
End-to-End Text Recognition with Convolutional Neural Networks

Tao Wang∗ David J. Wu∗ Adam Coates Andrew Y. Ng

Stanford University, 353 Serra Mall, Stanford, CA 94305

{twangcat, dwu4, acoates, ang}@cs.stanford.edu

Abstract

Full end-to-end text recognition in natural images

is a challenging problem that has received much atten-

tion recently. Traditional systems in this area have re-

lied on elaborate models incorporating carefully hand-

engineered features or large amounts of prior knowl-

edge. In this paper, we take a different route and com-

bine the representational power of large, multilayer

neural networks together with recent developments in

unsupervised feature learning, which allows us to use a

common framework to train highly-accurate text detec-

tor and character recognizer modules. Then, using only

simple off-the-shelf methods, we integrate these two

modules into a full end-to-end, lexicon-driven, scene

text recognition system that achieves state-of-the-art

performance on standard benchmarks, namely Street

View Text and ICDAR 2003.

1 Introduction

Extracting textual information from natural images

is a challenging problem with many practical applica-

tions. Unlike character recognition for scanned docu-

ments, recognizing text in unconstrained images is com-

plicated by a wide range of variations in backgrounds,

textures, fonts, and lighting conditions. As a result,

many text detection and recognition systems rely on

cleverly hand-engineered features [5, 4, 14] to repre-

sent the underlying data. Sophisticated models such as

conditional random fields [11, 19] or pictorial structures

[18] are also often required to combine the raw detec-

tion/recognition outputs into a complete system.

In this paper, we attack the problem from a differ-

ent angle. For low-level data representation, we use an

unsupervised feature learning algorithm that can auto-

matically extract features from the given data. Such

algorithms have enjoyed numerous successes in many

∗T. Wang and D. Wu contributed equally to this work.

32×32 25×25×96 5×5×96 4×4×256 2×2×256

Convolution

Average Pooling

Convolution

Average Pooling

Classification

[Non-Text]

[Text]

Figure 1. CNN used for text detection.

related fields such as visual recognition [3] and action

recognition [7]. In the case of text recognition, the

system in [2] achieves competitive results in both text

detection and character recognition using a simple and

scalable feature learning architecture incorporating very

little hand-engineering and prior knowledge.

We integrate these learned features into a large,

discriminatively-trained convolutional neural network

(CNN). CNNs have enjoyed many successes in simi-

lar problems such as handwriting recognition [8], visual

object recognition [1], and character recognition [16].

By leveraging the representational power of these net-

works, we are able to train highly accurate text detection

and character recognition modules. Using these mod-

ules, we can build an end-to-end system with only sim-

ple post-processing techniques like non-maximal sup-

pression (NMS)[13] and beam search [15]. Despite its

simplicity, our system achieves state-of-the-art perfor-

mance on standard test sets.

2 Learning Architecture

In this section, we describe our text detector and

character recognizer modules, which are the essential

building blocks of our full end-to-end system. Given

a 32-by-32 pixel window, the detector decides whether

the window contains a centered character. Similarly, the

recognizer decides which of 62 characters (26 upper-

case, 26 lowercase letters, and 10 digits) is in the win-

dow. As described at length in Section 3, we slide the

Figure 2. Examples from our training set.
Left: from ICDAR. Right: synthetic data

detector across a full scene image to identify candidate

lines of text, on which we perform word-level segmen-

tation and recognition to obtain the end-to-end results.

For both detection and recognition, we use a multi-

layer, convolutional neural network (CNN) similar to

[8, 16]. Our networks have two convolutional layers

with n1 and n2 filters respectively. The network we use

for detection with n1 = 96 and n2 = 256 is shown in

Figure 1, while a larger, but structurally identical one

(n1 = 115 and n2 = 720) is used for recognition.

We train the first layer of the network with an un-

supervised learning algorithm similar to [2, 3]. In par-

ticular, given a set of 32-by-32 grayscale training im-

ages1 as illustrated in Figure 2, we randomly extract

m 8-by-8 patches, which are contrast normalized and

ZCA whitened [6] to form input vectors x(i) ∈ R
64, i ∈

{1, ...,m}. We then use the variant of K-means de-

scribed in [2] to learn a set of low-level filters D ∈
R

64×n1 . For a single normalized and whitened 8-by-8

patch x, we compute its first layer responses z by per-

forming inner product with the filter bank followed by

a scalar activation function: z = max{0, |DTx| − α},

where α = 0.5 is a hyperparameter.

Given a 32-by-32 input image, we compute z for ev-

ery 8-by-8 sub-window to obtain a 25-by-25-by-n1 first

layer response map. As is common in CNNs, we aver-

age pool over the first layer response map to bring its

dimensions to 5-by-5-by-n1. We stack another convo-

lution and average pooling layer on top of the first layer

to obtain a 2-by-2-by-n2 second layer response map.

These outputs are fully connected to the classification

layer. We discriminatively train the network by back-

propagating the L2-SVM classification error,2 but we

fix the filters in the first convolution layer (learned from

K-means). Given the size of the networks, fine-tuning

is performed using multiple GPUs.

1Our dataset consists of examples from the ICDAR 2003 train-

ing images [10], the English subset of the Chars74k dataset [4], and

synthetically generated examples.
2In the form of a squared hinge loss: max{0, 1− θTx}2 .

R
e
sp
o
n
se

−4

0

4

R
e
sp
o
n
se

0

6

3N
M
S

R
a
w

Figure 3. Detector responses in a line.

3 End-to-End Pipeline Integration

Our full end-to-end system combines a lexicon

with our detection/recognition modules using post-

processing techniques including NMS and beam search.

Here we assume that we are given a lexicon (a list of

tens to hundreds of candidate words) for a particular im-

age. As argued in [18], this is often a valid assumption

as we can use prior knowledge to constrain the search

to just certain words in many applications. The pipeline

mainly involves the following two stages:

(i) We run sliding window detection over high res-

olution input images to obtain a set of candidate

lines of text. Using these detector responses, we

also estimate locations for the spaces in the line.

(ii) We integrate the character responses with the can-

didate spacings using beam search [15] to obtain

full end-to-end results.

First, given an input image, we identify horizontal

lines of text using multiscale, sliding window detec-

tion. At each scale s, we evaluate the detector response

Rs[x, y] at each point (x, y) in the scaled image. As

shown in Figure 3, windows centered on single char-

acters at the right scale produce positive Rs[x, y]. We

apply NMS [13] to Rs[x, r] in each individual row r to

estimate the character locations on a horizontal line. In

particular, we define the NMS response

R̃s[x, r] =







Rs[x, r] if Rs[x, r] ≥ Rs[x
′, r],

∀x′ s.t. |x′ − x| < δ
0 otherwise

(1)

where δ is some width parameter. For a row r with

non-zero R̃s[x, r], we form a line-level bounding box

Lr
s

with the same height as the sliding window at scale

s. The left and right boundaries of Lr
s

are defined as

min(x) and max(x), s.t. R̃s[x, r] > 0. This yields a

set of possibly overlapping line-level bounding boxes.

We score each box by averaging the nonzero values of

R̃s[x, r]. We then apply standard NMS to remove all

L’s that overlaps by more than 50% with another box

of a higher score, and obtain the final set of line-level

bounding boxes L̃. Since gaps between words produce

sharply negative responses, we also estimate possible

space locations within each Lr
s

by applying the same

NMS technique as above to the negative responses.

After identifying the horizontal lines of text, we

jointly segment the lines of text into words and recog-

nize each word in the line. Given a line-level bounding

box L and its candidate space locations, we evaluate a

number of possible word-level bounding boxes using a

Viterbi-style algorithm and find the best segmentation

scheme using a beam search technique similar to [9].

To evaluate a word-level bounding box B, we slide the

character recognizer across it and obtain a 62×N score

matrix M , where N is the number of sliding windows

within the bounding box. Intuitively, a more positive

M(i, j) suggests a higher chance that the character with

index i is centered on the location of the jth window.

Similar to the detection phase, we perform NMS over

M to select the columns where a character is most likely

to be present. The other columns of M are set to −∞.

We then find the lexicon word w∗ that best matches a

score matrix M as follows: given a lexicon word w,

compute the alignment score

Sw

M
= max

l
w∈L

w





|w|
∑

k

M(wk, l
w

k
)



 (2)

where lw is the alignment vector3 between the char-

acters in w and the columns of M . Sw

M
can be com-

puted efficiently using a Viterbi-style alignment algo-

rithm similar to [17].4 We compute Sw

M
for all lexicon

words and label the word-level bounding-box B with

the highest scoring word w∗. We take SB = Sw
∗

M
to be

the recognition score of B.

Having defined the recognition score for a single

bounding box, we can now systematically evaluate pos-

sible word-level segmentations using beam search [15],

a variant of breadth first search that explores the top

N possible partial segmentations according to some

heuristic score. In our case, the heuristic score of a can-

didate segmentation is the sum of the SB’s over all the

resulting bounding boxes in a line of text L. In order

to deal with possible false positives from the text detec-

tion stage, we threshold individual segments based on

their recognition scores. In that way, segments with low

recognition scores are pruned out as being “non-text.”

3For example, lw
4

= 6 means the 4
th character in w aligns with

the 6
th column of M , or the 6

th sliding window in a line of text.
4In practice, we also augment Sw

M
with additional terms that en-

courage geometric consistency. For example, we penalize character

spacings that are either too narrow or vary a lot within a single word.

Table 1. Cropped word recognition accu-

racies on ICDAR 2003 and SVT

Benchmark I-WD-50 I-WD SVT-WD

Our approach 90% 84% 70%

Wang, et al. [18] 76% 62% 57%

Mishra, et al. [11] 82% - 73%

4 Experimental Results

In this section we present a detailed evaluation of our

text recognition pipeline. We measure cropped charac-

ter and word recognition accuracies, as well as end-to-

end text recognition performance of our system on the

ICDAR 2003 [10] and the Street View Text (SVT) [18]

datasets. Apart from that, we also perform additional

analysis to evaluate the importance of model size on dif-

ferent stages of the pipeline.

First we evaluate our character recognizer module

on the ICDAR 2003 dataset. Our 62-way character

classifier achieves state-of-the-art accuracy of 83.9% on

cropped characters from the ICDAR 2003 test set. The

best known previous result on the same benchmark is

81.7% reported by [2]

Our word recognition sub-system is evaluated on im-

ages of perfectly cropped words from the ICDAR 2003

and SVT datasets. We use the exact same test setup

as [18]. More concretely, we measure word-level accu-

racy with a lexicon containing all the words from the

ICDAR test set (called I-WD), and with lexicons con-

sisting of the ground truth words for that image plus

50 random “distractor” words added from the test set

(called I-WD-50). For the SVT dataset, we used the

provided lexicons to evaluate the accuracy (called SVT-

WD). Table 1 compares our results with [18] and the

very recent work of [11].

We evaluate our final end-to-end system on both the

ICDAR 2003 and SVT datasets, where we locate and

recognize words in full scene images given a lexicon.

For the SVT dataset, we use the provided lexicons; for

the ICDAR 2003 dataset, we used lexicons of 5, 20 and

50 distractor words provided by the authors of [18], as

well as the “FULL” lexicon consisting of all words in

the test set. We call these benchmarks I-5, I-20, I-50

and I-FULL respectively. Like [18], we only consider

alphanumeric words with at least 3 characters. Figure

5 shows some sample outputs of our system. We fol-

low the standard evaluation criterion described in [10]

to compute the precision and recall. Figure 4 shows pre-

cision and recall plots for the different benchmarks on

the ICDAR 2003 dataset.

As a standard way of summarizing results, we also

Figure 5. Example output bounding boxes of our end-to-end system on I-FULL and SVT bench-
marks. Green: correct detections. Red: false positives. Blue: misses.

0.52 0.56 0.6 0.64 0.68
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I−5

I−20

I−50

Recall

P
re
c
is
io
n

Figure 4. End-to-end PR curves on ICDAR
2003 dataset using lexicons with 5, 20,

and 50 distractor words.

report the highest F-scores over the PR curves and com-

pare with [18] in Table 2. Our system achieves higher

F-scores in every case. Moreover, the margin of im-

provement is much higher on the harder benchmarks

(0.16 for I-FULL and 0.08 for SVT), suggesting that

our system is robust in more general settings.

In addition to settings with a known lexicon, we also

extend our system to the more general setting by using

a large lexicon L of common words. Since it is infea-

sible to search over all words in this case, we limit our

search to a small subset P ∈ L of “visually plausible”

words. We first perform NMS on the score matrix M
across positions and character classes, and then thresh-

old it with different values to obtain a set of raw strings.

The raw strings are fed into Hunspell5 to yield a set

of suggested words as our smaller lexicon P , Using

this simple setup, we achieve scores of 0.54/0.30/0.38

(precision/recall/F-score) on the ICDAR dataset. This

5Hunspell is an open source spell checking software available at

http://hunspell.sourceforge.net/. We augment its default lexicon with

a corpus of English proper names to better handle text in scenes.

Table 2. F-scores from end-to-end evalua-

tion on ICDAR 2003 and SVT datasets.

Benchmark I-5 I-20 I-50 I-FULL SVT

Our approach .76 .74 .72 .67 .46

Wang, et al. [18] .72 .70 .68 .51 .38

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
82

84

86

88

90

92

94

96

98

Relative Model Size

C
la

ss
i!

ca
ti

o
n

 A
cc

u
ra

cy

62−way accuracy of recognition module

2−way accuracy of detection module

C180

C360
C720

D256D128D64

Figure 6. Accuracies of the detection and

recognition modules on cropped patches

is comparable to the best known result 0.42/0.39/0.40

obtained with a general lexicon by [14].

In order to analyze the impact of model size on dif-

ferent stages of the pipeline, we also train detection and

recognition modules with fewer second layer convolu-

tional filters. The detection modules have n2 = 64 and

128 compared to 256 in our full model. We call the de-

tection modules D64, D128 and D256 respectively. Sim-

ilarly, we call the recognition modules C180, C360 and

C720, which corresponds to n2 = 180, 360 and 720.

The smaller models have about 1/4 and 1/2 number of

learnable parameters compared to the full models.

To evaluate the performance of the detection mod-

Table 3. Classification and end-to-end re-

sults of different recognition modules

Recognition module C180 C360 C720

Classification accuracy 82.2% 83.4% 83.9%

End-to-end F-score .6330 .6333 .6723

ules, we construct a 2-way (character vs. non-character)

classification dataset by cropping patches from the IC-

DAR test images. The recognition modules are eval-

uated on cropped characters only. As shown in Fig-

ure 6, the 62-way classification accuracy increases as

model size gets larger, while the 2-way classification re-

sults remain unchanged. This suggests that larger model

sizes yield better recognition modules, but not necessar-

ily better detection modules.

Finally, we evaluate the the 3 different recognition

modules on the I-FULL benchmark, with D256 as the

detector for all 3 cases. The end-to-end F-scores are

listed against the respective classification accuracies in

Table 3. The results suggests that higher character clas-

sification accuracy does give rise to better end-to-end

results. This trend is consistent with the findings of [12]

on house number recognition in natural images.

5 Conclusion

In this paper, we have considered a novel approach

for end-to-end text recognition. By leveraging large,

multi-layer CNNs, we train powerful and robust text

detection and recognition modules. Because of this

increase in representational power, we are able to use

simple non-maximal suppression and beam search tech-

niques to construct a complete system. This represents

a departure from previous systems which have gener-

ally relied on intricate graphical models or elaborately

hand-engineered systems. As evidence of the power

of this approach, we have demonstrated state-of-the-

art results in character recognition as well as lexicon-

driven cropped word recognition and end-to-end recog-

nition. Even more, we can easily extend our model to

the general-purpose setting by leveraging conventional

open-source spell checkers and in doing so, achieve per-

formance comparable to state-of-the-art.

References

[1] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella,

and J. Schmidhuber. High performance neural net-

works for visual object classification. Technical Report

IDSIA-01-11, Dalle Molle Institute for Artificial Intel-

ligence, 2011.

[2] A. Coates, B. Carpenter, C. Case, S. Satheesh,

B. Suresh, T. Wang, D. J. Wu, and A. Y. Ng. Text de-

tection and character recognition in scene images with

unsupervised feature learning. In ICDAR, 2011.

[3] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-

layer networks in unsupervised feature learning. In AIS-

TATS, 2011.

[4] T. E. de Campos, B. R. Babu, and M. Varma. Character

recognition in natural images. In VISAPP, 2009.

[5] B. Epshtein, E. Oyek, and Y. Wexler. Detecting text in

natural scenes with stroke width transform. In CVPR,

2010.

[6] A. Hyvarinen and E. Oja. Independent component anal-

ysis: algorithms and applications. Neural networks,

13(4-5):411–430, 2000.

[7] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learn-

ing hierarchical invariant spatio-temporal features for

action recognition with independent subspace analysis.

In CVPR, 2011.

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropaga-

tion applied to handwritten zip code recognition. Neural

Computation, 1:541–551, 1989.

[9] C.-L. Liu, M. Koga, and H. Fujisawa. Lexicon-driven

segmentation and recognition of handwritten character

strings for japanese address reading. IEEE Trans. Pat-

tern Anal. Mach. Intell., 24(11):1425–1437, Nov. 2002.

[10] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and

R. Young. ICDAR 2003 robust reading competitions.

ICDAR, 2003.

[11] A. Mishra, K. Alahari, and C. V. Jawahar. Top-down

and bottom-up cues for scene text recognition. In

CVPR, 2012.

[12] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and

A. Y. Ng. Reading digits in natural images with unsu-

pervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2011.

[13] A. Neubeck and L. Gool. Efficient non-maximum sup-

pression. In ICPR, 2006.

[14] L. Neumann and J. Matas. A method for text localiza-

tion and recognition in real-world images. In ACCV,

2010.

[15] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and

D. D. Edwards. Artificial intelligence: a modern ap-

proach. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1996.

[16] Z. Saidane and C. Garcia. Automatic scene text recogni-

tion using a convolutional neural network. In Workshop

on Camera-Based Document Analysis and Recognition,

2007.

[17] S. Sarawagi and W. W. Cohen. Semi-markov con-

ditional random fields for information extraction. In

NIPS, pages 1185–1192, 2004.

[18] K. Wang, B. Babenko, and S. Belongie. End-to-end

scene text recognition. In ICCV, 2011.

[19] J. J. Weinman, E. Learned-Miller, and A. R. Hanson. A

discriminative semi-markov model for robust scene text

recognition. In ICPR, Dec. 2008.

