Private Database Queries Using Somewhat Homomorphic Encryption

Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, David J. Wu

Fully Private Conjunctive Database Queries

Goals:

1. database learns nothing about query or response (not even \# of matching records)
2. user learns nothing about non-matching records

Motivations

Law Enforcement

law enforcement officer
> select records for Bob from the last six months

indices of records for Bob

local police department

- law enforcement officers should not learn information about other clients
- local police department should not learn who is currently under investigation

Limitations of the Two-Party Model

Computation Time: Linear in size of database

Otherwise, database learns something about query

3-Party Protocol (De Cristofaro et al.)

(3) retrieve records
client
 corresponding to tokens
 ("isolated box")

database

Related Work

- Chor et al. (1998)
- Private information retrieval (PIR) with sublinear communication complexity
- Not a private database query protocol
- De Cristofaro et al. (2011)
- 3-Party Protocol for fully private disjunctive queries
- Does not support conjunctive queries
- Raykova et al. (2012)
- Multi-party protocol using bloom filters and deterministic encryption to support private queries
- Query complexity linear in number of records

Our contribution: Efficient support for fully private conjunctive queries

Representing the Database

For each attribute-value pair, there is a set of records associated with it:

Represent each set as a polynomial with roots corresponding to matching records:

$$
\begin{aligned}
& \text { age < 25: }(x-1)(x-2)(x-5) \\
& \text { zipcode }=12345:(x-1)(x-2)(x-6)(x-7)(x-8)
\end{aligned}
$$

Conjunctive Queries

Query: SELECT * FROM db WHERE $a_{1}=v_{1}$ and $a_{2}=v_{2}$

Kissner-Song Approach: Take $B \in \mathbb{F}_{p}[x]$ to be random linear combination of $A_{1}(x)$ and $A_{2}(x)$:

$$
B(x)=A_{1}(x) R_{1}(x)+A_{2}(x) R_{2}(x)
$$

$\operatorname{gcd}\left(A_{1}, A_{2}\right)$
for random polynomials $R_{1}(x), R_{2}(x) \in \mathbb{F}_{p}[x]$

Protocol Description: Setup

Each set S_{i} is a polynomial $A_{i}(x)$. We use a somewhat homomorphic encryption scheme (SWHE) to encrypt the coefficients.

Encrypting a Polynomial

$$
\begin{gathered}
x^{2}+(-3) x+2 \\
\downarrow \\
\downarrow
\end{gathered}
$$

Enc(1) $\operatorname{Enc}(-3) \quad \operatorname{Enc}(2)$

Polynomial addition: Additive homomorphism
Multiplying by plaintext polynomial: Possible if SWHE supports scalar multiplication

Protocol Description: Query

(1)
oblivious PRF evaluation

$$
\begin{aligned}
t_{1} & =\operatorname{PRF}_{s}\left(a_{1}=v_{1}\right) \\
& \vdots \\
t_{n} & =\operatorname{PRF}_{s}\left(a_{n}=v_{n}\right)
\end{aligned}
$$

1. Gets $A_{1}(x), \ldots, A_{n}(x)$ corresponding to tags
2. Compute $B(x)=\sum_{i} A_{i} R_{i}$ for random R_{1}, \ldots, R_{n}

database
Query: SELECT * FROM db WHERE $a_{1}=v_{1}$ AND \cdots AND $a_{n}=v_{n}$

Protocol Description: Query

client

Factors polynomial to obtain roots (record indices) i_{1}, \ldots, i_{k}

Protocol Description: Query

client

database
Query: SELECT * FROM db WHERE $a_{1}=v_{1}$ AND \cdots AND $a_{n}=v_{n}$

Conserving Bandwidth

Recall computation performed by proxy:

$$
\left.\begin{array}{ccc}
t_{1} & \rightarrow & A_{1}(x) \\
t_{2} & \rightarrow & A_{2}(x) \\
& \vdots \\
t_{n} & \rightarrow & \square \\
A_{n}(x)
\end{array}\right) B B(x)=\sum_{i=1}^{n} A_{i}(x) R_{i}(x)
$$

$$
\operatorname{deg} A_{i}(x)=\left|S_{i}\right| \quad \operatorname{deg} B(x) \approx 2 \cdot \max _{i} \operatorname{deg} A_{i}(x)
$$

Question: Can we do better?

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest set and size of largest set

Example:
$\approx 2,000,000$ records
SELECT * FROM db WHERE location = "New York" AND

$$
\begin{aligned}
& \text { name }=\text { "John Smith" } \\
& \approx 200 \text { records }
\end{aligned}
$$

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest set and size of largest set

Desiderata: Bandwidth proportional to size of smallest set: $\min _{i} \operatorname{deg} A_{i}(x)$ rather than $\max _{i} \operatorname{deg} A_{i}(x)$

Conserving Bandwidth

Easy to get $\min _{i} \operatorname{deg} A_{i}(x)+\max _{i} \operatorname{deg} A_{i}(x):$
Suppose $A_{1}(x)$ has lowest degree. Construct random linear combination of the rest:

$$
A^{\prime}(x)=\sum_{i=2}^{n} \rho_{i} A_{i}(x)
$$

and ρ_{i} are random scalars.
Then, proxy computes and sends

$$
B(x)=A_{1}(x) R_{1}(x)+A^{\prime}(x) R^{\prime}(x)
$$

$$
\operatorname{deg} B(x)=\max _{i} \operatorname{deg} A_{i}(x)+\min _{i} \operatorname{deg} A_{i}(x)
$$

Modular Reduction

Recall: intersection of $A_{1}(x), \ldots, A_{n}(x)$ is given by

$$
G=\operatorname{gcd}\left(A_{1}(x), \ldots, A_{n}(x)\right)
$$

Suppose $A_{1}(x)$ has smallest degree.

First step of Euclidean algorithm: reduce modulo $A_{1}(x)$:

$$
G=\operatorname{gcd}\left(A_{1}(x), A_{2}(x)\left(\bmod A_{1}(x)\right) \ldots, A_{n}(x)\left(\bmod A_{1}(x)\right)\right)
$$

Modular Reduction

Instead of computing

$$
A^{\prime}(x)=\sum_{i=2}^{n} \rho_{i} A_{i}(x)
$$

compute

$$
A^{\prime \prime}(x)=\sum_{i=2}^{n} \rho_{i} A_{i}(x)\left(\bmod A_{1}(x)\right)
$$

$$
\operatorname{deg}\left(A^{\prime \prime}(x)\right)=\operatorname{deg}\left(A_{1}(x)\right)-1
$$

Can be done with quadratic homomorphism. See paper.

Modular Reduction

$$
A^{\prime}(x)=\sum_{i=2}^{n} \rho_{i} A_{i}(x)
$$

client

$$
B(x)=A_{1}(x) R_{1}(x)+A^{\prime}(x) R^{\prime}(x)
$$

$$
\operatorname{deg}(B(x))=\min _{i} \operatorname{deg} A_{i}(x)+\max _{i} \operatorname{deg} A_{i}(x)
$$

$$
A^{\prime \prime}(x)=\sum_{i=2}^{n} \rho_{i} A_{i}(x)\left(\bmod A_{1}(x)\right)
$$

$$
\operatorname{deg}(B(x))=2 \cdot \min _{i} \operatorname{deg} A_{i}(x)-1
$$

client

$$
B(x)=A_{1}(x) R_{1}(x)+A^{\prime \prime}(x) R^{\prime \prime}(x)
$$

Big win if $\max _{i} \operatorname{deg} A_{i}(x) \gg \min _{i} \operatorname{deg}\left(A_{i}(x)\right)$

Further Speedup via Batching

Recent fully homomorphic encryption schemes allow "batching" (encrypt + process array of values at no extra cost):

Further Speedup via Batching

Split database into many smaller databases and run query against all databases in parallel:

In practice, arrays have length 5000+, so split into 5000+ databases

Further Speedup via Batching

Runtime depends on size of small "database":
Faster computation, reduced bandwidth
Crucial for scalability

Implementations

Basic scheme
(only requiring additive homomorphism)

Mō $\bar{d} \overline{1} \bar{a} r$ reduction, batching
(additive + multiplicative homomorphism)

Performance Characteristics

Balanced Query: number of records in each tag approximately equal

$$
\begin{gathered}
S_{1}: a_{1}=v_{1} \quad S_{2}: a_{2}=v_{2} \\
S_{3}: a_{3}=v_{3}
\end{gathered}
$$

Experimental setup:

- Database of 1,000,000 records
- Queries consist of five tags
- Focus on time to perform set-intersection

Performance Characteristics

Performance Characteristics

Unbalanced Query: large disparity between size of smallest set and size of largest set

Experimental setup:

- Database of 1,000,000 records
- Intersection of five sets
- Size of smallest set at most 5% size of largest set

Performance Characteristics

Intersection of five sets of varying size

Performance Characteristics

Intersection of five sets of varying size

Conclusion

query

indices of records

- Fully private database query system for conjunction queries
- Query support via polynomial encoding of database, can be implemented via SWHE
- Modular reduction + batching optimizations crucial for scalability and performance (reduction in time and space for certain queries)

Thank you!

