem 1) [10]. As far
as we know, it is only for very specific problems, such
as integer factorization [44], that quantum computers dra-
matically outperform their classical counterparts.

3 Quantum FPGAs

A plausible architecture for the first generation of general-
purpose quantum computers would consist of a classical
processor connected over a classical bus to a quantum
field programmable gate array, or qFPGA.

Like a conventional FPGA, a qFPGA would essentially
be a peripheral device attached to the classical CPU (Fig-
ure 1). To use the qFPGA, the programmer would first
cook up a quantum circuit C that implements her computa-
tion of interest. A quantum circuit is much like a classical
Boolean circuit, except that it uses elementary quantum
gates (e.g., Toffoli and Hadamard gates [3]) instead of
conventional logic gates (AND, OR, NOT).

The programmer would then send the description of
a quantum circuit C to the qFPGA over a classical bus.
Once programmed with the circuit C, the CPU could send
the qFPGA an input xi. A classical control unit would
orchestrate the quantum computation on the qFPGA by
applying each quantum gates to the qFPGA’s state regis-
ters in sequence. The qFPGA would then send the output
C(xi) of the circuit applied to xi back to the CPU. The
inputs xi and the output C(xi) would both be classical
bitstrings, so the CPU and qFPGA could exchange these
values over a classical bus.

As far as we know, we are far far away from being
able to construct anything resembling a quantum FPGA.
The current generation of quantum computers implement
circuits that operate on just a handful of qubits [23, 24,
37], so we are orders of magnitude away from an FPGA-
like device that could perform any large-scale quantum
computation. But, let us imagine that we had such a
device. What could it do?

The obvious application of a qFPGA would be to run-
ning Shor’s algorithm for factoring integers and com-
puting discrete logarithms [44]. However, by the time
qFPGAs are available, the world will long have shifted to
quantum-resistant cryptosystems [13]. Instead, we expect
that the primary everyday application of these devices
would be to run Grover search on programs that could
compile down into relatively small circuits. We give two
example applications: code fuzzing and password crack-
ing.



3.1 Using qFPGAs

Code fuzzing. The idea of code fuzzing is to run a piece
of code on a large number of edge-case inputs to try to
identify an input that causes the program to misbehave.

Fuzzing using a qFPGA might be useful for ensuring
that tricky optimizations do not introduce correctness
bugs [26]. For example, a programmer might have two
Boolean circuits for multiplying n-bit integers: a large
naïve circuit Mslow compiled from native C code, and an
optimized hand-designed version Mfast. The programmer
could construct a circuit C : {1, . . . ,N}2 → {0,1} that
computes

C(x,y) =

{
1 if Mslow(x,y) 6= Mfast(x,y)
0 otherwise

.

The programmer could ship the qFPGA the program for
running Grover search on C.

Using the qFPGA, the programmer could essentially
ensure that the two multiplication routines behave identi-
cally on 264 possible inputs, at the cost of 232 invocations
of Mslow and Mfast. Furthermore, if there is a severe bug—
one that causes the optimized circuit to fail on k out of
N inputs, then the qFPGA worker will only need time
roughly

√
N/k to determine the index of the input that

caused the optimized circuit to misbehave.

Password cracking. By the time qFPGAs are available,
the “quantum apocalypse” will have killed off many of to-
day’s quantum-vulnerable cryptographic algorithms. Yet,
like the stubborn insects that survived the extinction of the
dinosaurs, we expect the humble human-chosen password
to remain a ubiquitous (if universally loathed) feature of
computer systems into the quantum era [18].

One nefarious application of qFPGAs, which we have
not seen discussed before, would be to the task of pass-
word cracking [17, 40]. In a password-cracking attack,
an attacker has the image h of a user’s password under
a cryptographic hash function H and the attacker wants
to find a password p such that h = H(p). Since users
often pick passwords from a small dictionary of popular
phrases D, the attacker can typically recover the user’s
password by hashing each word in the dictionary until she
finds a word d∗ ∈ D such that h = H(d∗).

While a conventional password-cracking attack takes
time linear in the size of the dictionary D, a qFPGA-
backed password-cracking attack would require only√
|D| invocations of the hash function. In concrete terms:

there are 95 printable ASCII characters, and there are
9510 ≈ 266 possible ten-character printable ASCII pass-
words. Even if every user picked her password from
this unrealistically high-entropy distribution, an attacker
with a qFPGA could invert a password hash with only√

266 = 233 invocations of the password-hashing func-

// Type signature of a qthread worker.
typedef int worker(char *args, size_t arglen);

// Initialize a pool of qthreads. All qthreads
// in the pool run the same worker routine.
qpool_t qpool_init(worker *start_routine);

// Feed the specified arguments to a qthread worker
// in the specified pool.
qthread_t qthread_create(qpool_t pool,

char *args, size_t arglen);

// Get the ID of a worker that returned > 0.
qthread_t qthread_join(qpool_t pool);

// Get the ID of the qthread that returned the
// largest value.
qthread_t qthread_join_max(qpool_t pool);

// Count how many qthreads returned values > 0.
int qthread_join_count(qpool_t pool);
int qthread_join_count_approx(qpool_t pool);

// Get the sum of the qthread return values.
int qthread_join_sum(qpool_t pool);
int qthread_join_sum_approx(qpool_t pool);

Figure 2: The qthreads API.

tion H. The existence of low-cost qFPGAs would render
hashed passwords crackable at low cost.

Modern “memory-hard” password-hashing func-
tions [5, 15, 16, 33, 43] require large classical circuits and
thus may be less succeptible to this attack. An interest-
ing open question is whether there are special-purpose
better-than-Grover quantum attacks against these hash
functions.

4 The qx86 machine

The qFPGA architecture described in the prior section
would be suitable for running quantum computations that
are easy to represent as small quantum circuits.

For more ambitious computing tasks, it would be ideal
to have an x86 processor connected to a quantum x86
co-processor. The qx86 processor would implement the
x86 instruction set, along with a universal quantum in-
struction [3] that would, for example, apply a quantum
operator to the co-processor’s eax register. Using these
instructions, and a large enough qx86 computer, the quan-
tum assembly programmer could implement any efficient
quantum algorithm and could, for example, evaluate an
x86 program on a quantum state consisting of a superpo-
sition of many program inputs.

Building a qx86 machine seems much harder than
building a qFPGA. To support general x86 programs, the
machine would have to implement not only the logic nec-
essary to execute x86 instructions, but it would also have
to somehow implement a quantum RAM [34]. To give
some sense of why this would be difficult to implement:
in an n-qubit quantum circuit, the state of the circuit is
essentially a mixture (a “superposition”) of n-bit strings.



A qFPGA might support on the order of n = 210 qubits
or so.

In contrast, the state of a qx86 machine would be de-
scribed by a superposition of M-bit states, such that the
entire state of the machine (RAM contents, caches, reg-
isters, error flags, etc.) could be described in M bits. To
be able to run interesting x86 programs, a modestly-sized
qx86 processor would need to support superpositions over
states of size M = 220 or so, which would make the ma-
chine orders of magnitude larger than a qFPGA.

Even assuming that one could build a qx86 processor,
programming it would be a nightmare: it is unlikely that
the average programmer would have any idea how to put a
universal quantum instruction to good use in her programs.
This latter problem, however, seems relatively easy to
solve: ideally, future operating systems would provide a
higher-level interface that would allow the programmer
to exploit the “quantumness” of her computer without
having to get her hands dirty.

In particular, we introduce the qthreads API as one
convenient way to abstract away the complexity of quan-
tum hardware while still enabling a programmer to avail
herself of the power of quantum computation. We first
describe the qthreads API and then we describe how to
use qthreads to solve common systems problems more
efficiently.

4.1 The qthreads API
Figure 2 lists the routines in our proposed API. The API
allows the programmer to create a pool of qthreads, where
each qthread (like a pthread) takes in an arbitrary blob
of data, does some classical computation, and returns an
integer. Each qthread executes the same piece of code but
each qthread takes a different argument as input.

Once the programmer has created a pool of qthreads,
she can ask general questions of the pool. For example,
the programmer can ask: “Which qthread returned a non-
zero value?” or “How many qthreads in the pool returned
a non-zero value?” or “Which qthread in the pool returned
the largest integer?”

A quantum computer can answer these questions much
faster than a classical computer can. For example, to find
a qthread that returns a non-zero value, a classical com-
puter would have to execute the qthread worker routine
on each candidate argument until it discovered a qthread
that returned something other than zero. In a pool of N
threads, with each qthread running for at most T time
steps (cycles), a classical computer using this strategy
would require Θ(NT ) time in the worst case. In contrast,
a quantum operating system could use Grover’s algorithm
(Informal Theorem 2) to answer this question in roughly
O(
√

N ·T ) time—roughly a factor of
√

N speedup.

The importance of abstraction. Using the qthreads API,

the programmer can write the code for the qthread worker
as if it were a classical program, and the OS takes care of
running the qthreads on the quantum hardware. Avoiding
the need to write quantum programs directly is important,
since quantum programming would be much trickier than
classical programming. Normal techniques for finding
bugs in programs, such as using gdb or printf debug-
ging, would corrupt the state of the quantum machine so
debugging the program could itself change the behavior
of the program. (This follows from the principle that
observing a quantum state causes it to collapse down
into a classical state.) Note that qthreads cannot have
side-effects, so they would have to run in an environment
without shared memory or I/O.

4.2 Applications of qthreads

“Most-interesting-job-first” scheduling. Qthreads
would, for some types of computations, allow the pro-
grammer to effectively implement a “most-interesting-
job-first” (MIJF) scheduler: each qthread worker returns
an integer describing how “interesting” the result of its
computation turned out to be. The scheduler can then
return the result of the “most interesting” qthread to the
programmer without explicitly running all of the qthreads.
In a pool of N jobs, a classical scheduler would require
time N to find the most interesting one. A quantum
qthreads-based scheduler could perform the same task
in time roughly

√
N.

One possible application of a MIJF scheduler is in
computational genomics. A pervasive problem in that
field is the edit-distance problem: given two strings find
the minimum number of one-character edits (insertions,
deletions, and substitutions) necessary to transform one
string into the other [47]. A biologist might need to run
tens of thousands of edit-distance calculations (e.g., to
look for many different genes in a genome) but might be
primarily interested in finding likely matches—pairs of
input strings with low edit distance.

The biologist could run each of N edit-distance calcula-
tions in a qthread worker. The ith worker would return as
output the (negated) edit distance of the ith pair of input
strings. By invoking the qthread_join_max routine, the
biologist could find the index of the pair of strings with
the smallest edit distance much faster than running all N
edit distance calculations.
MapReduce jobs. MapReduce [27, 28] is a popular pro-
gramming model for distributed data analysis. In scenar-
ios where the reduce function computes a sum of mapper
outputs, the qthreads API (using qthread_join_sum)
enables a programmer to locally execute a MapReduce
computation over a pool of N mapper instances while
only running the map function a total of O(t ·

√
N) times,

where t is the bit-length of each mapper’s output value. In



contrast, on a classical computer, running a local MapRe-
duce algorithm would require N invocations of the map

algorithm.

Unit testing. Using qthreads, a programmer could run
N unit tests for the price of

√
N tests. To do so, the

programmer would write a qthread worker routine that
takes as input a test case—written in a scripting language,
for example—and executes it against the codebase. The
programmer would then spin up one qthread for each test
case. Each test qthread would return a non-zero status
code on failure. The programmer would then ask the
operating system for a qthread if any tests returned a
non-zero value.

4.3 Implementing qthreads
Although the qthreads API gives the programmer the il-
lusion of running many threads of execution in parallel,
this is not at all what a qthreads implementation would
actually do. Instead, to implement the qthreads API, the
operating system would reframe each qthread_join*

operation as a problem that it could feed to Grover’s algo-
rithm (Informal Theorem 2). The OS would then load the
code for the appropriate variant of Grover’s algorithm into
the quantum co-processor, it would send the x86 code for
the worker to the quantum co-processor, and it would load
each worker’s arguments into the co-processor’s quantum
RAM (qRAM) [34]. The qx86 CPU would then execute
Grover’s algorithm and return the result to the OS.

By Grover’s algorithm, implementing qthread_join

requires O(
√

N) queries to qRAM and O(
√

N) invoca-
tions of the worker function once. In contrast, executing
qthread_join on a classical processor would require in-
voking the worker Θ(N) times, so the quantum computer
provides a

√
N speed-up in this case.

The implementations of qthread_join_count and
qthread_join_max would implement the variants of
Grover’s algorithm for computing the COUNT and MAX
functions [4, 21]. We provide an approximate and ex-
act version of the COUNT API: if there are k non-zero
qthreads, the approximate version returns an approxima-
tion within a factor of 10% in time roughly

√
N/k, while

the exact version returns a correct answer in time roughly√
kN [21].
The OS would implement the qthread_join_sum

routine using qthread_join_count. To see how, sup-
pose that the output of each qthread instance is a t-bit
integer. We can represent the sum of N integers as
∑

t
i=1 2i−1 · zi, where each zi is the sum of the ith-least sig-

nificant bits of each of the N integers. The SUM problem
now reduces to computing each of the zi’s. But computing
a sum of bits (i.e., 0/1 values) is precisely the same as
counting the number of 1s that occur. This operation is
supported by the qthreads API.

To compute the sum of t-bit integers, we run
qthread_join_count t times. On the ith run, we modify
the qthread workers to return only the ith-least significant
bit of their output. This process yields the values z1, . . . ,zt
(where zi is the count from the ith thread pool) Finally, we
compute ∑

t
i=1 2i−1 · zi to obtain the sum of the qthread re-

turn values. Approximate sums can be computed similarly
(using qthread_join_count_approx).

4.4 Persistent storage
Ideally, it would be possible to take the state of a qx86
program and save it to disk in a way that would allow
restoring the state of the program later on. Unfortunately,
many complications arise in the quantum setting. The
“no-cloning theorem” [31, 48] says that it is impossible to
make copies of an unknown quantum state. Thus, even
a basic task such as backing up your quantum data, by
saving a copy of it in a safe location, would be essentially
impossible. Moreover, writing a quantum state out to a
classical disk won’t fly either: there is no way to read out
the entire quantum state, since measuring a quantum state
causes it to immediately collapse back into a classical one.
And even if you could somehow read the state without
destroying it, a quantum state would require exponentially
many classical bits to store on disk.

Given that classical disks are not an option, one might
be tempted to ask for some sort of quantum persistent
storage. This would be asking for a lot: today’s physi-
cal qubits remain coherent only for small fractions of a
second, and these storage media are nowhere near non-
volatile [42]. Yet, since we are optimists, let us consider
one interesting application that persistent quantum storage
would enable.

Tamper-evident storage. Say that a computer owner
Alice drops off her laptop at the tech support desk at her
workplace. The technicians may need to access arbitrary
files on Alice’s computer, but Alice wants to be able to
detect after the fact whether they have accessed any of her
family photos. With a conventional computer, there is no
way for Alice to detect whether the officials have copied
the files off of her hard drive. On a conventional file
system, Alice can inspect the file’s last-read timestamp
(atime) to check whether a file was accessed. Of course,
a clever administrator could just alter the timestamp to
hide her tracks. When using a quantum hard drive, we
can ensure that Alice can detect that someone else has
accessed her files.

We borrow an idea from quantum key-distribution pro-
tocols [11], whose security rests on the principle that
it is infeasible to clone an arbitrary unknown quantum
state [48]. To sketch the idea: when creating a file, Alice
chooses two 256-bit keys: kenc and ktamper. Alice encrypts
her file with kenc (using AES, for example). Then, using



ktamper, she encodes the bits of the encryption key kenc
into a quantum state, which she stores in the file header.
(We assume here that the disk can maintain a quantum
state over a period of time.)

Now, access to the file requires reading all of kenc. Any-
one who reads the header can decrypt the file, but when
anyone other than Alice—i.e., anyone who does not know
ktamper—measures the quantum state of kenc, they will col-
lapse the quantum state and will not be able to restore it
(with high probability). When Alice later inspects the file
header, she will, using ideas from quantum key distribu-
tion [11], be able to detect that someone other than her
tried to measure kenc.

5 Distributed systems

The last architecture we consider, which is by far the
most speculative, is one in which we have a network of
quantum computers connected by qubit-carrying network
links. In this section, we explore what we could build
with such systems.

Prefetching with superdense coding. Many network
workloads are bursty. For example, a web browser spends
most of its time transferring nothing over the network, but
on every page load, the browser downloads megabytes of
content as quickly as possible.

One technique to make traffic less bursty is to use link
prefetching [46]: the browser tries to guess the next link
the user will click and downloads that content in the back-
ground before the user clicks the link. A quantum phe-
nomenon known as superdense coding allows a quantum
client to prefetch data from a quantum server, even if the
client has no idea what data it will need in the future.

Fact 3 (Superdense coding [12]). If a client and server
share a single entangled qubit (i.e., a preshared qubit), the
server can transmit two classical bits of information to
the client by sending a single qubit to the client.

To implement prefetching using superdense coding, the
server would continuously produce pairs of entangled
qubits and would send one of the two entangled qubits
to the client. When the client wants to download some
data from to the server, the server could use the entangled
qubits it has preshared with the client to transmit data to
the client at twice the bitrate of the network link.

Superdense coding could improve network perfor-
mance even when the client is downloading data from
a server at a constant rate. Say that the client and server
are connected over a network link that has a maximum
transfer rate of 100 Mbps in either direction. Using su-
perdense coding, the client could download data from the
server at 200 Mbps. To do so, the client would send en-
tangled qubits to the server at the rate of 100 Mbps while

the server would send coded qubits back to the client at
a rate of 100 Mbps. The client could extract informa-
tion from the channel at 200 Mbps, turning a 100 Mbps
bidirectional link into a 200 Mbps unidirectional link.

Remote search. Computers connected by a quantum link
could run Grover’s algorithm across a network. To see
one possible application of this idea: let us say that a
client wants to search for a special element in a large
dataset of N items (x1, . . . ,xN) stored at a server (e.g.,
terabytes of video data). In particular, the client has a
classifier f : {0,1}∗→{0,1} and wants to find an index
i∗ on the server such that f (xi∗) = 1. The client does not
want to download the entire dataset from the server, nor
does the client want to upload the code for its classifier to
the server—the classifier f might be too large to send or
it could involve some secret inputs or algorithms.

The client and server could run Grover search over a
network to allow the client to find the matching value xi∗

while exchanging a mere Õ(
√

N) qubits, instead of Ω(N)
classical bits. Of course, the computational burden at
both the client and server would be substantial: the client
would have to run the classifier roughly

√
N times and

the server would have to execute a qRAM query roughly√
N times. Even so, the network traffic savings might be

worth the computational cost.

6 Related Work

Richard Feynman initiated the study of quantum com-
puters by pointing out that classical computers seem
too weak to efficiently simulate quantum physical sys-
tems [32]. Computer scientists have demonstrated that
quantum computers can provide speedups for a number
of problems [14, 30, 45], including factorization of inte-
gers [44], inversion of one-way functions [35], and certain
machine learning problems [38] (though these latter al-
gorithms come with caveats [2]). Known applications
of distributed quantum computing systems include un-
conditionally secure key agreement over authenticated
quantum channels [11] and superdense coding [12] (see
Section 5). More recent work has investigated quantum
consensus [8] and quantum secure multi-party computa-
tion [25]. Broadbent and Tapp survey these and related
results [22].

7 Conclusion

If quantum computers are indeed on their way, the op-
erating system will have an important role in enabling
constructive applications of this potentially destructive
technology. As Richard Feynman said of quantum com-
puting, “It’s a wonderful problem, because it doesn’t look
so easy” [32].
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