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Fully Private Conjunctive Database Queries 

database 

indices of matching records 

Goals: 
1. database learns nothing about query or 

response (not even # of matching records) 
2. user learns nothing about non-matching records 

SELECT * FROM db WHERE 

dest = LAX AND age = 25 

user 



Motivations 

Law Enforcement 

law enforcement 
officer 

local police 
department 

select records for Bob 
from the last six months 

indices of records for Bob 

• law enforcement officers should not learn 
information about other clients 

• local police department should not learn who is 
currently under investigation 



Limitations of the Two-Party Model 

Computation Time: Linear in size of database 
 
Otherwise, database learns something about query 

query 

indices of records 



3-Party Protocol (De Cristofaro et al.) 

database 
no collusion! 

client proxy 
(“isolated box”) 

encrypted 
database 

1 
oblivious 

computation of 
tokens 

2 

retrieve records 
corresponding to 

tokens 

3 



Related Work 
• Chor et al. (1998) 

• Private information retrieval (PIR) with sublinear 
communication complexity 

• Not a private database query protocol 

• De Cristofaro et al. (2011) 
• 3-Party Protocol for fully private disjunctive queries 
• Does not support conjunctive queries 

• Raykova et al. (2012) 
• Multi-party protocol using bloom filters and 

deterministic encryption to support private queries 
• Query complexity linear in number of records 

Our contribution: Efficient support for fully private 
conjunctive queries 



Representing the Database 

For each attribute-value pair, there is a set of records 
associated with it: 

Represent each set as a polynomial with roots 
corresponding to matching records: 

age < 25: (𝑥 − 1)(𝑥 − 2)(𝑥 − 5) 
zipcode = 12345: (𝑥 − 1)(𝑥 − 2)(𝑥 − 6)(𝑥 − 7)(𝑥 − 8) 

1 2 3 4 5 6 7 8 9 10 Database: 

age < 25 

zipcode = 12345 



Conjunctive Queries 

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 and 𝑎2 = 𝑣2 

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2 

𝑨𝟏(𝒙) 𝑨𝟐(𝒙) 

𝐴1 𝑥 , 𝐴2 𝑥  ∈ 𝔽𝑝[𝑥] 

Kissner-Song Approach: Take 𝐵 ∈ 𝔽𝑝 𝑥  to be random 

linear combination of 𝐴1 𝑥  and 𝐴2(𝑥): 

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴2 𝑥 𝑅2(𝑥) 

for random polynomials 𝑅1 𝑥 , 𝑅2 𝑥 ∈ 𝔽𝑝 𝑥  

Intersection 

𝑩(𝒙) 

encoding of 
gcd(𝐴1, 𝐴2) 



Protocol Description: Setup 

database proxy 1. For each 𝑎𝑖 = 𝑣𝑖 pair, construct tag 
tg𝑖 = PRF𝑠(𝑎𝑖 = 𝑣𝑖) 

2. Send (tg𝑖, Enc 𝑆𝑖 ) 

Each set 𝑆𝑖  is a polynomial 𝐴𝑖 𝑥 . We use a somewhat homomorphic 
encryption scheme (SWHE) to encrypt the coefficients. 



Encrypting a Polynomial 

𝑥2 + (−3)𝑥 + 2 

Enc(1) Enc(−3) Enc(2) 

Polynomial addition: Additive homomorphism 
 
Multiplying by plaintext polynomial: Possible if 
SWHE supports scalar multiplication 



Protocol Description: Query 

database 

proxy 

1. Gets  𝐴1 𝑥 ,… , 𝐴𝑛(𝑥) 
corresponding to tags 

2. Compute 𝐵 𝑥 =  𝐴𝑖𝑅𝑖𝑖  
for random 𝑅1, … , 𝑅𝑛 

client 

𝐵(𝑥) 

𝑡1, … , 𝑡𝑛 
2 

additive  
homomorphism 

𝑡1 = PRF𝑠 𝑎1 = 𝑣1
⋮

𝑡𝑛 = PRF𝑠 𝑎𝑛 = 𝑣𝑛

 

oblivious PRF evaluation 
1 

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛 



Protocol Description: Query 

database 

client 

Factors polynomial to obtain 
roots (record indices) 𝑖1, … , 𝑖𝑘  

oblivious decryption 
of 𝐵(𝑥) 

3 

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛 



Protocol Description: Query 

database 

client 

𝑖1, … , 𝑖𝑘 

4 
PIR/ORAM 
𝑟𝑖1 , … , 𝑟𝑖𝑘  

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛 



Conserving Bandwidth 

Recall computation performed by proxy: 

proxy 𝑡1 → 𝐴1 𝑥

𝑡2 → 𝐴2 𝑥

⋮
𝑡𝑛 → 𝐴𝑛(𝑥)

 𝐵 𝑥 = 𝐴𝑖 𝑥 𝑅𝑖(𝑥)

𝑛

𝑖=1

 

deg 𝐴𝑖 𝑥 = |𝑆𝑖| deg𝐵 𝑥 ≈ 2 ⋅ max
𝑖
deg 𝐴𝑖(𝑥) 

Question: Can we do better? 



Conserving Bandwidth 

Unbalanced Query: large disparity between size of smallest 
set and size of largest set 

Example: 

SELECT * FROM db WHERE location = “New York” AND 

name = “John Smith” 

𝑆1: 𝑎1 = 𝑣1 

𝑆2: 𝑎2 = 𝑣2 

𝑆3: 𝑎3 = 𝑣3 

≈ 2,000,000 records 

≈ 200 records 



Conserving Bandwidth 

Unbalanced Query: large disparity between size of smallest 
set and size of largest set 

𝑆1: 𝑎1 = 𝑣1 

𝑆2: 𝑎2 = 𝑣2 

𝑆3: 𝑎3 = 𝑣3 

Desiderata: Bandwidth proportional to size of smallest set: 

min
𝑖
deg 𝐴𝑖(𝑥) rather than max

𝑖
deg 𝐴𝑖(𝑥) 



Conserving Bandwidth 

Easy to get min
𝑖
deg 𝐴𝑖 𝑥 +max

𝑖
deg 𝐴𝑖(𝑥): 

deg𝐴 
′(𝑥) deg 𝐴1(𝑥) 

deg𝐵 𝑥 = max
𝑖
deg𝐴𝑖 𝑥 + min

𝑖
deg𝐴𝑖(𝑥) 

Suppose 𝐴1 𝑥  has lowest degree. Construct random linear 
combination of the rest: 

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

 

and 𝜌𝑖 are random scalars. 

Then, proxy computes and sends 

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥) 

no extra 
homomorphism 



Modular Reduction 

Recall: intersection of 𝐴1 𝑥 ,… , 𝐴𝑛(𝑥) is given by 

𝐺 = gcd 𝐴1 𝑥 ,… , 𝐴𝑛 𝑥 . 

Suppose 𝐴1 𝑥  has smallest degree.  

 

First step of Euclidean algorithm: reduce modulo 𝐴1(𝑥): 

𝐺 = gcd 𝐴1 𝑥 , 𝐴2 𝑥  mod 𝐴1 𝑥 … , 𝐴𝑛 𝑥  mod 𝐴1 𝑥 . 



Modular Reduction 
Instead of computing 

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

, 

compute 

𝐴′′ 𝑥 = 𝜌𝑖𝐴𝑖 𝑥  mod 𝐴1 𝑥  

𝑛

𝑖=2

 

 

deg 𝐴′′ 𝑥 = deg 𝐴1 𝑥 − 1 

Can be done with quadratic homomorphism. See paper. 



Modular Reduction 

proxy client 

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥) 

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

 

deg 𝐵 𝑥 = min
𝑖
deg𝐴𝑖 𝑥 + max

𝑖
deg𝐴𝑖(𝑥) 

proxy client 

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′′ 𝑥 𝑅′′(𝑥) 

𝐴′′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

 mod 𝐴1 𝑥  

deg 𝐵 𝑥 = 2 ⋅ min
𝑖
deg𝐴𝑖 𝑥 − 1 

Big win if max
𝑖
deg 𝐴𝑖 𝑥 ≫ min

𝑖
deg 𝐴𝑖 𝑥  



Further Speedup via Batching 
Recent fully homomorphic encryption schemes allow “batching” 
(encrypt + process array of values at no extra cost): 

1 2 3 4 

7 5 3 1 

+ 

8 7 6 5 



Further Speedup via Batching 
Split database into many smaller databases and run query against all 
databases in parallel: 

database 

𝑟1, … , 𝑟𝑁 𝑟1, … , 𝑟𝑁/4 

𝑟1+𝑁/4, … , 𝑟2𝑁/4 

𝑟1+2𝑁/4, … , 𝑟3𝑁/4 

𝑟1+3𝑁/4, … , 𝑟𝑁 

In practice, arrays have length 5000+, so split into 5000+ databases 



Further Speedup via Batching 

database 

𝑟1, … , 𝑟𝑁 𝑟1, … , 𝑟𝑁/4 

𝑟1+𝑁/4, … , 𝑟2𝑁/4 

𝑟1+2𝑁/4, … , 𝑟3𝑁/4 

𝑟1+3𝑁/4, … , 𝑟𝑁 

Runtime depends on size of small “database”: 

 Faster computation, reduced bandwidth 

 Crucial for scalability 



Implementations 

Basic scheme 
(only requiring additive 

homomorphism)  

Paillier 
cryptosystem 

Modular reduction, 
batching 

(additive + multiplicative 
homomorphism)  

Brakerski 
cryptosystem 



Performance Characteristics 

Balanced Query: number of records in each tag 
approximately equal 

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2 

𝑆3: 𝑎3 = 𝑣3 

Experimental setup: 

• Database of 1,000,000 records 

• Queries consist of five tags 

• Focus on time to perform set-intersection 



Performance Characteristics 



Performance Characteristics 

Unbalanced Query: large disparity between size of smallest 
set and size of largest set 

𝑆1: 𝑎1 = 𝑣1 

𝑆2: 𝑎2 = 𝑣2 

𝑆3: 𝑎3 = 𝑣3 

Experimental setup: 

• Database of 1,000,000 records 

• Intersection of five sets 

• Size of smallest set at most 5% size of largest set 



Performance Characteristics 

Intersection of five sets of varying size 



Performance Characteristics 

Intersection of five sets of varying size 



Conclusion 

query 

indices of records 

• Fully private database query system for conjunction 
queries 

• Query support via polynomial encoding of database, can 
be implemented via SWHE 

• Modular reduction + batching optimizations crucial for 
scalability and performance (reduction in time and 
space for certain queries) 



Thank you! 


