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Abstract

Functional encryption (FE) enables fine-grained control of sensitive data by allowing users to only
compute certain functions for which they have a key. The vast majority of work in FE has focused on
deterministic functions, but for several applications such as privacy-aware auditing, differentially-
private data release, proxy re-encryption, and more, the functionality of interest is more naturally
captured by a randomized function. Recently, Goyal et al. (TCC 2015) initiated a formal study of
FE for randomized functionalities with security against malicious encrypters, and gave a selectively
secure construction from indistinguishability obfuscation. To date, this is the only construction of
FE for randomized functionalities in the public-key setting. This stands in stark contrast to FE for
deterministic functions which has been realized from a variety of assumptions.

Our key contribution in this work is a generic transformation that converts any general-purpose,
public-key FE scheme for deterministic functionalities into one that supports randomized functionali-
ties. Our transformation uses the underlying FE scheme in a black-box way and can be instantiated
using very standard number-theoretic assumptions (for instance, the DDH and RSA assumptions
suffice). When applied to existing FE constructions, we obtain several adaptively-secure, public-
key functional encryption schemes for randomized functionalities with security against malicious
encrypters from many different assumptions such as concrete assumptions on multilinear maps,
indistinguishability obfuscation, and in the bounded-collusion setting, the existence of public-key
encryption, together with standard number-theoretic assumptions.

Additionally, we introduce a new, stronger definition for malicious security as the existing one falls
short of capturing an important class of correlation attacks. In realizing this definition, our compiler
combines ideas from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We believe that our techniques could be useful in expanding
the scope of new variants of functional encryption (e.g., multi-input, hierarchical, and others) to
support randomized functionalities.

*Visa Research. Email: shashank.agraval@gmail.com. Part of this work was done when the author was a graduate student
at the University of Illinois, Urbana-Champaign, supported by NSF CNS 12-28856 and the Andrew & Shana Laursen fellowship.

†Stanford University. Email: dwu4@cs.stanford.edu. This work was supported in part by NSF, DARPA, the Simons founda-
tion, a grant from ONR, and an NSF Graduate Research Fellowship. Opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA.

shashank.agraval@gmail.com
dwu4@cs.stanford.edu


Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Security Against Malicious Encrypters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of Our Generic Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 RKA-Secure PRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Functional Encryption for Randomized Functionalities 10

4 Our Generic Transformation 13
4.1 Proof of Theorem 4.1: Description of Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Proof of Theorem 4.1: Hybrid Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Proof of Theorem 4.1: Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Instantiating and Applying the Transformation 21
5.1 Instantiating Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Applying the Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 25

A Additional Preliminaries 33
A.1 Non-Interactive Zero-Knowledge Arguments of Knowledge . . . . . . . . . . . . . . . . . . . 33
A.2 One-Way Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B Hybrid Argument Proofs from Section 4.2 35
B.1 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.3 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.4 Proof of Lemma 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.5 Proof of Lemma 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C Correctness Proof 42



1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to data access: a user who
holds the secret key can completely recover the message from a ciphertext while a user who does not hold
the secret key learns nothing at all from the ciphertext. In the last fifteen years, numerous paradigms, such
as identity-based encryption [Sha84, BF01, Coc01], attribute-based encryption [SW05, GPSW06, BSW07],
predicate encryption [BW07, KSW08, LOS+10, OT10], and more have been introduced to enable more
fine-grained access control on encrypted data. More recently, the cryptographic community has worked
to unify these different paradigms under the general umbrella of functional encryption (FE) [SS10, BSW11,
O’N10].

At a high level, an FE scheme enables delegation of decryption keys that allow users to learn specific
functions of the data, and nothing else. More precisely, given a ciphertext for a message x and a secret key
for a function f , one can only learn the value f (x). In the last few years, numerous works have explored
different security notions [BSW11, O’N10, AGVW13, BO13, BF13, AAB+15, AAP15] as well as constructions
from a wide range of assumptions [GVW13, ABF+13, DIJ+13, GKP+13, GGH+13, Wat15, ABSV15]. Until
very recently, the vast majority of work in functional encryption has focused on deterministic functionali-
ties, i.e., on schemes that issue keys for deterministic functions only. However, there are many scenarios
where the functionality of interest is more naturally captured by a randomized function. The first two
examples below are adapted from those of Goyal et al. [GJKS15].

Privacy-aware auditing. Suppose a government agency is tasked with monitoring various financial
institutions to ensure that their day-to-day activity is compliant with federal regulations. The financial
institutions do not want to give complete access of their confidential data to any external auditor. Partial
access is insufficient if the financial institution is able to (adversarially) choose which part of its database
to expose. An ideal solution should allow the institutions to encrypt their database before providing
access. Next, the government agency can give the external auditors a key that allows them to sample a
small number of randomly chosen records from each database.

Constructing an encryption scheme that supports this kind of sampling functionality is non-trivial for
several reasons. If an auditor obtains two independent keys from the government agency, applying them
to the same encrypted database should nonetheless generate two independent samples from it. On the
flip side, if the same key is applied to two distinct databases, the auditor should obtain an independent
sample from each.

Another source of difficulty that arises in this setting is that the encryption is performed locally by
the financial institution. Thus, if malicious institutions are able to construct “bad” ciphertexts such
that the auditor obtains correlated or non-uniform samples from the encrypted databases, then they
can completely compromise the integrity of the audit. Hence, any encryption scheme we design for
privacy-aware auditing must also protect against malicious encrypters.

Differential privacy. Suppose a consortium of hospitals, in an effort to promote medical research, would
like to provide restricted access to their patient records to approved scientists. In particular, they want
to release information in a differentially-private manner to protect the privacy of their patients. The
functionality of interest in this case is the evaluation of some differentially-private mechanism, which is
always a randomized function. Thus, the scheme used to encrypt patient data should also support issuing
keys for randomized functions. These keys would be managed by the consortium.
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Proxy re-encryption. In a proxy re-encryption system, a proxy is able to transform a ciphertext en-
crypted under Alice’s public key into one encrypted under Bob’s public key [AFGH06]. Such a capability is
very useful if, for example, Alice wants to forward her encrypted emails to her secretary Bob while she is
away on vacation [BBS98]. We refer to [AFGH06] for other applications of this primitive.

Proxy re-encryption can be constructed very naturally from a functional encryption scheme that
supports randomized functionalities. For instance, in the above example, Alice would generate a master
public/secret key-pair for an FE scheme that supports randomized functionalities. When users send
mail to Alice, they would encrypt under her master public key. Then, when Alice goes on vacation,
she can delegate her email to Bob by simply giving her mail server a re-encryption key that re-encrypts
emails for Alice under Bob’s public key. Since standard semantically-secure encryption is necessarily
randomized, this re-encryption functionality is a randomized functionality. In fact, in this scenario, Alice
can delegate an arbitrary decryption capability to other parties. For instance, she can issue a key that only
re-encrypts emails tagged with “work” to Bob. Using our solution, the re-encryption function does not
require interaction with Bob or knowledge of any of Bob’s secrets.

Randomized functional encryption. Motivated by these applications, Alwen et al. [ABF+13] and Goyal
et al. [GJKS15] were the first to formally study the problem of FE for randomized functionalities. In such
an FE scheme, a secret key for a randomized function f and an encryption of a message x should reveal a
single sample from the output distribution of f (x). Moreover, given a collection of secret keys sk f1 , . . . ,sk fn

for functions f1, . . . , fn , and ciphertexts ctx1 , . . . ,ctxn corresponding to messages x1, . . . , xn , where neither
the functions nor the messages need to be distinct, each secret key sk fi and ciphertext ctx j should reveal
an independent draw from the output distribution of fi (x j ), and nothing more.

In supporting randomized functionalities, handling malicious encrypters is a central issue: a malicious
encrypter may construct a ciphertext for a message x such that when decrypted with a key for f , the
resulting distribution differs significantly from that of f (x). For instance, in the auditing application
discussed earlier, a malicious bank could manipulate the randomness used to sample records in its
database, thereby compromising the integrity of the audit. We refer to [GJKS15] for a more thorough
discussion on the importance of handling malicious encrypters.

1.1 Our Contributions

To date, the only known construction of public-key FE for randomized functionalities secure against mali-
cious encrypters is due to Goyal et al. [GJKS15] and relies on indistinguishability obfuscation (iO) [BGI+01,
GGH+13] together with one-way functions. However, iO is not a particularly appealing assumption since
the security of existing iO constructions either rely on an exponential number of assumptions [BR14,
BGK+14, PST14, Zim15, AB15], or on a polynomial set of assumptions but with an exponential loss in the
security reduction [GLW14, GLSW15]. This shortcoming may even be inherent, as suggested by [GGSW13].
Moreover, numerous recent attacks on multilinear maps (the underlying primitive on which all candi-
date constructions iO are based) [CHL+15, BWZ14, CGH+15, CLLT16, HJ16, CFL+16, CJL16, MSZ16] have
reduced the community’s confidence in the security of existing constructions of iO.

On the other hand, functional encryption for deterministic functions (with different levels of security
and efficiency) can be realized from a variety of assumptions such as the existence of public-key encryp-
tion [SS10, GVW12], learning with errors [GKP+13], indistinguishability obfuscation [GGH+13, Wat15],
multilinear maps [GGHZ16], and more. Thus, there is a very large gap between the assumptions needed
to build FE schemes for deterministic functionalities and those needed for randomized functionalities.
Hence, it is important to ask:
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Does extending public-key FE to support the richer class of
randomized functions require strong additional assumptions such as iO?

If there was a general transformation that we could apply to any FE scheme for deterministic functions,
and obtain one that supported randomized functions, then we could leverage the extensive work on
FE for the former to build FE for the latter with various capabilities and security guarantees. In this
paper, we achieve exactly this. We bridge the gap between FE schemes for deterministic and randomized
functionalities by showing that any general-purpose, simulation-secure FE scheme for deterministic
functionalities can be extended to support randomized functionalities with security against malicious
encrypters. Our generic transformation applies to any general-purpose, simulation-secure FE scheme
with perfect correctness and only requires fairly mild additional assumptions (e.g., the decisional Diffie-
Hellman (DDH) [Bon98] and the RSA [RSA78, Bon99] assumptions suffice). Moreover, our transformation
is tight in the sense that it preserves the security of the underlying FE scheme. Because our transforma-
tion relies only on simple additional assumptions, future work in constructing general-purpose FE can
primarily focus on handling deterministic functions rather than devising specialized constructions to
support randomized functions. We now give an informal statement of our main theorem:

Theorem 1.1 (Main theorem, informal). Under standard number-theoretic assumptions, given any general-
purpose, public-key functional encryption scheme for deterministic functions, there exists a general-purpose,
public-key functional encryption scheme for randomized functions secure against malicious encrypters.

In this work, we focus on simulation-based notions of security for FE. As shown by several works [BSW11,
O’N10], game-based formulations of security are inadequate if the function family under consideration
has some computational hiding properties. Moreover, as noted by Goyal et al. [GJKS15, Remark 2.8],
the natural notion of indistinguishability-based security in the randomized setting can potentially intro-
duce circularities in the definition and render it vacuous. Additionally, there are generic ways to boost
the security of FE for deterministic functionalities from a game-based notion to a simulation-based
notion [DIJ+13].

We do note though that these generic indistinguishability-to-simulation boosting techniques some-
times incur a loss in expressiveness (due to the lower bounds associated with simulation-based security
for FE [BSW11, O’N10, AGVW13, AKW16]). For instance, while it is possible to construct a general-purpose
FE scheme secure against adversaries that makes an arbitrary (polynomial) number of secret key queries
under an indistinguishability-based notion of security, an analogous construction is impossible under
a simulation-based notion of security. We leave as an important open problem the development of
a generic transformation like the one in Theorem 1.1 that applies to (public-key) FE schemes which
satisfy indistinguishability-based notions of security and which does not incur the loss in expressiveness
associated with first boosting to a simulation-based notion of security. Such a transformation is known in
the secret-key setting [KSY15], though it does not provide security against malicious encrypters.

Concrete instantiations. Instantiating Theorem 1.1 with existing FE schemes such as [GVW13, GGHZ16,
GGH+13] and applying transformations like [BV16, DNR04, DIJ+13, ABSV15] to boost correctness and/or
security, we obtain several new public-key FE schemes for randomized functionalities with adaptive
simulation-based security against malicious encrypters. For example, if we start with

• the GVW scheme [GVW12], we obtain a scheme secure under bounded collusions assuming the
existence of semantically-secure public-key encryption and low-depth pseudorandom generators.
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• the GGHZ scheme [GGHZ16], we obtain a scheme with best-possible simulation security relying
on the polynomial hardness of concrete assumptions on composite-order multilinear maps [BS02,
CLT13, CLT15].

• the GGHRSW scheme [GGH+13], we obtain a scheme with best-possible simulation security from
indistinguishability obfuscation and one-way functions.

The second and third schemes above should be contrasted with the one given by Goyal et al. [GJKS15],
which achieves selective security assuming the existence of iO. We describe these instantiations in greater
detail in Section 5.

Security definition. We also propose a strong simulation-based definition for security against malicious
encrypters, strengthening the one given by Goyal et al. [GJKS15]. We first give a brief overview of their
definition in Section 1.2 and then show why it does not capture an important class of correlation attacks.
We also discuss the subtleties involved in extending their definition.

Our techniques. At a very high level, we must balance between two conflicting goals in order to achieve
our strengthened security definition. On the one hand, the encryption and key-generation algorithms
must be randomized to ensure that the decryption operation induces the correct output distribution,
or even more fundamentally, that the scheme is semantically-secure. On the other hand, a malicious
encrypter could exploit its freedom to choose the randomness when constructing ciphertexts in order
to induce correlations when multiple ciphertexts or keys are operated upon. We overcome this barrier
by employing ideas from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We discuss our transformation and the tools involved in more
detail in Section 1.3.

We believe that our techniques could be used to extend the capability of new variants of functional
encryption like multi-input FE [GGG+14, BLR+15], hierarchical or delegatable FE [ABG+13, BCG+17], and
others so that they can support randomized functionalities with security against malicious encrypters as
well.

Other related work. Recently, Komargodski et al. [KSY15] studied the same question of extending stan-
dard FE to FE for randomized functionalities, but restricted to the private-key setting. They show that
starting from any “function-private” secret-key FE scheme for deterministic functionalities, a secret-key
FE scheme for randomized functionalities can be constructed (though without robustness against mali-
cious encrypters). However, as we discuss below, it seems challenging to extend their techniques to work
in the public-key setting:

• The types of function-privacy that are achievable in the public-key setting are much more limited
(primarily because the adversary can encrypt messages of its own and decrypt them in order to
learn something about the underlying function keys). For instance, in the case of identity-based
and subspace-membership encryption schemes, function privacy is only possible if we assume the
function keys are drawn from certain high-entropy distributions [BRS13a, BRS13b].

• An adversary has limited control over ciphertexts in the private-key setting. For instance, since it
cannot construct new ciphertexts by itself, it can only maul honestly-generated ciphertexts. In such
a setting, attacks can often be prevented using zero-knowledge techniques.
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Concurrent with [GJKS15], Alwen et al. [ABF+13] also explored the connections between FE for determin-
istic functionalities and FE for randomized functionalities. Their construction focused only on the simpler
case of handling honest encrypters and moreover, they worked under an indistinguishability-based notion
of security that has certain circularity problems (see the discussion in [GJKS15, Remark 2.8]) which might
render it vacuous.

1.2 Security Against Malicious Encrypters

Simulation security. Informally, simulation security for FE schemes supporting randomized functional-
ities states that the output of any efficient adversary with a secret key for a randomized function f and an
encryption of a message x can be simulated given only f (x;r ), where the randomness r used to evaluate
f is independently and uniformly sampled. Goyal et al. [GJKS15] extend this notion to include security
against malicious encrypters by further requiring that the output of any efficient adversary holding a
secret key for a function g and a (possibly dishonestly-generated) ciphertext ĉt should be simulatable
given only g (x̂;r ), where x̂ is a message that is information-theoretically fixed by ĉt, and the randomness
r is uniform and unknown to the adversary. This captures the notion that a malicious encrypter is unable
to influence the randomness used to evaluate the function during decryption.

More formally, in the simulation-based definitions of security [BSW11, O’N10], an adversary tries to
distinguish its interactions in a real world where ciphertexts and secret keys are generated according to
the specifications of the FE scheme from its interactions in an ideal world where they are constructed by a
simulator given only a minimal amount of information. To model security against malicious encrypters,
Goyal et al. give the adversary access to a decryption oracle in the security game (similar to the formulation
of IND-CCA2 security [RS92]) that takes as input a single ciphertext ct along with a function f . In the real
world, the challenger first extracts a secret key sk f for f and then outputs the decryption of ct with sk f . In
the ideal world, the challenger invokes the simulator on ct. The simulator then outputs a value x (or a
special symbol ⊥), at which point the challenger replies to the adversary with an independently uniform
value drawn from the distribution f (x) (or ⊥).

Limitations of the existing definition. While the definition in [GJKS15] captures security against dis-
honest encrypters when dealing with deterministic functionalities, it does not fully capture the desired
security goals in the randomized setting. Notably, the security definition only considers one ciphertext.
However, when extending functional encryption to randomized functionalities, we are also interested in
the joint distribution of multiple ciphertexts and secret keys. Thus, while it is the case that in any scheme
satisfying the security definition in [GJKS15], the adversary cannot produce any single ciphertext that
decrypts improperly, a malicious encrypter could still produce a collection of ciphertexts such that when
the same key is used for decryption, the outputs are correlated. In the auditing application discussed
before, it is imperative to prevent this type of attack, for otherwise, the integrity of the audit can be
compromised.

Strengthening the definition. A natural way to strengthen Goyal et al.’s definition is to allow the de-
cryption oracle to take in a set of (polynomially-many) ciphertexts along with a function f . In the real
world, the challenger extracts a single key sk f for f and applies the decryption algorithm with sk f to each
ciphertext. In the ideal world, the simulator is given the set of ciphertexts and is allowed to query the
evaluation oracle O f once for each ciphertext submitted. On each query x, the oracle responds with a
fresh evaluation of f (x). This direct extension, however, is too strong, and not achievable by any existing
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scheme. Suppose that an adversary could efficiently find two ciphertexts ct1 6= ct2 such that for all secret
keys sk, Decrypt(sk,ct1) =Decrypt(sk,ct2), then it can easily distinguish the real and ideal distributions.
When queried with ( f , (ct1,ct2)), the decryption oracle always replies with two identical values in the real
world irrespective of what f is. In the ideal world, however, it replies with two independent values since
fresh randomness is used to evaluate f every time.

While we might want to preclude this type of behavior with our security definition, it is also one
that arises naturally. For example, in both Goyal et al.’s and our construction, ciphertexts have the form
(ct′,π) where ct′ is the ciphertext component that is actually combined with the decryption key and π is a
proof of the well-formedness of ct′. Decryption proceeds only if the proof verifies. Since the proofs are
randomized, an adversary can construct a valid ciphertext component ct′ and two distinct proofs π1,π2

and submit the pair of ciphertexts (ct′,π1) and (ct′,π2) to the decryption oracle. Since π1 and π2 do not
participate in the decryption process after verification, these two ciphertexts are effectively identical from
the perspective of the decryption function. However, as noted above, an adversary that can construct
such ciphertexts can trivially distinguish between the real and ideal worlds.

Intuitively, if the adversary submitted the same ciphertext multiple times in a decryption query, it
does not make sense for the decryption oracle to respond with independently distributed outputs in the
ideal experiment. The expected behavior is that the decryption oracle responds with the same value
on all identical ciphertexts. In our setting, we allow for this behavior by considering a generalization of
“ciphertext equivalence.” In particular, when the adversary submits a decryption query, the decryption
oracle in the ideal experiment responds consistently on all equivalent ciphertexts that appear in the
query. Formally, we capture this by introducing an efficiently-checkable equivalence relation on the
ciphertext space of the FE scheme. For example, if the ciphertexts have the form (ct′,π), one valid
equivalence relation on ciphertexts is equality of the ct′ components. To respond to a decryption query,
the challenger first groups the ciphertexts according to their equivalence class, and responds consistently
for all ciphertexts belonging to the same class. Thus, without loss of generality, it suffices to just consider
adversaries whose decryption queries contain at most one representative from each equivalence class.
We provide a more thorough discussion of our strengthened definition in Section 3.

As far as we understand, the Goyal et al. construction remains secure under our strengthened notion
of security against malicious encrypters, but it was only shown to be selectively secure assuming the
existence of iO (and one-way functions).1 Our transformation, on the other hand, provides a generic way
of building adaptively-secure schemes from both iO as well as plausibly weaker assumptions such as those
on composite-order multilinear maps (Section 5). Finally, we note that not all schemes satisfying the Goyal
et al. security notion satisfy our strengthened definition. In fact, a simplified version of our transformation
yields a scheme secure under their original definition, but not our new definition (Remark 4.2).

Further strengthening the security definition. An important assumption that underlies all existing
definitions of FE security against malicious encrypters is that the adversary cannot craft its “malicious”
ciphertexts with (partial) knowledge of the secret key that will be used for decryption. More formally, in
the security model, when the adversary submits a query to the decryption oracle, the secret key used for
decryption is honestly generated and hidden from the adversary. An interesting problem is to formulate

1While there is a generic transformation from selectively-secure FE to adaptively-secure FE [ABSV15], it is described in the
context of FE for deterministic functions. Though it is quite plausible that the transformation can be applied to FE schemes
for randomized functions, a careful analysis is necessary to verify that it preserves security against malicious encrypters. In
contrast, our generic transformation allows one to take advantage of the transformation in [ABSV15] “out-of-the-box” (i.e.,
apply it to existing selectively-secure FE schemes for deterministic functions) and directly transform adaptive-secure FE for
deterministic functions to adaptively-secure FE for randomized functions.
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stronger notions of randomized FE where the adversary cannot induce correlations within ciphertexts
even if it has some (limited) information about the function keys that will be used during decryption. At
the same time, we stress that our existing notions already suffice for all of the applications we describe at
the beginning of Section 1.

1.3 Overview of Our Generic Transformation

Our primary contribution in this work is giving a generic transformation from any simulation-secure
general-purpose (public-key) FE scheme2 for deterministic functionalities to a corresponding simulation-
secure (public-key) FE scheme for randomized functionalities. In this section, we provide a brief overview
of our generic transformation. The complete construction is given in Section 4.

Derandomization. Our starting point is the generic transformation of Alwen et al. [ABF+13] who use a
pseudorandom function (PRF) to “derandomize” functionalities. In their construction, an encryption of a
message x consists of an FE encryption of the pair (x,k) where k is a uniformly chosen PRF key. A secret
key for a randomized functionality f is constructed by first choosing a random point t in the domain of
the PRF and then extracting an FE secret key for the derandomized functionality g t (x,k) = f (x;PRF(k, t )),
that is, the evaluation of f using randomness derived from the PRF. Evidently, this construction is not
robust against malicious encrypters, since by reusing the same PRF key when constructing the ciphertexts,
a malicious encrypter can induce correlations in the function evaluations. In fact, since the PRF key is
fully under the control of the encrypter (who needs not sample it from the honest distribution), it is no
longer possible to invoke PRF security to argue that PRF(k, t ) looks like a random string.

Secret sharing the PRF key. In our transformation, we start with the same derandomization approach.
Since allowing the encrypter full control over the PRF key is problematic, we instead secret share the PRF
key across the ciphertext and the decryption key. Suppose the key-space K of the PRF forms a group
under an operation ¦. As before, an encryption of a message x corresponds to an FE encryption of the
pair (x,k), but now k is just a single share of the PRF key. To issue a key for f , another random key-share
k ′ is chosen from K. The key sk f is then an FE key for the derandomized functionality f (x;PRF(k ¦
k ′, x)). In this scheme, a malicious encrypter is able to influence the PRF key, but does not have full
control. However, because the malicious encrypter can induce correlated PRF keys in the decryption
queries, the usual notion of PRF security no longer suffices. Instead, we require the stronger property
that the outputs of the PRF appear indistinguishable from random even if the adversary observes PRF
outputs under related keys. Security against related-key attacks (RKA-security) for PRFs has been well-
studied [Bih94, Knu93, BK03, BC10, BCM11, LMR14, ABPP14, ABP15] in the last few years, and for our
particular application, a variant of the Naor-Reingold PRF is related-key secure for the class of group-
induced transformations [BC10].

Applying deterministic encryption. By secret-sharing the PRF key and using a PRF secure against
related-key attacks, we obtain robustness against malicious encrypters that only requests the decryption
of unique (x,k) pairs (in this case, either k or x is unique, so by related-key security, the output of
the PRF appears uniformly random). However, a malicious encrypter can encrypt the same pair (x,k)
multiple times, using freshly generated randomness for the base FE scheme each time. Since each of

2Our transformation requires that the underlying FE scheme be perfectly correct. Using the transformations in [DNR04, BV16],
approximately correct FE schemes can be converted to FE schemes that satisfy our requirement.
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these ciphertexts encrypt the same underlying value, in the real world, the adversary receives the same
value from the decryption oracle. In the ideal world, the adversary receives independent draws from the
distribution f (x). This problem arises because the adversary is able to choose additional randomness
when constructing the ciphertexts that does not affect the output of the decryption algorithm. As such, it
can construct ciphertexts that induce correlations in the outputs of the decryption process.

To protect against the adversary that encrypts the same (x,k) pair, we note that in the honest-encrypter
setting, the messages that are encrypted have high entropy (since the key-share is sampled uniformly at
random). Thus, instead of having the adversary choose its randomness for each encryption arbitrarily, we
instead force the adversary to derive the randomness from the message. This is similar to what has been
done when constructing deterministic public-key encryption [BBO07, BFOR08, BS11, FOR12] and other
primitives where it is important to restrict the adversary’s freedom when constructing ciphertexts [BH15].
Specifically, we sample a one-way permutation h on the key-space of the PRF, set the key-share in the
ciphertext to h(k) where k is uniform over K, and then derive the randomness used in the encryption
using a hard-core function hc of h.3 In addition, we require the adversary to include a non-interactive
zero-knowledge (NIZK) argument that each ciphertext is properly constructed. In this way, we guarantee
that for each pair (x,k), there is exactly a single ciphertext that is valid. By our admissibility requirement,
the adversary is required to submit distinct ciphertexts (since matching ciphertexts belong to the same
equivalence class). Thus, the underlying messages encrypted by each ciphertext in a decryption query
necessarily differ in either the key-share or the message component. Security then follows by RKA-
security.

2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . ,n}. For bit-strings a,b ∈ {0,1}∗, we write a‖b

to denote the concatenation of a and b. For a finite set S, we write x
R←− S to denote that x is sampled

uniformly from S. We denote the evaluation of a randomized function f on input x with randomness r by
f (x;r ). We write Funs[X ,Y] to denote the set of all functions mapping from a domain X to a range Y . We
use λ to denote the security parameter. We say a function f (λ) is negligible in λ, denoted by negl(λ), if
f (λ) = o(1/λc ) for all c ∈N. We say an algorithm is efficient if it runs in probabilistic polynomial time in
the length of its input. We use poly(λ) (or just poly) to denote a quantity whose value is bounded by some
polynomial in λ.

We now formally define the tools we need to build FE schemes for randomized functionalities with
security against malicious encrypters. In Appendix A, we also review the standard definitions of non-
interactive zero-knowledge (NIZK) arguments of knowledge [BFM88, FLS90, Gro06, GOS06] and one-way
permutations [Gol01].

2.1 RKA-Secure PRFs

We first review the standard definition of a pseudorandom function (PRF) as well as the notion of related-
key security [Bih94, Knu93, BK03, BC10, BCM11, LMR14, ABPP14, ABP15] for PRFs.

3In the deterministic encryption setting of Fuller et al. [FOR12], the hard-core function must additionally be robust. This is
necessary because hc(x) is not guaranteed to hide the bits of x, which in the case of deterministic encryption, is the message
itself (and precisely what needs to be hidden in a normal encryption scheme!). Our randomized FE scheme does not require
that the bits of k remain hidden from the adversary. Rather, we only need that hc(k) does not reveal any information about h(k)
(the share of the PRF key used for derandomization). This property follows immediately from the definition of an ordinary
hard-core function.
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Definition 2.1 (Pseudorandom Function [GGM84]). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and Y = {Yλ}λ∈N
be ensembles where Kλ, Xλ, and Yλ are finite sets and represent the key-space, domain, and range,
respectively. Let F :Kλ×Xλ→Yλ be an efficient computable family of functions. Then F is a PRF if for all
efficient non-uniform adversaries A,∣∣∣Pr

[
k

R←−Kλ :AF (k,·)(1λ) = 1
]
−Pr

[
f

R←−Funs[Xλ,Yλ] :A f (·)(1λ) = 1
]∣∣∣= negl(λ).

Definition 2.2 (RKA-Secure PRF [BK03, BC10]). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and Yλ = {Yλ}λ∈N be
ensembles where Kλ, Xλ, and Yλ are finite sets and represent the key-space, domain, and range, re-
spectively. Let F : Kλ×Xλ → Yλ be an efficiently computable family of pseudorandom functions. Let
Φ⊆ Funs[Kλ,Kλ] be a family of key derivation functions. We say that F isΦ-RKA secure if for all efficient,
non-uniform adversaries A,∣∣∣Pr

[
k

R←−Kλ :AO(k,·,·)(1λ) = 1
]
−Pr

[
f

R←−Funs[Φ×Xλ,Yλ] :A f (·,·)(1λ) = 1
]∣∣∣ = negl(λ),

where the oracle O(k, ·, ·) outputs F (φ(k), x) on input (φ, x) ∈Φ×Xλ.

Definition 2.3 (Group Induced Classes [Luc04, BC10]). If the key space K forms a group under an opera-
tion ¦, then the group-induced classΦ¦ is the class of functionsΦ¦ =

{
φb : a ∈K 7→ a ¦b | b ∈K}

.

2.2 Functional Encryption

The notion of functional encryption was first formalized by Boneh et al. [BSW11] and O’Neill [O’N10].
The work of Boneh et al. begins with a natural indistinguishability-based notion of security. They then
describe some example scenarios where these game-based definitions of security are inadequate (in the
sense that a trivially insecure FE scheme can be proven secure under the standard game-based definition).
To address these limitations, Boneh et al. defined a stronger simulation-based notion of security, which
has subsequently been the subject of intense study [GVW12, AGVW13, DIJ+13, GKP+13, GJKS15]. In this
work, we focus on this stronger security notion.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where Xλ and Yλ are finite sets and represent the
input and output domains, respectively. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collec-
tion of (deterministic) functions from Xλ to Yλ. A functional encryption scheme FE= (Setup,Encrypt,
KeyGen,Decrypt) for a (deterministic) family of functions F = {Fλ}λ∈N with domain X = {Xλ}λ∈N and
range Y = {Yλ}λ∈N is specified by the following four efficient algorithms:

• Setup: Setup(1λ) takes as input the security parameter λ and outputs a public key MPK and a master
secret key MSK.

• Encryption: Encrypt(MPK, x) takes as input the public key MPK and a message x ∈Xλ, and outputs
a ciphertext ct.

• Key Generation: KeyGen(MSK, f ) takes as input the master secret key MSK, a function f ∈Fλ, and
outputs a secret key sk.

• Decryption: Decrypt(MPK,sk,ct) takes as input the public key MPK, a ciphertext ct, and a secret
key SK, and either outputs a string y ∈Yλ, or a special symbol ⊥. We can assume without loss of
generality that this algorithm is deterministic.

First, we state the correctness and security definitions for an FE scheme for deterministic functions.
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Definition 2.4 (Perfect Correctness). A functional encryption scheme FE = (Setup,Encrypt,KeyGen,
Decrypt) for a deterministic function family F = {Fλ}λ∈N with message space X = {Xλ}λ∈N is perfectly
correct if for all f ∈Fλ, x ∈Xλ,

Pr[(MPK, MSK) ← Setup(1λ);Decrypt(MPK,KeyGen(MSK, f ),Encrypt(MPK, x)) = f (x)] = 1.

Our simulation-based security definition is similar to the one in [AGVW13], except that we allow an
adversary to submit a vector of messages in its challenge query (as opposed to a single message). Our
definition is stronger than the one originally proposed by Boneh et al. [BSW11] because we do not allow
the simulator to rewind the adversary. On the other hand, it is weaker than [GVW12, DIJ+13] since the
simulator is allowed to program the public parameters and the responses to the pre-challenge secret key
queries.

Definition 2.5 (SIM-Security). An FE scheme FE= (Setup,Encrypt,KeyGen,Decrypt) for a deterministic
function family F = {Fλ}λ∈N with message space X = {Xλ}λ∈N is (q1, qc , q2)-SIM-secure if there exists an
efficient simulator S = (S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2), where A1 makes
at most q1 oracle queries and A2 makes at most q2 oracle queries, the outputs of the following two
experiments are computationally indistinguishable:

Experiment RealFEA (1λ):
(MPK, MSK) ← Setup(1λ)
(x,st) ←AO1(MSK,·)

1 (MPK) for x ∈X qc

λ
ct∗i ←Encrypt(MPK, xi ) for i ∈ [qc ]

α←AO2(MSK,·)
2 (MPK,

{
ct∗i

}
i∈[qc ]

,st)

Output (x,
{

f
}

,α)

Experiment IdealFEA (1λ):
(MPK,st′) ←S1(1λ)

(x,st) ←AO′
1(st′,·)

1 (MPK) where x ∈X qc

λ
• Let f1, . . . , fq1 be A1’s oracle queries
• Let yi j = f j (xi ) for i ∈ [qc ], j ∈ [q1]

(
{
ct∗i

}
i∈[qc ]

,st′) ←S3(st′,
{

yi j
}

i∈[qc ], j∈[q1])

α←AO′
2(st′,·)

2 (MPK,
{
ct∗i

}
i∈[qc ]

,st)

Output (x,
{

f ′} ,α)

where O1(MSK, ·) and O′
1(st′, ·) are pre-challenge key-generation oracles, and O2(MSK, ·) and O′

2(st′, ·) are
post-challenge ones. The oracles take a function f ∈Fλ as input and behave as follows:

• Real experiment: Oracles O1(MSK, ·) and O2(MSK, ·) both implement the key-generation func-
tion KeyGen(MSK, ·). The set

{
f
}

is the (ordered) set of key queries made to O1(MSK, ·) in the
pre-challenge phase and to O2(MSK, ·) in the post-challenge phase.

• Ideal experiment: Oracles O′
1(st′, ·) and O′

2(st′, ·) are the simulator algorithms S2(st′, ·) and S4(st′, ·),
respectively. On each invocation, the post-challenge simulator S4 is also given oracle access to
the ideal functionality KeyIdeal(x, ·). The functionality KeyIdeal accepts key queries f ′ ∈Fλ and
returns f ′(xi ) for every xi ∈ x. Both algorithms S2 and S4 are stateful. In particular, after each
invocation, they update their state st′, which is carried over to the next invocation. The (ordered)
set

{
f ′} denotes the key queries made to O′

1(st′, ·) in the pre-challenge phase, and the queries S4

makes to KeyIdeal in the post-challenge phase.

3 Functional Encryption for Randomized Functionalities

In a functional encryption scheme that supports randomized functionalities, the function class Fλ is
expanded to include randomized functions from the domain Xλ to the range Yλ. Thus, we now view the
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functions f ∈Fλ as taking as input a domain element x ∈Xλ and randomness r ∈Rλ, where R= {Rλ}λ∈N
is the randomness space. As in the deterministic setting, the functional encryption scheme still consists
of the same four algorithms, but the correctness and security requirements differ substantially.

For instance, in the randomized setting, whenever the decryption algorithm is invoked on a fresh
encryption of a message x or a fresh key for a function f , we would expect that the resulting output is indis-
tinguishable from evaluating f (x) with fresh randomness. Moreover, this property should hold regardless
of the number of ciphertexts and keys one has. To capture this property, the correctness requirement for
an FE scheme supporting randomized functions must consider multiple keys and ciphertexts. In contrast,
in the deterministic setting, correctness for a single key-ciphertext pair implies correctness for multiple
ciphertexts.

Definition 3.1 (Correctness). A functional encryption scheme rFE = (Setup,Encrypt,KeyGen,Decrypt)
for a randomized function family F = {Fλ}λ∈N over a message space X = {Xλ}λ∈N and a randomness space
R= {Rλ}λ∈N is correct if for every polynomial n = n(λ), every f ∈Fn

λ
and every x ∈X n

λ
, the following two

distributions are computationally indistinguishable:

1. Real:
{
Decrypt

(
MPK,ski ,ct j

)}
i , j∈[n], where:

• (MPK, MSK) ← Setup(1λ);

• ski ←KeyGen(MSK, fi ) for i ∈ [n];

• ct j ←Encrypt(MPK, x j ) for j ∈ [n].

2. Ideal:
{

fi
(
x j ;ri , j

)}
i , j∈[n] where ri , j

R←−Rλ.

As discussed in Section 1.2, formalizing and achieving security against malicious encrypters in the
randomized setting is considerably harder than in the deterministic case. A decryption oracle that takes a
single ciphertext along with a function f does not suffice in the randomized setting, since an adversary
could still produce a collection of ciphertexts such that when the same key is used for decryption, the
outputs are correlated. We could strengthen the security definition by allowing the adversary to query
with multiple ciphertexts instead of just one, but as noted in Section 1.2, this direct extension is too strong.
In order to obtain a realizable definition, we instead restrict the adversary to submit ciphertexts that do
not behave in the same way. This is formally captured by defining an admissible equivalence relation on
the space of ciphertexts.

Definition 3.2 (Admissible Relation on Ciphertext Space). Let rFE = (Setup,Encrypt,KeyGen,Decrypt)
be an FE scheme for randomized functions with ciphertext space T = {Tλ}λ∈N. Let ∼ be an equivalence
relation on T . We say that ∼ is admissible if ∼ is efficiently checkable and for all λ ∈ N, all (MPK, MSK)
output by Setup(1λ), all secret keys sk output byKeyGen(MSK, ·), and all ciphertexts ct1,ct2 ∈ Tλ, if ct1 ∼ ct2,
then one of the following holds:

• Decrypt(MPK,sk,ct1) = ⊥ OR Decrypt(MPK,sk,ct2) = ⊥.

• Decrypt(MPK,sk,ct1) =Decrypt(MPK,sk,ct2).

We remark here that there always exists an admissible equivalence relation on the ciphertext space,
namely, the equality relation. Next, we define our strengthened requirement for security against malicious
encrypters in the randomized setting. Like [GJKS15], we build on the usual simulation-based definition of
security for functional encryption (Definition 2.5) by providing the adversary access to a decryption oracle.
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The definition we present here differs from that by Goyal et al. in two key respects. First, the adversary can
submit multiple ciphertexts to the decryption oracle, and second, the adversary is allowed to choose its
challenge messages adaptively (that is, after seeing the public parameters and making secret key queries).

Definition 3.3 (SIM-security for rFE). Let F = {Fλ}λ∈N be a randomized function family over a domain
X = {Xλ}λ∈N and randomness space R= {Rλ}λ∈N. Let rFE= (Setup,Encrypt,KeyGen,Decrypt) be a ran-
domized functional encryption scheme for F with ciphertext space T . Then, we say that rFE is (q1, qc , q2)-
SIM-secure against malicious encrypters if there exists an admissible equivalence relation ∼ associated
with T and there exists an efficient simulator S = (S1,S2,S3,S4,S5) such that for all efficient adversaries
A= (A1,A2) where A1 makes at most q1 key-generation queries and A2 makes at most q2 key-generation
queries, the outputs of the following experiments are computationally indistinguishable:4

Experiment RealrFEA (1λ):

(MPK, MSK) ← Setup(1λ)
(x,st) ←AO1(MSK,·),O3(MSK,·,·)

1 (MPK) where x ∈X qc

λ
ct∗i ←Encrypt(MPK, xi ) for i ∈ [qc ]

α←AO2(MSK,·),O3(MSK,·,·)
2 (MPK,

{
ct∗i

}
,st)

Output (x,
{

f
}

,
{

g
}

,
{

y
}

,α)

Experiment IdealrFEA (1λ):

(MPK,st′) ←S1(1λ)

(x,st) ←AO′
1(st′,·),O′

3(st′,·,·)
1 (MPK) where x ∈X qc

λ• Let f1, . . . , fq1 be A1’s oracle queries to O′
1(st′, ·)

• Pick ri j
R←−Rλ, let yi j = f j (xi ;ri j ) for all i ∈ [qc ],

j ∈ [q1]
(
{
ct∗i

}
,st′) ←S3(st′,

{
yi j

}
)

α←AO′
2(st′,·),O′

3(st′,·,·)
2 (MPK,

{
ct∗i

}
,st)

Output (x,
{

f ′} ,
{

g ′} ,
{

y ′} ,α)

where the oracles O1(MSK, ·), O′
1(st′, ·), O2(MSK, ·), and O′

2(st′, ·) are the analogs of the key-generation
oracles from Definition 2.5:

• Real experiment: Oracles O1(MSK, ·) and O2(MSK, ·) implement KeyGen(MSK, ·), and
{

f
}

is the
(ordered) set of key queries made to oracles O1(MSK, ·) and O2(MSK, ·).

• Ideal experiment: Oracles O′
1(st′, ·) and O′

2(st′, ·) are the simulator algorithms S2(st′, ·) and S4(st′, ·),
respectively. The simulator S4 is given oracle access to KeyIdeal(x, ·), which on input a function

f ′ ∈Fλ, outputs f ′(xi ;ri ) for every xi ∈ x and ri
R←−Rλ. The (ordered) set

{
f ′} consists of the key

queries made to O′
1(st′, ·), and the queries S4 makes to KeyIdeal.

Oracles O3(MSK, ·, ·) and O′
3(st′, ·, ·), are the decryption oracles that take inputs of the form (g ,C ) where

g ∈Fλ and C = {cti }i∈[m] is a collection of m = poly(λ) ciphertexts. For queries made in the post-challenge
phase, we additionally require that ct∗i ∉C for all i ∈ [qc ]. Without loss of generality, we assume that for all
i , j ∈ [m], if i 6= j , then cti 6∼ ct j . In other words, the set C contains at most one representative from each
equivalence class of ciphertexts.

• Real experiment: On input (g ,C ), O3 computes skg ← KeyGen(MSK, g ). For i ∈ [m], it sets yi =
Decrypt(skg ,cti ) and replies with the ordered set

{
yi

}
i∈[m]. The (ordered) set

{
g
}

denotes the
functions that appear in the decryption queries of A2 and

{
y
}

denotes the set of responses of O3.

• Ideal experiment: On input (g ′,C ′), O′
3 does the following:

1. For each ct′i ∈ C ′, invoke the simulator algorithm S5(st′,ct′i ) to obtain a value xi ∈Xλ∪ {⊥}.
Note that S5 is also stateful.

4In the specification of the experiments, the indices i always range over [qc ] and the indices j always range over [q1].
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2. For each i ∈ [m], if xi =⊥, then the oracle sets y ′
i =⊥. Otherwise, the oracle choose ri

R←−Rλ

and sets y ′
i = g ′(xi ;ri ).

3. Output the ordered set of responses
{

y ′
i

}
i∈[m]

.

The (ordered) set
{

g ′} denotes the functions that appear in the decryption queries of A2 and
{

y ′}
denotes the outputs of O′

3.

Remark 3.4. Note that the above definition does not put any constraint on the equivalence relation
used to prove security. Indeed, any equivalence relation—as long as it is admissible—suffices because
if two ciphertexts ct1,ct2 fall into the same equivalence class, they essentially behave identically (for all
parameters output by Setup and all keys sk output by KeyGen, decrypting ct1,ct2 with sk must either give
the same result, or one of the ciphertexts is invalid). Thus, by restricting an adversary to providing at
most one ciphertext from each equivalence class in each decryption query, we are only preventing it from
submitting ciphertexts which are effectively equivalent to the decryption oracle.

Remark 3.5. One could also consider an ideal model where the adversary is allowed to submit equivalent
ciphertexts to the decryption oracle (at the cost of making the security game more cumbersome). In the
extreme case where the adversary submits identical ciphertexts, it does not make sense for the decryption
oracle to respond independently on each of them—rather, it should respond in a consistent way. In
constructions of randomized FE that provide malicious security, there naturally arise ciphertexts that are
not identical as bit-strings, but are identical from the perspective of the decryption function. In these
cases, the expected behavior of the ideal functionality should again be to provide consistent, rather than
independent, responses.

Consider now an adversary that submits a function f and a set C of ciphertexts to the decryption
oracle, where some ciphertexts in C belong to the same equivalence class. To respond, the challenger can
first group these ciphertexts by equivalence class. For each equivalence class C ′ of ciphertexts in C , the
challenger invokes the simulator on C ′. On input the collection C ′, the simulator outputs a single value
x and indicates which ciphertexts in C ′, if any, are valid. If C ′ contains at least one valid ciphertext, the
challenger samples a value z from the output distribution of f (x). It then replies with the same value z on
all ciphertexts marked valid by the simulator, and ⊥ on all ciphertexts marked invalid. (This is a natural
generalization of how we would expect the decryption oracle to behave had the adversary submitted
identical ciphertexts to it.)

4 Our Generic Transformation

Let F = {Fλ}λ∈N be a randomized function class over a domain X = {Xλ}λ∈N, randomness space R =
{Rλ}λ∈N and range Y = {Yλ}λ∈N. We give the formal description of our functional encryption scheme
for F (based on any general-purpose FE scheme for deterministic functionalities) in Figure 1. All the
necessary cryptographic primitives are also shown in Figure 1.

Theorem 4.1. If (1) NIZK is a simulation-sound extractable non-interactive zero-knowledge argument, (2)
PRF is aΦ-RKA secure pseudorandom function whereΦ is group-induced, (3) OWP is a family of one-way
permutations with hard-core function hc, and (4) FE is a perfectly-correct (q1, qc , q2)-SIM secure functional
encryption scheme for the derandomized class GF , then rFE is (q1, qc , q2)-SIM secure against malicious
encrypters for the class F of randomized functions.

13



Ingredients:

• A non-interactive zero-knowledge argument systemNIZK= (NIZK.Setup,NIZK.Prove,NIZK.Verify) that
is simulation-sound extractable (Definition A.3).

• AΦ-RKA secure pseudorandom function PRF (Definition 2.2) with key-space K= {Kλ}λ∈N, domain X ,
and range Y , whereΦ is group-induced (Definition 2.3). Let ¦ denote the group operation on K.

• A family of one-way permutations OWP= (OWP.Setup,OWP.Eval) over K with associated hard-core
function hc :Kλ→ {0,1}ρ (Definition A.5). The number of output bits ρ = ρ(λ) is specified below.

• For all f ∈Fλ and k ∈Kλ, let g f
k :Xλ×Kλ→Yλ be the derandomized function

g f
k (x,k ′) = f (x;PRF(k ¦k ′, x)). (1)

Let GF ,λ be the derandomized function class
{

g f
k | f ∈Fλ,k ∈Kλ

}
, and let FE= (FE.Setup,FE.Encrypt,

FE.KeyGen,FE.Decrypt) be a functional encryption scheme for the derandomized class GF = {GF ,λ}λ∈N.
By construction, the message space for FE is Xλ×Kλ. Let ρ = ρ(λ) be a bound on the number of bits of
randomness FE.Encrypt takes.

A functional encryption scheme rFE= (Setup,Encrypt,KeyGen,Decrypt) for randomized functionalities:

• Setup: On input 1λ, Setup samples (MPK′, MSK′) ← FE.Setup(1λ), t ← OWP.Setup(1λ), and σ ←
NIZK.Setup(1λ). It sets ht (·) =OWP.Eval(t , ·), and outputs a master public key MPK = (MPK′, t ,σ) and a
master secret key MSK = MSK′.

• Encryption: On input MPK = (MPK′, t ,σ) and x ∈ Xλ, Encrypt samples k
R←− Kλ and sets ct′ =

FE.Encrypt(MPK′, (x,ht (k));hc(k)). Then, it runs NIZK.Prove(σ, s, (x,k)) to obtain an argument π on
the following statement s:

∃ x,k : ct′ =FE.Encrypt(MPK′, (x,ht (k));hc(k)). (2)

Finally, it outputs a ciphertext ct= (ct′,π).

• Key-generation: On input MSK = MSK′ and f , KeyGen samples k
R←−Kλ and outputs a secret key sk f ←

FE.KeyGen(MSK′, g f
k ), where g f

k is the derandomized function corresponding to f (Eq. (1)).

• Decryption: On input MPK = (MPK′, t ,σ), a secret key sk, and a ciphertext ct = (ct′,π), Decrypt first
runs NIZK.Verify(σ, s,π) where s is the statement from Eq. (2). If the argument verifies, then it outputs
FE.Decrypt(sk,ct′); otherwise, it outputs ⊥.

Figure 1: Generic construction of a functional encryption scheme for any family of randomized functions
F = {Fλ}λ∈N over a domain X = {Xλ}λ∈N, randomness space R= {Rλ}λ∈N and range Y = {Yλ}λ∈N.
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Before proceeding with the proof of Theorem 4.1, we remark that our strengthened definition of
security against malicious encrypters (Definition 3.3) is indeed stronger than the original definition by
Goyal et al. [GJKS15].

Remark 4.2. A simpler version of our generic transformation where we only secret share the RKA-secure
PRF key used for derandomization and include a NIZK argument can be shown to satisfy the Goyal
et al. [GJKS15] definition of security against malicious encrypters, but not our strengthened definition
(Definition 3.3). In particular, if the randomness used in the base FE encryption is under the control of the
adversary, a malicious encrypter can construct two fresh encryptions (under the base FE scheme) of the
same (x,k) pair and submit them to the decryption oracle. In the real world, the outputs are identical
(since the ciphertexts encrypt identical messages), but in the ideal world, the oracle replies with two
independent outputs. This is an admissible query because if the underlying FE scheme is secure, one
cannot efficiently decide whether two FE ciphertexts encrypt the same value without knowing any scheme
parameters. But because each individual output is still properly distributed (by RKA-security of the PRF),
security still holds in the Goyal et al. model.

We now proceed to give a proof of Theorem 4.1 in Sections 4.1 and 4.2. In Section 4.3, we also show
that our transformed scheme is correct.

4.1 Proof of Theorem 4.1: Description of Simulator

To prove Theorem 4.1, and show that rFE is secure in the sense of Definition 3.3, we first define an
equivalence relation ∼ over the ciphertext space T = {Tλ}λ∈N. Take two ciphertexts ct1,ct2 ∈ Tλ, and write
ct1 = (ct′1,π1) and ct2 = (ct′2,π2). We say that ct1 ∼ ct2 if ct′1 = ct′2.

Certainly, ∼ is an efficiently-checkable equivalence relation over Tλ. For the second admissibility
condition, take any (MPK, MSK) output by Setup and any sk output by KeyGen(MSK, ·). Suppose moreover
that Decrypt(MPK,sk,ct1) 6= ⊥ 6=Decrypt(MPK,sk,ct2). Then, by definition of Decrypt(MPK,sk, ·),

Decrypt(MPK,sk,ct1) =FE.Decrypt(MPK′,sk,ct′1)

=FE.Decrypt(MPK′,sk,ct′2) =Decrypt(MPK,sk,ct2),

where MPK′ is the master public key for the underlying FE scheme (included in MPK). The second equiva-
lence follows since ct′1 = ct′2.

We now describe our ideal-world simulator S = (S1,S2,S3,S4,S5). Let S (FE) = (S (FE)
1 ,S (FE)

2 ,S (FE)
3 ,S (FE)

4 )

be the simulator for the underlying FE scheme for deterministic functionalities. LetS (NIZK) = (S (NIZK)
1 ,S (NIZK)

2 )

and E (NIZK) = (E (NIZK)
1 ,E (NIZK)

2 ) be the simulation and extraction algorithms, respectively, for the NIZK argu-
ment system.

Algorithm S1(1λ). S1 simulates the setup procedure. On input a security parameter 1λ, it operates as
follows:

1. Invoke S (FE)
1 (1λ) to obtain a master public key MPK′ and some state st(FE).

2. Invoke E (NIZK)
1 (1λ) to obtain a CRS σ, a simulation trapdoor τ, and an extraction trapdoor ξ.

3. Sample a one-way permutation t ←OWP.Setup(1λ) and define ht (·) =OWP.Eval(t , ·).

4. Set MPK ← (MPK′, t ,σ) and st← (st(FE), MPK,τ,ξ). Output (MPK,st).
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Algorithm S2(st0, f ). S2 simulates the pre-challenge key-generation queries. On input a state st0 =
(st(FE)

0 , MPK,τ,ξ) and a function f ∈Fλ, it operates as follows:

1. Choose a random key k
R←−Kλ and construct the derandomized function g f

k as defined in Eq. (1).

2. Invoke S (FE)
2 (st(FE)

0 , g f
k ) to obtain a key sk and an updated state st(FE)

1 .

3. Output the key sk and an updated state st1 = (st(FE)
1 , MPK,τ,ξ).

AlgorithmS3(st0,
{

yi j
}

i∈[qc ], j∈[q1]). S3 constructs the challenge ciphertexts. Let x = (x1, x2, . . . , xqc ) be the

challenge messages the adversary outputs. On input a state st0 = (st(FE)
0 , MPK,τ,ξ), where MPK = (MPK′, t ,σ),

and a collection of function evaluations
{

yi j
}

i∈[qc ], j∈[q1], S3 operates as follows:

1. Invoke S (FE)
3 (st(FE)

0 ,
{

yi j
}

i∈[qc ], j∈[q1]) to obtain a set of ciphertexts
{
ct′i

}
i∈[qc ]

and an updated state

st(FE)
1 .

2. For i ∈ [qc ], let si be the statement

∃x,k : ct′i =FE.Encrypt(MPK′, (x,ht (k));hc(k)). (3)

Using the trapdoor τ in st0, simulate an argument πi ←S (NIZK)
2 (σ,τ, si ), and set ct∗i = (ct′i ,πi ).

3. Output the challenge ciphertexts
{
ct∗i

}
i∈[qc ]

and the updated state st1 = (st(FE)
1 , MPK,τ,ξ).

Algorithm S4(st0, f ). S4 simulates the post-challenge key-generation queries with help from the ideal
functionality KeyIdeal(x, ·). On input a state st0 = (st(FE)

0 , MPK,τ,ξ) and a function f ∈Fλ, it operates as
follows:

1. Choose a random key k
R←−K, and construct the derandomized function g f

k as defined in Eq. (1).

2. Invoke S (FE)
4 (st(FE)

0 , g f
k ). Here, S4 also simulates the FE.KeyIdeal(x, ·) oracle for S (FE)

4 . Specifically,

when S (FE)
4 makes a query of the form g f ′

k ′ to FE.KeyIdeal(x, ·), S4 queries its own oracle KeyIdeal(x, ·)
on f ′ to obtain values zi for each i ∈ [qc ].5 It replies to S (FE)

4 with the value zi for all i ∈ [qc ]. Let sk

and st(FE)
1 be the output of S (FE)

4 .

3. Output the key sk and an updated state st1 = (st(FE)
1 , MPK,τ,ξ).

Algorithm S5(st,ct). S5 handles the decryption queries. On input a state st = (st(FE), MPK,τ,ξ) and a
ciphertext ct, it proceeds as follows:6

1. Parse MPK as (MPK′, t ,σ) and ct as (ct′,π). Let s be the statement

∃x,k : ct=FE.Encrypt(MPK′, (x,ht (k));hc(k)).

If NIZK.Verify(σ, s,π) = 0, then stop and output ⊥.

5The underlying FE scheme is for the derandomized class GF , so the only permissible functions S(FE)
4 can issue to FE.KeyIdeal

are of the form g
f ′
k ′ for some k ′ and f ′.

6Recall that in the security definition (Definition 3.3), the decryption oracle accepts multiple ciphertexts, and invokes the
simulator on each one individually. Thus, the simulator algorithm operates on a single ciphertext at a time.
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2. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, s,π) using the extraction trapdoor ξ to obtain a witness

(x,k) ∈Xλ×Kλ. Output x and state st.

4.2 Proof of Theorem 4.1: Hybrid Argument

To prove security, we proceed via a series of hybrid experiments between an adversary A and a challenger.
Each experiment consists of the following phases:

1. Setup phase. The challenger begins by generating the public parameters of the rFE scheme, and
sends those to the adversary A.

2. Pre-challenge queries. In this phase of the experiment, A can issue key-generation queries of
the form f ∈ Fλ and decryption queries of the form ( f ,C ) ∈ Fλ×T m

λ
to the challenger. For all

decryption queries ( f ,C ), we require that for any cti ,ct j ∈C , cti 6∼ ct j if i 6= j . In other words, each
set of ciphertexts C can contain at most one representative from each equivalence class.

3. Challenge phase. The adversary A submits a vector of messages x ∈X qc

λ
to the challenger, who

replies with ciphertexts
{
ct∗i

}
i∈[qc ]

.

4. Post-challenge queries. In this phase, A is again allowed to issue key-generation and decryp-
tion queries, with a further restriction that no decryption query can contain any of the challenge
ciphertexts (i.e., for any query ( f ,C ), ct∗i ∉C for all i ∈ [qc ]).

5. Output. At the end of the experiment, A outputs a bit b ∈ {0,1}.

We now describe our sequence of hybrid experiments. Note that in defining a new hybrid, we only describe
the phases that differ from the previous one. If one or more of the above phases are omitted, the reader
should assume that they are exactly the same as in the previous hybrid.

Hybrid Hyb0. In this experiment, the challenger responds to A according to the specification of the real

experiment RealrFEA .

• Setup phase. The challenger samples (MPK, MSK) ← Setup(1λ) and sends MPK to A.

• Pre-challenge queries. The challenger responds to each query as follows:

– Key-generation queries. On a key-generation query f ∈ Fλ, the challenger responds with
KeyGen(MSK, f ).

– Decryption queries. On a decryption query ( f ,C ) ∈Fλ×T m
λ

, the challenger samples sk←
KeyGen(MSK, f ). For each cti ∈C , the challenger sets yi =Decrypt(sk,cti ), and sends

{
yi

}
i∈[m]

to the adversary.

• Challenge phase. When the challenger receives a vector x ∈X qc

λ
, it sets ct∗i =Encrypt(MPK, xi ) for

each i ∈ [qc ] and replies to A with
{
ct∗i

}
i∈[qc ]

.

• Post-challenge queries. This is identical to the pre-challenge phase.
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Hybrid Hyb1. This is the same as Hyb0, except the challenger simulates the CRS in the setup phase and

the arguments in the challenge ciphertexts in the challenge phase. Let S (NIZK) = (S (NIZK)
1 ,S (NIZK)

2 ) be the
simulator for NIZK (Definition A.2). Note that we omit the description of the pre- and post-challenge
phases in the description below because they are identical to those phases in Hyb0.

• Setup phase. The challenger generates the public parameters as in Hyb0, except it uses S (NIZK)
1 to

generate the CRS. Specifically, it does the following:

1. Sample (MPK′, MSK′) ← FE.Setup(1λ).

2. Run S (NIZK)
1 (1λ) to obtain a CRS σ and a simulation trapdoor τ.

3. Sample a one-way permutation t ←OWP.Setup(1λ), and define ht (·) =OWP.Eval(t , ·).

4. Set MPK = (MPK′, t ,σ) and send MPK to A.

• Challenge phase. The challenger constructs the challenge ciphertexts as in Hyb0, except it uses
S (NIZK)

2 to simulate the NIZK arguments. Let x ∈ X qc

λ
be the adversary’s challenge. For i ∈ [qc ],

the challenger samples k∗
i

R←−Kλ and sets ct′i ← FE.Encrypt(MPK′, (xi ,ht (k∗
i ));hc(k∗

i )). It invokes

S (NIZK)
2 (σ,τ, si ) to obtain a simulated argument πi , where si is the statement in Eq. (3). Finally, it

sets ct∗i = (ct′i ,πi ) and sends
{
ct∗i

}
i∈[qc ]

to A.

Hybrid Hyb2. This is the same as Hyb1, except the challenger uses uniformly sampled randomness when
constructing the challenge ciphertexts.

• Challenge phase. Same as inHyb1, except that for every i ∈ [qc ], the challenger sets ct′i =FE.Encrypt

(MPK′, (xi ,ht (k∗
i ));ri ) for a randomly chosen ri

R←− {0,1}ρ .

Hybrid Hyb3. This is the same as Hyb2, except the challenger answers the decryption queries by first
extracting the message-key pair (m,k) from the NIZK argument and then evaluating the derandomized
function on it. Let E (NIZK) = (E (NIZK)

1 ,E (NIZK)
2 ) be the extraction algorithm for NIZK (Definition A.3).

• Setup phase. Same as in Hyb2 (or Hyb1), except the challenger runs (σ,τ,ξ) ← E (NIZK)
1 (1λ) to obtain

the CRS σ, the simulation trapdoor τ, and the extraction trapdoor ξ.

• Pre-challenge queries. The key-generation queries are handled as in Hyb2, but the decryption
queries are handled as follows.

– Decryption queries. On input ( f ,C ), where C = {cti }i∈[m],

1. Choose a random key k
R←−Kλ.

2. For i ∈ [m], parse cti as (ct′i ,πi ), and let si be the statement in Ea. (3). If NIZK.Verify(σ,

si ,πi ) = 0, set yi =⊥. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, si ,πi ) to obtain a witness

(xi ,ki ), and set yi = f (xi ;PRF(k ¦ht (ki ), xi )).

3. Send the set
{

yi
}

i∈[m] to A.

• Post-challenge queries. This is identical to the pre-challenge phase.
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Hybrid Hyb4. This is the same as Hyb3, except the challenger uses the simulator S (FE) = (S (FE)
1 ,S (FE)

2 ,

S (FE)
3 ,S (FE)

4 ) for the underlying FE scheme to respond to queries. Let S = (S1,S2,S3,S4,S5) be the simulator
described in Section 4.1.

• Setup phase. Same as inHyb3, except the challenger invokes the base FE simulatorS (FE)
1 to construct

MPK. The resulting setup algorithm corresponds to the simulation algorithm S1. Hence, we can
alternately say that the challenger runs S1(1λ) to obtain MPK = (MPK′, t ,σ) and st= (st(FE), MPK,τ,ξ),
and sends MPK to A.

• Pre-challenge queries. The decryption queries are handled as described inHyb3, but key-generation
queries are handled as follows.

– Key-generation queries. On a key-generation query f ∈Fλ,

1. Sample a key k
R←−Kλ. Let g f

k be the derandomized function corresponding to f .

2. Run S (FE)
2 (st(FE), g f

k ) to obtain a secret key sk and an updated state.

3. Update st accordingly and send sk to A.

Note that this is exactly how S2 behaves when given f and st as inputs.

• Challenge phase. The challenger constructs the challenge ciphertexts using the simulation algo-
rithm S3. Specifically, it does the following on receiving x ∈X qc

λ
:

1. For each i ∈ [qc ], choose a key k∗
i

R←−Kλ.

2. Let f1, . . . , fq1 ∈Fλ be the pre-challenge key-generation queries made by A and k1, . . . ,kq1 ∈Kλ

be the keys chosen when responding to each query. For all i ∈ [qc ] and j ∈ [q1], compute
ri j =PRF(k j ¦ht (k∗

i ), xi ) and set yi j = f j (xi ;ri j ).

3. Invoke the simulator algorithm S3(st,
{

yi j
}

i∈[qc ], j∈[q1]) to obtain a collection of ciphertexts{
ct∗i

}
i∈[qc ]

and an updated state st.

4. Send
{
ct∗i

}
i∈[qc ]

to A.

• Post-challenge queries. The decryption queries are handled as in the pre-challenge phase, but
key-generation queries are handled differently as follows.

– Key-generation queries. The first step stays the same: a key k is picked at random and g f
k

is defined. The challenger then invokes S (FE)
4 with inputs st(FE) and g f

k , instead of S (FE)
2 . In

invoking S (FE)
4 , it simulates the FE.KeyIdeal(x, ·) oracle as follows: on input a function of the

form g f ′

k ′ , it computes yi = g f ′

k ′ (xi ,ht (k∗
i )) = f ′(xi ;PRF(k ′ ¦ht (k∗

i ), xi )) and replies with the set{
yi

}
i∈[qc ]. The function key returned by S (FE)

4 is given to A, and st is updated appropriately.
This is the behavior of S4.

Hybrid Hyb5. This is the same as Hyb4, except the outputs of PRF are replaced by truly random strings.

This matches the specification of the ideal experiment IdealrFEA . We highlight below the differences from
the previous hybrid.

• Pre-challenge queries. While the key queries are handled as before, the decryption queries are
handled as follows.
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– Decryption queries. Same as in Hyb4, except the function f is evaluated using uniformly
sampled randomness. In other words, on input f and C = {cti }i∈[m], the challenger does the
following:

1. For every cti ∈C , invoke the simulator algorithm S5(st,cti ) to obtain a value xi ∈Xλ∪ {⊥}
and an updated state st.

2. If xi = ⊥, set yi to ⊥, else set it to f (xi ;ri ), where ri
R←−Rλ.

3. Send the set of values
{

yi
}

i∈[m] to A.

• Challenge phase. The challenge ciphertexts are constructed as in the ideal experiment. Specifically,
instead of using PRF to generate the randomness for evaluating yi j in the first and second steps of

the challenge phase, the challenger simply computes f j (xi ;ri j ) for ri j
R←−Rλ. The remaining two

steps (third and fourth) stay the same.

• Post-challenge queries. The decryption queries are handled as in the pre-challenge phase, but key
queries are handled as follows:

– Key-generation queries. Same as Hyb4, except the oracle FE.KeyIdeal(x, ·) is implemented
using uniformly sampled randomness as in the ideal experiment. Specifically, if S (FE)

4 makes

a query to FE.KeyIdeal(x, ·) with a derandomized function g f ′

k ′ , the challenger chooses an

ri
R←−Rλ for every i ∈ [qc ], and replies with

{
f ′(xi ;ri )

}
i∈[qc ].

We now state lemmas that each consecutive pair of hybrid experiments is computationally indistin-
guishable, but defer their proofs to Appendix B.

Lemma 4.3. If NIZK is computational zero-knowledge (Definition A.2), then Hyb0 and Hyb1 are computa-
tionally indistinguishable.

Lemma 4.4. If OWP is a family of one-way permutations and hc is a hard-core function, then Hyb1 and
Hyb2 are computationally indistinguishable.

Lemma 4.5. If NIZK is simulation-sound extractable (Definition A.3), and FE is perfectly correct, then
Hyb2 and Hyb3 are computationally indistinguishable.

Lemma 4.6. If FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for GF (Definition 2.5), then
Hyb3 and Hyb4 are computationally indistinguishable.

Lemma 4.7. If PRF isΦ¦-RKA secure and FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for
GF ,7 then Hyb4 and Hyb5 are computationally indistinguishable.

Lemmas 4.3 through 4.7 suffice to show that the adversary’s view in the real experiment RealrFEA is compu-
tationally indistinguishable from its view in the ideal experiment IdealrFEA (Definition 3.3). In particular,
this means that the tuple (x,

{
g
}

,
{

y
}

,α) in the real experiment is computationally indistinguishable from
the tuple (x,

{
g ′} ,

{
y ′} ,α) in the ideal experiment.

To complete the security proof, we show that the remaining components
{

f
}

and
{

f ′} in the outputs
of the real and ideal experiments, respectively, are computationally indistinguishable given the other

7The proof of this lemma relies on a concrete property of the simulator for a secure FE scheme, which is why we need SIM security
for the underlying FE scheme. Alternatively, we can impose an admissibility requirement on the queries the FE simulator is
allowed to make to the FE.KeyIdeal oracle, similar to what is done in the security definitions in [GVW12].
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components of the joint distribution. Assuming thatS (FE) is a valid simulator for the underlying FE scheme,
this follows directly from the specification of S . By definition, the set

{
f ′} consists of the functions the

adversary submits to the key-generation oracle in the pre-challenge phase and the queries S4 makes to the
KeyIdeal oracle. Since the adversary’s view in the two experiments are computationally indistinguishable,
the pre-challenge function queries appearing in

{
f
}

and
{

f ′} are computationally indistinguishable.

Suppose then that S4 is invoked on a function f . Then, S4 constructs the derandomized functionality g f
k

for some k ∈K and invokes the underlying FE simulator S (FE)
4 on g f

k . Assuming that S (FE) is a simulator
for the underlying FE scheme, with overwhelming probability, it will query its oracle FE.KeyIdeal on the

function g f
k . In response, S4 queries KeyIdeal on f . We conclude that the outputs of the real and ideal

experiments are computationally indistinguishable, which proves security.

4.3 Proof of Theorem 4.1: Correctness

The correctness proof for rFE follows from completeness of the NIZK argument system, correctness of the
underlying FE scheme, and RKA-security of the PRF. We give the full proof in Appendix C.

5 Instantiating and Applying the Transformation

In this section, we describe one way to instantiate the primitives (the NIZK argument system, the RKA-
secure PRF, and the one-way permutation) needed to apply the generic transformation from Section 4,
Theorem 4.1. Then, in Section 5.2, we show how to obtain new general-purpose functional encryption
schemes for randomized functionalities with security against malicious encrypters from a wide range of
assumptions by applying our transformation to existing functional encryption schemes.

5.1 Instantiating Primitives

All of the primitives required by our generic transformation can be built from standard number-theoretic
assumptions, namely the decisional Diffie-Hellman (DDH) assumption [Bon98], the hardness of discrete
log in the multiplicative group Z∗

p (for prime p), and the RSA assumption [RSA78, Bon99]. The first two
assumptions can be combined by assuming the DDH assumption holds in a prime-order subgroup of
Z∗

p , such as the subgroup of quadratic residues of Z∗
p , where p is a safe prime (p = 2q +1, where q is also

prime). We now give describe one such instantiation of our basic primitives..

Simulation-sound extractable NIZK arguments. The first ingredient we require is a simulation-sound
extractable NIZK argument. De Santis et al. [DDO+01, Theorem 2] give a construction for this from
trapdoor one-way permutations and dense cryptosystems.8 Both of these primitives can be instantiated
using the RSA assumption.

RKA-PRFs. The next ingredient we require is a Φ-RKA-secure PRF where Φ is group-induced. One
candidate construction from the DDH assumption is the Bellare-Cash PRF [BC10, §4].

Theorem 5.1 (Bellare-Cash PRF [BC10, Theorem 4.2], adapted). Let G be a group of prime order p where
the DDH assumption holds. Then, there exists a Φ-RKA secure PRF Fbc : (Z∗

p )n+1 × {0,1}n → G, where Φ

8Dense cryptosystems were introduced by De Santis and Persiano [DP92] to construct proofs of knowledge. In the same work,
they showed that dense cryptosystems could be constructed from assumptions such as the RSA assumption.
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is group-induced and n = poly(λ). The group operation on the key-space (Z∗
p )n+1 is simply element-wise

multiplication modulo p.

One-way permutations. If we instantiate the RKA-secure PRF with the Bellare-Cash PRF, the next ingre-
dient we require is a one-way permutation on the key-space (Z∗

p )n+1. This can be easily constructed from
any one-way permutation overZ∗

p . A well-known one-way permutation onZ∗
p is based on the conjectured

intractability of the discrete log problem (DLP). More precisely, the mapping x 7→ g x (mod p) where g is a
random generator of Z∗

p is a one-way permutation assuming hardness of the DLP in Z∗
p . Next, we review

the Blum-Micali hard-core predicate [BM82] for this family of one-way permutations.

Theorem 5.2 (Blum-Micali Construction [BM82, §3.3]). Fix a prime p and let g be a generator of Z∗
p .

Suppose the DLP is hard in Z∗
p . Then, the following function hc :Z∗

p → {0,1} is hard-core for the mapping
x 7→ g x (mod p):

hc(x) =
{

1 if there exists 0 ≤ y < p/2 such that g y = x

0 otherwise.

In our construction, we require a hard-core function that outputs ρ = ρ(λ) number of bits. This is
possible by iterating the Blum-Micali construction.9 In the following, we will write f (i )(x) to denote
successively applying the function f on the input x for i iterations (i.e., f (2)(x) = f ( f (x)).) We now state a
corollary to Theorem 5.2.

Corollary 5.3 (Iterated Blum-Micali Construction). Fix a prime p. Let g be a generator of Z∗
p , f :Z∗

p →Z∗
p

be the permutation x 7→ g x (mod p), and hc f be the hard-core predicate of f from Theorem 5.2. For
ρ = ρ(λ), define the permutation g :Z∗

p →Z∗
p to be the mapping x 7→ f (ρ)(x). Then, if hc f is a hard-core

function for f , the function hcg :Z∗
p → {0,1}ρ defined as follows is hard-core for g :

hcg (x) = hc f (x)‖hc f ( f (x))‖hc f ( f (2)(x)) · · ·‖hc f ( f (ρ−1)(x)).

Proof. Follows from Theorem 5.2 by a standard hybrid argument.

Given a one-way permutation g on Z∗
p and an associated hard-core function hcg , it is easy to con-

struct a one-way permutation h on (Z∗
p )n+1 and an associated hard-core function hch that outputs the

same number of bits. We define h to be the function h(x1, . . . , xn+1) = (g (x1), x2, . . . , xn) and hch to be
hch(x1, . . . , xn+1) = hcg (x1).

Thus, we can instantiate the group-induced RKA-PRF and one-way permutation needed by our
generic transformation (Theorem 4.1) assuming only that DDH holds in a group of prime order p and the
hardness of DLP in Z∗

p . In summary, we obtain the following corollary to Theorem 4.1 from Section 4.

Corollary 5.4. Assuming standard number-theoretic assumptions (that is, the DDH assumption in a prime-
order subgroup of Z∗

p and the RSA assumption), and that FE is a perfectly-correct (q1, qc , q2)-SIM secure
functional encryption scheme for the derandomized function class GF , then rFE is (q1, qc , q2)-SIM secure
against malicious encrypters for the class F of randomized functions.

9Note that we can also use more efficient hard-core functions such as [PS98] which outputs multiple hard-core bits on each
input. The Blum-Micali construction is just one example that suffices for our transformation.
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5.2 Applying the Transformation

In this section, we give three examples of how our generic transformation from Section 4 could be applied
to existing functional encryption schemes to obtain schemes that support randomized functionalities.
Our results show that functional encryption for randomized functionalities secure against malicious
encrypters can be constructed from a wide range of assumptions such as public-key encryption, concrete
assumptions over composite-order multilinear maps, or indistinguishability obfuscation, in conjunction
with standard number-theoretic assumptions (Corollary 5.4). The examples we present here do not consti-
tute an exhaustive list of the functional encryption schemes to which we could apply the transformation.
For instance, the construction of single-key-secure, succinct FE from LWE by Goldwasser et al. [GKP+13]
and the recent adaptively-secure construction from iO by Waters [Wat15] are also suitable candidates.

We note that the FE schemes for deterministic functions we consider below are secure (or can be
made secure) under a slightly stronger notion of simulation security compared to Definition 2.5. Un-
der the stronger notion (considered in [GVW12, DIJ+13]), the simulator is not allowed to program the
public-parameters (they are generated by the Setup algorithm) or the pre-challenge key queries (they are
generated using the KeyGen algorithm). Hence, when our transformation is applied to these schemes,
there is a small loss in security. We believe that this loss is inherent because the new schemes are secure
under malleability attacks while the original schemes are not. In particular, the construction of Goyal et
al. [GJKS15] also suffers from this limitation.

The GVW scheme. In [GVW12], Gorbunov et al. give a construction of a general-purpose public-key FE
scheme for a bounded number of secret key queries. More formally, they give both a (q1,1,poly)- and a
(q1,poly,0)-SIM10 secure FE scheme for any class of deterministic functions computable by polynomial-
size circuits based on the existence of semantically-secure public-key encryption and pseudorandom
generators (PRG) computable by low-degree circuits. These assumptions are implied by many concrete
intractability assumptions such as factoring.

The GVW scheme can be made perfectly correct if we have the same guarantee from the two primitives
it is based on: a semantically-secure public-key encryption scheme and a decomposable randomized en-
coding scheme [IK00]. There are many ways to get perfect correctness for the former, like ElGamal [ElG85]
or RSA [RSA78]. For the latter, we can use Applebaum et al.’s construction [AIK06, Theorem 4.14]. We
can now apply our generic transformation (Corollary 5.4) to the GVW scheme to obtain the following
corollary:

Corollary 5.5. Under standard number-theoretic assumptions, for any polynomial q1 = q1(λ), there exists a
(q1,1,poly)-SIM and a (q1,poly,0)-SIM secure FE scheme for any class of randomized functions computable
by polynomial-size circuits with security against malicious encrypters.

The GGHZ scheme. For our second example, we show how to apply our generic transformation to
the recent Garg et al. functional encryption scheme [GGHZ16] based on concrete assumptions over
asymmetric multilinear maps. There are two challenges that arise when trying to directly apply our
transformation to the GGHZ scheme. First, like many FE schemes, the GGHZ scheme only provides
statistical correctness, while our transformation crucially relies on perfect correctness. However, it is easy
to see that we can relax our requirement to only require perfect correctness to hold with overwhelming
probability over the setup algorithm of the underlying FE scheme. This is the notion of “almost-all-keys
perfect correctness” introduced by Dwork et al. [DNR04]. In the same work, Dwork et al. introduce

10We write poly to denotes that the quantity does not have to be a-priori bounded, and can be any polynomial in λ.
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a randomness sparsification technique to transform any encryption scheme with a sufficiently small
decryption error probability into one that is perfectly correct with overwhelming probability over the
choice of random coins in the setup algorithm. More recently, Bitanski and Vaikuntanathan [BV16,
Section 4] also describe a general method for correcting errors in functional encryption schemes, and
noted that the randomness sparsification technique of Dwork et al. could be applied to FE schemes to
achieve almost-all-keys perfect correctness. Applying the Dwork et al. transformation, the GGHZ scheme
gives an adaptively secure FE scheme that is almost-all-keys perfectly correct for general circuits from
multilinear maps. Note that the Dwork et al. technique does not require any additional assumptions
beyond the existence of one-way functions.

The second obstacle is that the GGHZ scheme was shown to be secure under an indistinguishability-
based notion of security while our transformation applies to an FE scheme secure under a simulation-
based notion of security. This is easily addressed by using the indistinguishability-to-simulation trans-
formation by De Caro et al. [DIJ+13]. Applying this transformation requires a symmetric encryption
scheme with pseudorandom ciphertexts, which is implied by our number-theoretic assumptions. In
addition, as long as the underlying symmetric encryption scheme is perfectly correct, the transformation
preserves the correctness properties of the base FE scheme. Thus, under the GGHZ complexity assump-
tions on composite-order multilinear maps [GGHZ16, Section 2.3], there is a (q1, qc ,poly)-SIM secure FE
scheme that is almost-all-keys perfectly correct, where q1 = q1(λ) and qc = qc (λ). Applying our generic
transformation to the transformed GGHZ scheme, we obtain the following corollary:

Corollary 5.6. Under standard number-theoretic assumptions, and the GGHZ complexity assumptions
on composite-order multilinear maps [GGHZ16, Section 2.3], for any polynomials q1 = q1(λ) and qc =
qc (λ), there exists a (q1, qc ,poly)-SIM secure functional encryption for all polynomial-sized randomized
functionalities with security against malicious encrypters.

The GGHRSW scheme. For our final example, we show that starting with the Garg et al. [GGH+13]
functional encryption scheme based on indistinguishability obfuscation, we can also obtain a functional
encryption for randomized functionalities with the same level of security as above. As usual, we first verify
that the the GGHRSW scheme satisfies perfect correctness (alternatively, we could apply the randomness
sparsification technique from [DNR04] to obtain a scheme that is almost-all-keys perfectly correct).
Correctness of the GGHRSW scheme follows immediately from the correctness of the indistinguishability
obfuscator and the underlying public key encryption scheme used in the construction. Thus, instantiating
with a perfectly correct public key encryption scheme yields a selectively-secure, general-purpose, public-
key FE scheme with perfect correctness.

Another challenge in applying our transformation is that the GGHRSW scheme was shown only
to be selectively secure under an indistinguishability-based definition of security. Thus, we cannot
directly invoke the De Caro et al. indistinguishability-to-simulation transformation [DIJ+13]. This can be
addressed, however, by first applying the selective-to-adaptive transformation by Ananth et al. [ABSV15].
The additional primitives required for this transformation are all implied by any selectively-secure public-
key FE scheme, and moreover, each of the primitives can be instantiated with one that provides perfect
correctness. In doing so, the transformation preserves the correctness of the underlying scheme.

To conclude, if we apply the selective-to-adaptive and indistinguishability-to-simulation transfor-
mations by Ananth et al. and De Caro et al., respectively, to the GGHRSW scheme, we obtain a general-
purpose, (q1, qc ,poly)-SIM secure functional encryption scheme from indistinguishability obfuscation
(and one-way functions), where q1 = q1(λ) and qc = qc (λ). Applying our generic transformation to the
resulting scheme, we arrive at the following corollary:
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Corollary 5.7. Under standard number-theoretic assumptions, and the existence of an indistinguishability
obfuscator, for any polynomials q1 = q1(λ) and qc = qc (λ), there exists a (q1, qc ,poly)-SIM secure functional
encryption for all polynomial-sized randomized functionalities with security against malicious encrypters.

Comparison with the GJKS scheme. We note that (q1, qc ,poly)-SIM security matches the known lower
bounds for simulation-based security in the standard model [BSW11, AGVW13]. We remark also that
the FE schemes from Corollaries 5.6 and 5.7 provide stronger security than the original FE scheme for
randomized functionalities by Goyal et al. [GJKS15]. Their construction was shown to be selectively rather
than adaptively secure. Specifically, in their security model, the adversary must commit to its challenge
messages before seeing the master public key. On the contrary, when we apply our generic transformation
to both the GGHZ scheme from composite-order multilinear maps as well as the GGHSRW scheme from
indistinguishability obfuscation, we obtain an adaptive-secure FE scheme where the adversary can not
only see the master public key, but also make secret key queries prior to issuing the challenge query.

6 Conclusion

In this work, we developed a generic transformation that converts any general-purpose public-key
functional encryption scheme for deterministic functionalities into a corresponding functional encryption
scheme that supports the richer class of randomized functionalities. Applying our transformation to
existing FE schemes, we obtain the first adaptively-secure FE scheme for randomized functionalities from
public-key encryption (and standard number-theoretic assumptions) in the bounded collusion setting,
as well as the first adaptively-secure FE scheme for randomized functionalities from either concrete
assumptions on multilinear maps or indistinguishability obfuscation. We conclude with a few interesting
open questions for further study:

• Can we construct an FE scheme for a more restrictive class of randomized functionalities (e.g.,
sampling from a database) without needing to go through our generic transformation? In other
words, for simpler classes of randomized functionalities, can we construct a scheme that does not
require a general-purpose FE scheme for deterministic functionalities?

• Is it possible to generically convert a public-key FE scheme for deterministic functionalities into
one that supports randomized functionalities without making any additional assumptions? Komar-
godski, Segev, and Yogev [KSY15] show that this is possible in the secret-key setting.
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A Additional Preliminaries

In this section, we review the standard definitions of two additional primitives we use in our construction:
non-interactive zero-knowledge (NIZK) arguments of knowledge [BFM88, FLS90, Gro06, GOS06] and
one-way permutations.

A.1 Non-Interactive Zero-Knowledge Arguments of Knowledge

Let R be an efficiently computable binary relation. For pairs (s, w) ∈ R, we refer to s as the statement and
w as the witness. Let L be the language of statements in R.

Definition A.1 (Non-Interactive Arguments [BFM88, FLS90]). A non-interactive argument system for a
relation R is a tuple of three efficient algorithms NIZK= (Setup,Prove,Verify) defined as follows:

• Setup(1λ) takes as input the security parameter λ and outputs a common reference string (CRS) σ
of lengthΩ(λ).

• Prove(σ, s, w) takes as input a CRS σ, a statement s, and a witness w , and outputs an argument π.

• Verify(σ, s,π) takes as input a CRS σ, a statement s, and an argument π, and outputs a bit b ∈ {0,1}.

We say that (Setup,Prove,Verify) is a non-interactive argument system for a relation R if it satisfies the
following two properties:

• Perfect Completeness: An argument system is perfectly complete if for all adversaries A,

Pr
[
σ← Setup(1λ); (s, w) ←A(σ);π←Prove(σ, s, w) :Verify(σ, s,π) = 1 if (s, w) ∈ R

]= 1.

• Computational Soundness: An argument system is computationally sound if for all efficient adver-
saries A,

Pr
[
σ← Setup(1λ); (s,π) ←A(σ) :Verify(σ, s,π) = 1 if s ∉ L

]
= negl(λ).

Definition A.2 (Zero-Knowledge [FLS90, Gro06]). Let NIZK= (Setup,Prove,Verify) be a non-interactive
argument system for a relation R, and let L be the language of statements for R. We say that NIZK is
computational zero-knowledge if there exists an efficient simulator S = (S1,S2) such that for all efficient
non-uniform adversaries A,∣∣∣Pr

[
σ← Setup(1λ) :AO(σ,·,·)(σ) = 1

]
−Pr

[
(σ,τ) ←S1(1λ) :AO′(σ,τ,·,·)(σ) = 1

]∣∣∣= negl(λ),

where the oracles O and O′ are defined as follows:

• O(σ, ·, ·) is the prover algorithm. On input (s, w), O outputs Prove(σ, s, w) if (s, w) ∈ R, and ⊥
otherwise.

• O′(σ,τ, ·, ·) is the simulator algorithm. On input (s, w), O′ outputs S2(σ,τ, s) if (s, w) ∈ R, and ⊥
otherwise.
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In addition to the usual notions of completeness, soundness, and zero-knowledge, we also require our
argument system to satisfy a stronger property known as simulation-sound extractability. Simulation
soundness [Sah99] is the property that an argument (or proof) system remains sound even if the adversary
sees “simulated” arguments (that is, arguments constructed by the zero-knowledge simulator). Next, in
an argument of knowledge [DDO+01, BG93], there is the additional requirement of an efficient knowledge
extractor that on input a valid argument π of some statement s, is able to extract a witness w such that
(s, w) ∈ R. An argument system is simulation-sound extractable if it is both simulation-sound and an
argument of knowledge. More formally, we have:

Definition A.3 (Simulation-Sound Extractability [DDO+01, Gro06]). Let NIZK = (Setup,Prove,Verify)
be a NIZK argument system for a relation R. Let S = (S1,S2) be the simulator associated with NIZK
(Definition A.2). Then, NIZK satisfies the notion of simulation-sound extractability if there exists an
extraction algorithm E = (E1,E2) such that the following holds:

• The output of E1(1λ) is identically distributed as S1(1λ) when restricted to the first two components
(σ,τ).

• For all non-uniform polynomial-time adversaries A,

Pr
[

(σ,τ,ξ) ← E1(1λ); (s,π) ←AS2(σ,τ,·)(σ); w ← E2(σ,ξ, s,π) :

(s,π) ∉Q and (s, w) ∉ R and Verify(σ, s,π) = 1
]
= negl(λ),

where Q is the set containing the queries A makes to S2 and their responses, in the form of (query,
response) pairs.

A.2 One-Way Permutations

We review the standard definition of one-way permutations (OWP) and hard-core functions.

Definition A.4 (One-Way Permutations [Gol01]). A family of one-way permutations OWP over a space
X = {Xλ}λ∈N is a pair of efficient algorithms (Setup,Eval) with the following properties:

• Correctness: On input 1λ, the setup algorithm Setup(1λ) outputs a string t , such that the algorithm
Eval(t , ·) computes a permutation over Xλ. We denote this permutation by ht (·).

• One-Wayness: For all efficient, non-uniform adversaries A,

Pr
[

t ← Setup(1λ); x
R←−Xλ :A(t ,ht (x)) = x

]
= negl(λ).

Definition A.5 (Hard-Core Functions [Gol01]). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two collections of
finite sets. Let OWP= (Setup,Eval) be a family of one-way permutations over X . Let hc be a polynomial-
time computable function from Xλ to Yλ. Then, hc is a hard-core function for OWP if for all efficient

non-uniform adversaries A, t ← Setup(1λ), and x
R←−Xλ,∣∣∣Pr[A(t ,ht (x),hc(x)) = 1]−Pr

[
y

R←−Yλ :A(t ,ht (x), y) = 1
]∣∣∣= negl(λ),

where ht (·) =Eval(t , ·).
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B Hybrid Argument Proofs from Section 4.2

B.1 Proof of Lemma 4.3

The only difference between hybrids Hyb0 and Hyb1 is that in the latter case, the challenger uses the NIZK
simulator to construct the CRS in the master public key and the arguments in the ciphertexts. Thus, the
claim follows directly from computational zero-knowledge of the NIZK scheme (Definition A.2).

Concretely, let A be an efficient distinguisher for hybrid experiments Hyb0 and Hyb1. We use A to
construct an adversary B to distinguish between the real and simulated distributions in Definition A.2.
Algorithm B is given as input a CRS σ and has access to an oracle O(·, ·) that generates arguments for
statements in the language. In the security reduction, algorithm B simulates a challenger for A as follows.

• Setup phase. B runs FE.Setup(1λ) to obtain (MPK′, MSK′), samples a one-way permutation t ←
OWP.Setup(1λ), and defines ht (·) = OWP.Eval(t , ·). Finally, B sets MPK = (MPK′, t ,σ) and MSK =
MSK′. It sends MPK to A.

• Challenge phase. When B receives a challenge vector x ∈X qc

λ
from A, it samples a key k∗

i
R←−Kλ,

and sets ct′i ← FE.Encrypt(MPK′, (xi ,ht (k∗
i ));hc(k∗

i )) for each i ∈ [qc ]. Let si be the statement in
Eq. (3). B queries its oracle O on statement si and witness (xi ,k∗

i ) to obtain an argument πi . Finally
it sets cti = (ct′i ,πi ) and sends {cti }i∈[qc ] to A.

The key-generation and decryption queries before and after the challenge phase are handled in the same
way as in Hyb0 and Hyb1. At the end of the experiment, B outputs whatever A outputs. By construction,
if the CRS and NIZK arguments are generated honestly, then B has perfectly simulated Hyb0. If instead
they were constructed by the NIZK simulator S = (S1,S2), then B has perfectly simulated Hyb1. Thus, the
distinguishing advantage of B in the computational zero-knowledge experiment is equal to the advantage
of A in distinguishing Hyb0 from Hyb1. The lemma follows.

B.2 Proof of Lemma 4.4

By construction, the only difference between Hyb1 and Hyb2 is how the challenge ciphertexts ct∗1 , . . . ,ct∗qc

are constructed. We introduce qc = poly(λ) intermediate hybrids Hyb1,i for 0 ≤ i ≤ qc . In Hyb1,i , the
first qc − i ciphertexts ct∗1 , . . . ,ct∗qc−i are constructed as in hybrid Hyb1 (with randomness derived from
the hard-core function), and the remaining i ciphertexts ct∗qc−i+1, . . . ,ct∗qc

are generated as in Hyb2 (with
randomness drawn uniformly at random). By construction, Hyb1,0 is identical to Hyb1 and Hyb1,qc

is
identical to Hyb2.

We show that if OWP is one-way and hc is a hard-core function for it, hybrids Hyb1,i and Hyb1,i+1 are
computationally indistinguishable for 0 ≤ i < qc . Specifically, we show that if there exists a PPT distin-
guisher A for Hyb1,i and Hyb1,i+1, then there exists a PPT adversary B that can distinguish the output of
the hard-core function from uniform. B is given a challenge (t , z,T ) where z = ht (k) =OWP.Eval(t ,k) for

some t ←OWP.Setup(1λ) and k
R←−K, and must decide whether T = hc(k) or T is uniformly random. In

the reduction, algorithm B plays the role of the challenger to A. In the setup phase, the behavior of B is
identical to the behavior of the challenger in Hyb1 and Hyb2, except it uses the t from the challenge to
construct the public parameters. The pre- and post-challenge phases are identical in Hyb1 and Hyb2 and
can be perfectly simulated given ht (·). The challenge phase is simulated as follows:

• Challenge phase. Let x ∈X qc

λ
be the vector of challenge messages from A. Adversary B constructs

the challenge ciphertexts as follows:
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1. For all j < qc − i , construct ct∗j as described in hybrid Hyb1.

2. For all qc − i < j ≤ qc , construct ct∗j as described in hybrid Hyb2.

3. Let ct′qc−i =FE.Encrypt(MPK′, (xqc−i , z);T ) be an encryption of (xqc−i , z) using randomness T

(where z,T are from the challenge). Simulate an argumentπqc−i by invoking S (NIZK)
2 (σ,τ, sqc−i ),

where sqc−i is the statement from Eq. (3). Set ct∗qc−i = (ct′qc−i ,πqc−i ) and send
{
ct∗i

}
i∈[qc ]

to A.

At the end of the experiment, B outputs whateverA outputs. When T = hc(k), the first qc−i ciphertexts are
constructed as described in Hyb1, while the rest are constructed as described in Hyb2. This corresponds to
hybrid Hyb1,i . Conversely, if T is uniform, then B perfectly simulates Hyb1,i+1. Thus, if A can distinguish
Hyb1,i from Hyb1,i+1 with non-negligible probability, B can distinguish the output of the hard-core
function from uniform with the same probability.

B.3 Proof of Lemma 4.5

Hybrids Hyb2 and Hyb3 are identical except in how the challenger responds to decryption queries, but
assuming simulation-sound extractability of NIZK and perfect-correctness of FE, we can show that they
are computationally indistinguishable. Let ( f ,C ) be a decryption query, where C = {cti }i∈[m]. Write each
cti as (ct′i ,πi ).

There are two cases. If the argument πi does not verify, the challenger sets yi = ⊥ in both Hyb2 and
Hyb3. Otherwise, we know that the adversary cannot submit any of its challenge ciphertexts in one of its
decryption queries. Thus, the pair (ct′i ,πi ) was not generated by the challenger using S (NIZK). Hence, by

simulation-sound extractability, with probability at least 1−negl(λ), the extraction algorithm E (NIZK)
2 on

ct′i and πi will produce a witness (xi ,ki ) such that ct′i = FE.Encrypt(MPK′, (xi ,ht (ki ));hc(ki )). Moreover,
by perfect correctness of the underlying FE scheme, (xi ,ht (ki )) is the only pair that encrypts to ct′i .

In both Hyb2 and Hyb3, the challenger first samples a key k
R←− Kλ. In Hyb2, it computes sk ←

FE.KeyGen(MSK, g f
k ), and then sets yi to be FE.Decrypt(sk,ct′i ). Again, by perfect correctness of the

underlying FE scheme,

yi = g f
k (xi ,ht (ki )) = f (xi ;PRF(k ¦ht (ki ), xi )),

which is exactly what is output in Hyb3 after (xi ,ki ) is extracted. We conclude that with probability
1−negl(λ), the response to each decryption query in Hyb2 and Hyb3 is identically distributed.

B.4 Proof of Lemma 4.6

Suppose A is a distinguisher for Hyb3 and Hyb4. We use A to construct an adversary B = (B1,B2) that
distinguishes between the experiments RealFEB and IdealFEB . In the reduction, B will simulate the role of
the challenger in Hyb3 and Hyb4 to A. Moreover, it has access to the following oracles:

• B1 has access to a pre-challenge key-generation oracle O(pre)
KeyGen(·) that corresponds to O1(MSK, ·) in

the real experiment and O′
1(st′, ·) in the ideal one.

• B2 has access to a post-challenge key-generation oracle O(post)
KeyGen(·) that corresponds to O2(MSK, ·)

in the real experiment and O′
2(st′, ·) in the ideal one.

We now specify the operation of B = (B1,B2):
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Algorithm B1(MPK′). On input a public key MPK′ for FE, the setup and pre-challenge query phases are
simulated as follows:

• Setup phase. B1 runs E (NIZK)
1 (1λ) to obtain a simulated CRS σ, a simulation trapdoor τ, and an

extraction trapdoor ξ. It then samples a one-way permutation t ←OWP.Setup(1λ) and defines
ht (·) =OWP.Eval(t , ·). Finally, it sets MPK = (MPK′, t ,σ) and sends MPK to A.

• Pre-challenge queries. Decryption queries are handled exactly as described in Hyb3 and Hyb4.

– Key-generation queries. On input f ∈Fλ, B1 samples a key k
R←−K, and queries O(pre)

KeyGen on

g f
k to obtain a key sk. It gives sk to A.

When A outputs its challenge vector x′ ∈X qc

λ
, B1 saves the current execution state stA of A. Then for each

i ∈ [qc ], B1 samples a key k∗
i

R←−Kλ and sets xi = (x ′
i ,ht (k∗

i )). It also sets st= (stA,
{
k∗

i

}
i∈[qc ]

) and outputs

x = (x1, . . . , xqc ) along with st.

AlgorithmB2(MPK′,
{
ct′i

}
i∈[qc ]

,st). On input the master public key MPK′ and challenge ciphertexts
{
ct′i

}
i∈[qc ]

for FE, and a state st= (stA,
{
k∗

i

}
i∈[qc ]

), B2 first resumes the execution of A using stA. Then, it simulates

the challenge phase and post-challenge queries as follows:

• Challenge phase. For each i ∈ [qc ], B2 runs S (NIZK)
2 (σ,τ, si ) to obtain an argument πi and sets

ct∗i = (ct′i ,πi ). (As in Hyb3 and Hyb4, si is the statement from Eq. (3).) It sends
{
ct∗i

}
i∈[qc ]

to A.

• Post-challenge queries. They are handled in the same way as pre-challenge ones, except that B2

queries O(post)
KeyGen whenever B1 queried O(pre)

KeyGen.

At the end of the experiment, A outputs a bit b ∈ {0,1}, which B2 simply echoes. We now show that
if B is interacting in the real experiment RealFEB , then the view it simulates for A is computationally
indistinguishable from Hyb3. Conversely, if B is in the ideal experiment IdealFEB , then the view it simulates
for A is computationally indistinguishable from Hyb4. The claim then follows from the assumption that
FE is (q1, qc , q2)-SIM-secure. We consider each case separately:

Real experiment. Suppose B is interacting in the real experiment RealFEB . We show that in this case, B
simulates Hyb3 for A.

• Setup phase. In the real experiment, the master public key MPK′ is generated by calling FE.Setup.
This is the how MPK′ is obtained in Hyb3. The remainder of the setup procedure is identical to that
in Hyb3.

• Pre-challenge queries. We consider the two types of queries separately.

– Key-generation queries. In the real experiment, on input a function g f
k , the key-generation

oracle O1(MSK, ·) returns FE.KeyGen(MSK, g f
k ). In Hyb3, when the adversary makes a query

with a randomized function f ∈Fλ, it receives the output of KeyGen(MSK, f ), which is nothing

but FE.KeyGen(MSK, g f
k ) for k

R←−Kλ.

– Decryption queries. We note that B knows all the quantities needed to respond to decryption
queries as specified in Hyb3.
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• Challenge phase. In the reduction, B1 chooses k∗
i

R←− Kλ and outputs xi = (x ′
i ,ht (k∗

i )) for each

i ∈ [qc ]. In RealFEB , B2 is given the set of ciphertexts ct′i = FE.Encrypt(MPK′, xi ), and it outputs{
(ct′i ,πi )

}
i∈[qc ]

by computing πi using the NIZK simulator. This is exactly how the challenge cipher-

texts are produced in Hyb3.

• Post-challenge queries. Using the same argument as in the pre-challenge phase, we conclude that
the queries in the post-challenge phase are correctly simulated.

Ideal experiment. Suppose B is interacting in the ideal experiment IdealFEB . We show that in this case, B
simulates Hyb4 for A.

• Setup phase. In the ideal experiment, the master public key MPK′ is generated by calling S (FE)
1 . This

is the how MPK′ is obtained in Hyb4. The remainder of the setup procedure is identical to that in
Hyb4.

• Pre-challenge queries. We consider the two types of queries separately.

– Key-generation queries. When A makes a query f ∈ Fλ, B1 forwards g f
k to O(pre)

KeyGen in the

reduction, where k
R←−Kλ. In IdealFEB , B1 receives the output of S (FE)

2 (st′, g f
k ), which it then

forwards to A. This is precisely the behavior in Hyb4.

– Decryption queries. B1 answers the decryption queries exactly as prescribed in Hyb4.

• Challenge phase. In the reduction, B1 constructs the challenge vector x = (x1, . . . , xqc ) where xi =
(x ′

i ,ht (k∗
i )) and k∗

i
R←−Kλ for all i ∈ [qc ]. Let f1, . . . , fq1 ∈ Fλ be the pre-challenge key-generation

queries submitted by A, and k1, . . . ,kq1 ∈Kλ be the keys sampled by B1 when responding to them.

Thus, B1 queried O(pre)
KeyGen on the derandomized functions g f1

k1
, . . . , g

fq1

kq1
. In IdealFEB , the ciphertexts{

ct′i
}

i∈[qc ]
are constructed by invoking the simulator algorithm S (FE)

3 on the state st′ and function

evaluations
{

yi j
}

i∈[qc ], j∈[q1]. Here, for i ∈ [qc ] and j ∈ [q1], we have that

yi j = g
f j

k j
(xi ) = g

f j

k j
(x ′

i ,ht (k∗
i )) = f j (x ′

i ;PRF(k j ¦ht (k∗
i ), x ′

i )).

This is precisely how the values yi j are constructed in Hyb4. Then, B2 is given the simulated

ciphertexts
{
ct′i

}
i∈[qc ]

produced by S (FE)
3 , and it outputs

{
(ct′i ,πi )

}
i∈[qc ]

by computing πi using the

NIZK simulator. This is exactly how S3 behaves in Hyb4.

• Post-challenge queries. We consider the two types of queries separately.

– Key-generation queries. When A makes a query f ∈Fλ, B2 forwards g f
k to O(post)

KeyGen, where

k
R←−Kλ. In IdealFEB , B2 receives the output of S (FE)

4 (st′, g f
k ), which it then forwards to A. Lastly

we note that the FE.KeyIdeal oracle in Hyb4 is simulated exactly as in IdealFEB .

– Decryption queries. B2 answers the decryption queries exactly as prescribed in Hyb4.

B.5 Proof of Lemma 4.7

Let qd be the number of decryption queries the adversary makes (across both the pre-challenge and
post-challenge phases of the experiment). We define some intermediate hybrids:
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Hybrid Hyb4,i . For each 0 ≤ i ≤ qd , the challenger responds to the first i decryption queries as specified
in Hyb5, and the remaining decryption queries as specified in Hyb4. Rest of the hybrid remains same as
Hyb4.

Hybrid Hyb′4, j . For 0 ≤ j ≤ qc , Hyb′4, j is identical to Hyb4,qd
, except the challenger proceeds as follows in

the challenge phase and when responding to a post-challenge key-generation query:

• Challenge phase. Let f1, . . . , fq1 ∈Fλ be the pre-challenge key-generation queries A makes, and
let k1, . . . ,kq1 ∈Kλ be the keys the challenger used to respond to each query. For each i ∈ [qc ] and

` ∈ [q1], the challenger chooses ri`
R←−Rλ and k∗

i
R←−Kλ and sets

yi` =
{

f`(xi ;ri`) if i ≤ j

f`(xi ;PRF(k` ¦ht (k∗
i ), xi )) otherwise,

It then carries out the third and fourth steps of the challenge phase of Hyb4, which are same as that
of Hyb5.

• Post-challenge queries. The challenger replies to decryption queries as described in Hyb4,qd
. For a

key-generation query, we only describe how the oracle FE.KeyIdeal(x, ·) is implemented. The rest of
the procedure is identical to that in Hyb4 and Hyb5. On an input g k ′

f ′ to the FE.KeyIdeal(x, ·) oracle,

the challenger chooses ri
R←−Rλ for each i ∈ [qc ]. Then, it sets

yi =
{

f ′(xi ;ri ) if i ≤ j

f ′(xi ;PRF(k ′ ¦ht (k∗
i ), xi )) otherwise.

As usual, it replies with the set
{

yi
}

i∈[qc ].

By construction, hybrids Hyb4 and Hyb4,0 are identical to each other; and so are Hyb4,qd
and Hyb′4,0 as

well as Hyb′4,qc
and Hyb5.

Claim B.1. IfPRF isΦ¦-RKA secure, then for all 0 ≤ i < qd , hybridsHyb4,i andHyb4,i+1 are computationally
indistinguishable.

Proof. Let A be a distinguisher for hybrids Hyb4,i and Hyb4,i+1. We use A to construct an adversary B that
distinguishes between the real and ideal distributions in theΦ¦-RKA security game, where it has access
to an evaluation oracle OEval(·, ·). In the reduction, B simulates the role of the challenger for A. Since
the setup, challenge, pre- and post-challenge key-generation phases stay the same across the hybrids
Hyb4,0, . . . ,Hyb4,qd

, B simulates them in the same way. The decryption queries are handled differently as
shown below.

• Decryption queries. Let ( f ,C = {
ct j

}
j∈[m]) be A’s decryption query. Let q be the total number of

queries A has made so far. If q < i , then B replies as described in Hyb4, and if q > i , it replies as in
Hyb5. If q = i , then B does the following for each j ∈ [m]:

1. Parse ct j as (ct′j ,π j ), and let s j be the statement from Eq. (3). If π j is not a valid argument

for s j , then set y j = ⊥. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, s j ,π j ) to obtain a witness

(x j ,k j ).
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2. Define a key-transformation function φ j : Kλ→Kλ where φ j (k) = k ¦ht (k j ). Then, let r j ←
OEval(φ j , x j ), and set y j = f (x j ;r j ).

Finally, algorithm B outputs the ordered set
{

y j
}

j∈[m].

At the end of the experiment, B outputs whatever A outputs. We claim that if B is interacting in the
real experiment ofΦ¦-RKA security game, then it perfectly simulates Hyb4,i for A. Conversely, if B is in
the ideal experiment, then it perfectly simulates Hyb4,i+1 for A. We consider both cases in detail:

• In the real world, OEval(φ, x) = PRF(φ(k), x) for a randomly chosen key k ∈Kλ. Then, on the i th

decryption query, for all j ∈ [m], r j =PRF(k ¦ht (k j ), x j ). This is exactly how randomness is sampled
in Hyb4,i .

• In the ideal world, OEval(φ, x) = F (φ, x) for F
R←−Funs[Φ×Xλ,Yλ]. Since we require that ct j 6∼ ct` for

all j 6= ` in a decryption query, it must be the case that if ct j and ct` are valid ciphertexts (i.e., π j

and π` are valid arguments of their respective statements s j and s`), then either k j 6= k` or x j 6= x`.
This latter fact follows from the fact that an efficient adversary can only find a single valid ciphertext
for each pair (x,k). Since F is a truly random function fromΦ×Xλ to Rλ, r j must be uniform over
Rλ for all j ∈ [m]. This corresponds to the distribution in Hyb4,i+1.

We conclude that if A can distinguish hybrids Hyb4,i from Hyb4,i+1 for any 0 ≤ i < qd , then B can break
theΦ¦-RKA security of PRF with the same advantage. The claim follows.

Claim B.2. If PRF isΦ¦-RKA secure and FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for
GF , then for all 0 ≤ i < qc , hybrids Hyb′4, j and Hyb′4, j+1 are computationally indistinguishable.

Proof. The proof of this claim is similar to the previous one. Specifically, if A is a distinguisher for hybrids
Hyb′4, j and Hyb′4, j+1, then we can construct an adversary B that breaks the Φ¦-RKA security of PRF. As
before, B has access to an evaluation oracle OEval(·, ·). We only focus on the challenge and post-challenge
phases below; the rest are carried out in the same way as in Hyb′4, j or Hyb′4, j+1.

• Challenge phase. When B receives a vector x ∈X qc

λ
from A, it proceeds as follows:

1. Let f1, . . . , fq1 be the pre-challenge key-generation queries made by A, and let k1, . . . ,kq1 ∈Kλ

be the keys B used to responds to each such query.

2. For each i ∈ [qc ], choose k∗
i

R←−Kλ.

3. For all i ≤ j and ` ∈ [q1], choose ri`
R←−Rλ. For all i > j +1 and ` ∈ [q1], set ri` = PRF(k` ¦

ht (k∗
i ), xi ).

4. For ` ∈ [q1], define the key-transformation function φ` :Kλ→Kλ where φ`(k) = k ¦k`. For all
` ∈ [q1], let r j+1,` =OEval(φ`, x j+1).

5. For all i ∈ [qc ] and` ∈ [q1], let yi` = f`(xi ;ri`). Invoke the simulator theoremS3(st,
{

yi j
}

i∈[qc ], j∈[q1])

to obtain a collection of ciphertexts
{
ct∗i

}
i∈[qc ]

and an updated state st. Send
{
ct∗i

}
i∈[qc ]

to A.

• Post-challenge queries. Algorithm B responds to each query as follows:

– Key-generation queries. Let f ∈Fλ be the key-generation query. Algorithm B then does the
following:
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1. Choose a random key k
R←−Kλ, and define the derandomized functionality g f

k as in Eq. (1).

2. Invoke S (FE)
4 (st(FE), g f

k ). Algorithm B simulates the FE.KeyIdeal(x, ·) oracle in the following

way. On input a derandomized functionality of the form g f ′

k ′ , the challenger does the
following for each i ∈ [qc ].

* If i ≤ j , choose ri
R←−Rλ. If i > j +1, let ri =PRF(k ′ ¦ht (k∗

i ), xi ).

* If i = j +1, define the key-transformation function φ : Kλ →Kλ where φ(k) = k ¦k ′.
Let ri ←OEval(φ, xi ).

3. Output
{

f ′(xi ;ri )
}

i∈[qc ] .

– Decryption queries. Same as in Hyb5.

At the end of the experiment, B outputs whatever A outputs. We claim that if B is interacting in the
real experiment, then B perfectly simulates Hyb′4, j and if B is interacting in the ideal experiment, then B
perfectly simulates Hyb′4, j+1 for A. We consider both cases:

• SupposeB is interacting in the real world, in which caseOEval(φ, x) =PRF(φ(k), x), where k ∈Kλ is a
uniformly random PRF key. In the challenge phase, for all ` ∈ [q1], r j+1,` =OEval(φ`, x j+1) =PRF(k¦
k`, x j+1). When responding to the post-challenge key-generation queries, r j+1 =OEval(φ, x j+1) =
PRF(k ¦k ′, x j+1). The PRF key k plays the role of ht (k∗

j+1) in the simulation. Note that since ht is a
permutation and k∗

j+1 is sampled uniformly from Kλ, ht (k∗
j+1) is uniformly distributed in the real

scheme. We conclude that B has perfectly simulated Hyb′4, j .

• Suppose B is interacting in the ideal world, in which case OEval(φ, x) = F (φ, x) where F
R←−Funs[Φ×

Xλ,Yλ]. Let q1 be the number of pre-challenge key-generation queries A makes and let q2 be the
number of post-challenge key-generation queries A makes. Let m = q1 +q2, and k1, . . . ,km ∈Kλ be
the keys algorithm B samples in response to each key-generation query (across both phases). Since
all of the keys k1, . . . ,km are sampled independently and m = poly(λ), with probability 1−negl(λ), all
of the keys k1, . . . ,km are distinct. For ` ∈ [m], let φ` :Kλ→Kλ be the key-transformation function
φ`(k) = k ¦k`.

For 1 ≤ `≤ q1, let r` = r j+1,` =OEval(φ`, x j+1) be the randomness B uses in the challenge phase of
the simulation to compute the value y j+1,` = f`(x j+1;r j+1,`). Similarly, for q1 +1 ≤ `≤ q1 +q2, let
r` =OEval(φ`, x j+1) be the randomness used to evaluate f` on x j+1 when simulating theFE.KeyIdeal
oracle on the `th key-generation query (equivalently, the (`−q1)th post-challenge key-generation
query). Note that since S (FE) is a simulator for an FE scheme and S (FE)

4 is only invoked on the

derandomized functionalities g
fq1+1

kq1+1
, . . . , g

fq2

kq1+q2
, these derandomized functionalities are the only

legal queries that S (FE)
4 can make to FE.KeyIdeal. Here, we rely on the fact that S (FE) is a simulator

for a (q1, qc , q2)-secure functional encryption scheme (Definition 2.5). Specifically, Definition 2.5
requires that the (ordered) set of key-generation queries

{
f
}

the simulator S (FE) is invoked on is
computationally indistinguishable from the (ordered) set of functions

{
f ′} the simulator submits to

the FE.KeyIdeal oracle.

Since k1, . . . ,km are distinct with probability 1−negl(λ), the functions φ1, . . . ,φm are distinct with
the same probability. Finally, since F is uniform over Funs[Φ¦×Xλ,Rλ], we have that r1, . . . ,rm are
uniform in Rλ. This is precisely the distribution Hyb′4, j+1.
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Thus, we conclude that if A can distinguish Hyb′4, j from Hyb′4, j+1 for any 0 ≤ j < qc , then B can break the
Φ¦-RKA security of PRF with the same advantage. The claim follows.

Combining Claims B.1 and B.2, we conclude that if PRF is Φ¦-RKA secure, then hybrids Hyb4 and
Hyb5 are computationally indistinguishable.

C Correctness Proof

The correctness proof follows from completeness of the NIZK argument system, correctness of the
underlying FE scheme, and related-key security of the PRF. Take any collection of n = n(λ) functions
f1, . . . , fn ∈Fλ and n points x1, . . . , xn ∈Xλ. We now proceed via a hybrid argument.

Hybrid Hyb0. This is the real distribution (Definition 3.1).

Hybrid Hyb1. Same as Hyb0, except on input MPK, sk, and ct= (ct′,π), the decryption algorithm Decrypt

simply outputs FE.Decrypt(sk,ct′) without verifying the argument π.

Hybrid Hyb2. This is the ideal distribution, except the functions are evaluated using pseudorandom

strings rather than truly random strings. More precisely, this is the distribution
{

fi (x j ;ri , j )
}

i , j∈[n] where

1. For all i , j ∈ [n], ki
R←−Kλ and k ′

j
R←−Kλ.

2. For all i , j ∈ [n], ri , j ←PRF(ki ¦k ′
j , x j )

Hybrid Hyb3. This is the ideal distribution (Definition 3.1).

Lemma C.1. If NIZK is perfectly complete (Definition A.1), then hybrids Hyb0 and Hyb1 are identical.

Proof. Since the CRSσ and the argumentsπ are all generated honestly, by perfect completeness, whenever
the decryption algorithm invokes NIZK.Verify in Hyb0, the output is always 1. Thus, Hyb0 and Hyb1 are
identical.

Lemma C.2. If FE is a perfectly-correct functional encryption scheme (Definition 2.4), then hybrids Hyb1

and Hyb2 are identical.

Proof. This follows from correctness of the underlying FE scheme for deterministic functionalities. Con-
sider the distribution in Hyb1. Write MPK = (MPK′, t ,σ) and for each j ∈ [n], write ct j = (ct′j ,π j ). By

construction, ski is a secret key forFE corresponding to the deterministic function g fi

ki
where ki

R←−Kλ. Sim-

ilarly, ct j is some FE encryption of the message (x j ,ht (k ′
j )) where k ′

j
R←−Kλ. Since Decrypt(MPK,ski ,ct j )

simply outputs FE.Decrypt(ski ,ct j ), we have, by perfect correctness of FE,{
Decrypt(MPK,sk fi ,ct j )

}
i , j∈[n] ≡

{
g fi

ki
(x j ,ht (k ′

j ))
}

i , j∈[n]
.

By definition of g f
k from Eq. (1),{

g fi

ki
(x j ,ht (k ′

j ))
}

i , j∈[n]
≡

{
fi (x j ;PRF(ki ¦ht (k ′

j ), x j ))
}

i , j∈[n]
,
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where ki ,k ′
j are uniformly random over Kλ for all i , j ∈ [n]. Finally, since ht is a permutation and k ′

j is

uniform over Kλ, ht (k ′
j ) is correspondingly uniform over Kλ. This yields the distribution in Hyb2.

Lemma C.3. If PRF isΦ¦-RKA secure, then hybrids Hyb2 and Hyb3 are computationally indistinguishable.

Proof. We introduce n = poly(λ) intermediate hybrids Hyb2,i for 0 ≤ i ≤ n. Hybrid Hyb2,i is identical

to Hyb2, except for all ` ≤ i and j ∈ [n], r`, j
R←−Rλ. For all ` > i and j ∈ [n], r`, j = PRF(k` ¦ k ′

j , x j ). By
construction, Hyb2 ≡Hyb2,0 and Hyb3 ≡Hyb2,n . We now show that if PRF isΦ¦-RKA-secure, then Hyb2,i

is computationally indistinguishable from Hyb2,i+1 for all 0 ≤ i < n.
Let A be a distinguisher for Hyb2,i and Hyb2,i+1. We use A to construct an adversary B the distin-

guishes the real and ideal distributions in theΦ¦-RKA security game. In theΦ¦-RKA security game, B is
given access to an oracle O′. Adversary B operates as follows:

1. For all `> i +1, choose k`
R←−Kλ. For all j ∈ [n], choose k ′

j
R←−Kλ.

2. For all `≤ i and j ∈ [n], choose ri , j
R←−Rλ. For all `> i +1 and j ∈ [n], set ri , j ←PRF(k` ¦k ′

j , x j ).

3. Let φ j :Kλ→Kλ be the function k 7→ k ¦k ′
j . For j ∈ [n], set ri+1, j ←O′(φ j , x j ).

4. Invoke A on the set
{

fi (x j ;ri , j )
}

i , j∈[n]. Output whatever A outputs.

In the real experiment, the oracle O′ = O(k, ·, ·) where k ← Kλ. In this case, for all j ∈ [n], ri+1, j =
PRF(φ j (k), x j ) =PRF(k ¦k ′

j , x j ). Thus, B perfectly simulated Hyb2,i for A. In the ideal experiment, the

oracle O′ =G(·, ·) where G
R←− Funs[Φ¦×Xλ,Rλ]. Since for all j ∈ [n], the k ′

j are drawn independently and

randomly from Kλ and n = poly(λ), with probability 1−negl(λ), all of the k ′
j are unique. This means that

with the same overwhelming probability, all of the φ j are also unique. Thus, we conclude that for all
j ∈ [n], ri+1, j is uniform in Rλ, in which case B has perfectly simulated Hyb2,i+1 for A. We conclude that
if there exists a distinguisher for Hyb2,i and Hyb2,i+1, there exists an adversary that breaks the theΦ¦-RKA
security of PRF.

Combining Lemmas C.1 through C.3, we conclude that rFE is a correct functional encryption scheme for
randomized functionalities (Definition 3.1).
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