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Cloud-based solutions have become increasingly popular in the past few 
years. An example of the cloud-based model is shown below. Here, three dif-
ferent hospitals provide data to the cloud. The cloud computing platform then 
analyzes and extracts useful information from the data.

One of the main concern with cloud computing has been the privacy and confi-
dentiality of the data. One solution is to send the data encrypted to the cloud. 
However, we still need to support useful computations on the encrypted data. 
Fully homomorphic encryption (FHE) is a way of supporting such computa-
tions on encrypted data.

We note that while other mechanisms exist for secure computation, they gen-
erally require the different data providers to exchange information. Because 
FHE schemes are public key schemes, FHE is much better suited for the sce-
nario where we have many sources of data.
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Due to the significant overhead in homomorphic computation, implementa-
tions of homomorphic encryption schemes for statistical analysis have been 
limited to small datasets (≈ 100 data points) and low dimensional data (≈ 2-4 
dimensions).

Using recent techniques in batched computation and a different message en-
coding scheme, we demonstrate the viability of using leveled homomorphic 
encryption to compute on datasets with over a million elements as well as 
datasets of much higher dimension.

In particular, we consider two applications of homomorphic encryption: com-
puting the mean and covariance of multivariate data and performing linear re-
gression over encrypted datasets.

Our Approach

Computation over Large Integers
To support computation over large amounts of data, we need to be able to 
handle large integers (i.e., 128-bit precision). However, it is not computation-
ally feasible to choose message spaces of this magnitude. To support compu-
tations with at least 128-bit precision, we leverage the Chinese Remainder 
Theorem (CRT):
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We perform the computation modulo each prime. Given the results of the
computation with respect to each prime, we apply the CRT to obtain the
value modulo the product of the primes (at least 128-bit precision).
The computations with respect to each prime is completely independent of 
the computation with respect to the other primes. As such, all of the compu-
tations are naturally parallelizable. 

We choose primes such that

Homomorphic Encryption Scheme (Server Side)
Our leveled FHE scheme supports three basic operations: addition, multiplication, and Frobenius automor-
phisms. Below, we show how we can use these operations to compute the inner product on encrypted data.

Element-wise addition of batched ciphertexts.
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Element-wise multiplication of batched ciphertexts.
Automorphism operation, which can apply arbitrary permutations to elements in the plaintext slots.  Used 
here to rotate slots by  .

For security, we must add noise into ciphertexts during the encryption process. Homomorphic operations 
on ciphertexts increase this noise. In order to decrypt successfully, the noise must be below a chosen 
threshold.

Because the individual plaintext slots are non-interacting, we use a series of automorphisms to rotate the 
slots and additions to sum up the entries in a batch
In the last step of the circuit, we zero out the values of the remaining slots. In the case where the number 
of slots is not a power of two, this ensures that no additional information about the data is leaked. The 
result is stored in the first slot of the final ciphertext.

In fully homomorphic computation, multiplication is substantially more expensive (both in terms of runtime 
and amount of noise generated) than addition. We can quantify this by defining the depth of a circuit to be 
the number of multiplications in the circuit. Evaluating deeper circuits requires larger parameters, and cor-
respondingly, longer runtimes. A comparison of addition and multiplication runtimes for different circuit 
depths is given below:

Depth Time to Perform
1 Addition (ms)

Time to Perform
1 Multiplication (s)

1 1.94 0.62
2 3.23 2.14
5 10.81 14.11

10 25.44 102.20
20 141.93 771.55

Homomorphic Encryption Scheme (Client Side)
Leveled fully homomorphic encryption (FHE) schemes supports addition and multiplication over ciphertexts. 
Such schemes are capable of evaluating boolean circuits with bounded depth (determined by the number of 
multiplications) over ciphertexts, and thus, can perform many computations over the ciphertext.

Consider a scenario where Charlie wants to compute the inner product of Alice’s and Bob’s data. Note that co-
variance computation and linear regression can be expressed in terms of matrix products, which can be viewed 
as a series of inner products.
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Clear blocks represent plaintext blocks while striped blocks represent ciphertext blocks. The shading in the ci-
phertext block represents the amount of noise in the ciphertext (explained below). 

Batching: Pack multiple plaintext messages (data elements) into a single ciphertext block. This enables 
the server to evaluate a single instruction on multiple data with low overhead.

Encryption: Encrypt the packed plaintext blocks with the FHE public key (Charlie’s public key).
Evaluation: Send the encrypted data to the cloud server for processing.
Decryption: The client (Charlie) decrypts the result using his secret key.
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Timing Tests for Linear Regression as a Function of Dataset Size

Dimension of Data
(left bar: 4096 data points, middle bar: 65536 data points, right bar: 262144 data points)

Timing Tests for Linear Regression as a Function of Data Dimension
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Timing Tests for Mean and Covariance Computation
as a Function of Data Dimension
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Timing Tests for Mean and Covariance Computation
as a Function of Dataset Size
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(left bar: 4-dimensional data, right bar: 8-dimensional data)
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Below are results from timing tests illustrating performance of linear regres-
sion as well as mean and covariance computation on different datasets. Run-
ning times are relative to one prime in the CRT decomposition. 

Experiments

Conclusion
We have constructed a scale-invariant leveled fully homomorphic
encryption system.
Using batching and CRT-based message encoding, we are able to per-
form large scale statistical analysis on millions of data points and data of 
moderate dimension.


