
Private Database Queries Using
Somewhat Homomorphic

Encryption

Dan Boneh, Craig Gentry, Shai Halevi,
Frank Wang, David J. Wu

ACNS 2013

Fully Private Conjunctive Database Queries

database

indices of matching records

Goals:
1. database learns nothing about query or

response (not even # of matching records)
2. user learns nothing about non-matching records

SELECT * FROM db WHERE

dest = LAX AND age = 25

user

Motivations

Law Enforcement

law enforcement
officer

local police
department

select records for Bob
from the last six months

indices of records for Bob

• law enforcement officers should not learn
information about other clients

• local police department should not learn who is
currently under investigation

Limitations of the Two-Party Model

Computation Time: Linear in size of database

Otherwise, database learns something about query

query

indices of records

3-Party Protocol (De Cristofaro et al.)

database
no collusion!

client proxy
(“isolated box”)

encrypted
database

1
oblivious

computation of
tokens

2

retrieve records
corresponding to

tokens

3

Related Work
• Chor et al. (1998)

• Private information retrieval (PIR) with sublinear
communication complexity

• Not a private database query protocol

• De Cristofaro et al. (2011)
• 3-Party Protocol for fully private disjunctive queries
• Does not support conjunctive queries

• Raykova et al. (2012)
• Multi-party protocol using bloom filters and

deterministic encryption to support private queries
• Query complexity linear in number of records

Our contribution: Efficient support for fully private
conjunctive queries

Representing the Database

For each attribute-value pair, there is a set of records
associated with it:

Represent each set as a polynomial with roots
corresponding to matching records:

age < 25: (𝑥 − 1)(𝑥 − 2)(𝑥 − 5)
zipcode = 12345: (𝑥 − 1)(𝑥 − 2)(𝑥 − 6)(𝑥 − 7)(𝑥 − 8)

1 2 3 4 5 6 7 8 9 10 Database:

age < 25

zipcode = 12345

Conjunctive Queries

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 and 𝑎2 = 𝑣2

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2

𝑨𝟏(𝒙) 𝑨𝟐(𝒙)

𝐴1 𝑥 , 𝐴2 𝑥 ∈ 𝔽𝑝[𝑥]

Kissner-Song Approach: Take 𝐵 ∈ 𝔽𝑝 𝑥 to be random

linear combination of 𝐴1 𝑥 and 𝐴2(𝑥):

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴2 𝑥 𝑅2(𝑥)

for random polynomials 𝑅1 𝑥 , 𝑅2 𝑥 ∈ 𝔽𝑝 𝑥

Intersection

𝑩(𝒙)

encoding of
gcd(𝐴1, 𝐴2)

Protocol Description: Setup

database proxy 1. For each 𝑎𝑖 = 𝑣𝑖 pair, construct tag
tg𝑖 = PRF𝑠(𝑎𝑖 = 𝑣𝑖)

2. Send (tg𝑖, Enc 𝑆𝑖)

Each set 𝑆𝑖 is a polynomial 𝐴𝑖 𝑥 . We use a somewhat homomorphic
encryption scheme (SWHE) to encrypt the coefficients.

Encrypting a Polynomial

𝑥2 + (−3)𝑥 + 2

Enc(1) Enc(−3) Enc(2)

Polynomial addition: Additive homomorphism

Multiplying by plaintext polynomial: Possible if
SWHE supports scalar multiplication

Protocol Description: Query

database

proxy

1. Gets 𝐴1 𝑥 ,… , 𝐴𝑛(𝑥)
corresponding to tags

2. Compute 𝐵 𝑥 = 𝐴𝑖𝑅𝑖𝑖
for random 𝑅1, … , 𝑅𝑛

client

𝐵(𝑥)

𝑡1, … , 𝑡𝑛
2

additive
homomorphism

𝑡1 = PRF𝑠 𝑎1 = 𝑣1
⋮

𝑡𝑛 = PRF𝑠 𝑎𝑛 = 𝑣𝑛

oblivious PRF evaluation
1

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛

Protocol Description: Query

database

client

Factors polynomial to obtain
roots (record indices) 𝑖1, … , 𝑖𝑘

oblivious decryption
of 𝐵(𝑥)

3

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛

Protocol Description: Query

database

client

𝑖1, … , 𝑖𝑘

4
PIR/ORAM
𝑟𝑖1 , … , 𝑟𝑖𝑘

Query: SELECT * FROM db WHERE 𝑎1 = 𝑣1 AND ⋯ AND 𝑎𝑛 = 𝑣𝑛

Conserving Bandwidth

Recall computation performed by proxy:

proxy 𝑡1 → 𝐴1 𝑥

𝑡2 → 𝐴2 𝑥

⋮
𝑡𝑛 → 𝐴𝑛(𝑥)

 𝐵 𝑥 = 𝐴𝑖 𝑥 𝑅𝑖(𝑥)

𝑛

𝑖=1

deg 𝐴𝑖 𝑥 = |𝑆𝑖| deg𝐵 𝑥 ≈ 2 ⋅ max
𝑖
deg 𝐴𝑖(𝑥)

Question: Can we do better?

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest
set and size of largest set

Example:

SELECT * FROM db WHERE location = “New York” AND

name = “John Smith”

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

≈ 2,000,000 records

≈ 200 records

Conserving Bandwidth

Unbalanced Query: large disparity between size of smallest
set and size of largest set

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Desiderata: Bandwidth proportional to size of smallest set:

min
𝑖
deg 𝐴𝑖(𝑥) rather than max

𝑖
deg 𝐴𝑖(𝑥)

Conserving Bandwidth

Easy to get min
𝑖
deg 𝐴𝑖 𝑥 +max

𝑖
deg 𝐴𝑖(𝑥):

deg𝐴
′(𝑥) deg 𝐴1(𝑥)

deg𝐵 𝑥 = max
𝑖
deg𝐴𝑖 𝑥 + min

𝑖
deg𝐴𝑖(𝑥)

Suppose 𝐴1 𝑥 has lowest degree. Construct random linear
combination of the rest:

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

and 𝜌𝑖 are random scalars.

Then, proxy computes and sends

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥)

no extra
homomorphism

Modular Reduction

Recall: intersection of 𝐴1 𝑥 ,… , 𝐴𝑛(𝑥) is given by

𝐺 = gcd 𝐴1 𝑥 ,… , 𝐴𝑛 𝑥 .

Suppose 𝐴1 𝑥 has smallest degree.

First step of Euclidean algorithm: reduce modulo 𝐴1(𝑥):

𝐺 = gcd 𝐴1 𝑥 , 𝐴2 𝑥 mod 𝐴1 𝑥 … , 𝐴𝑛 𝑥 mod 𝐴1 𝑥 .

Modular Reduction
Instead of computing

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

,

compute

𝐴′′ 𝑥 = 𝜌𝑖𝐴𝑖 𝑥 mod 𝐴1 𝑥

𝑛

𝑖=2

deg 𝐴′′ 𝑥 = deg 𝐴1 𝑥 − 1

Can be done with quadratic homomorphism. See paper.

Modular Reduction

proxy client

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′ 𝑥 𝑅′(𝑥)

𝐴′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

deg 𝐵 𝑥 = min
𝑖
deg𝐴𝑖 𝑥 + max

𝑖
deg𝐴𝑖(𝑥)

proxy client

𝐵 𝑥 = 𝐴1 𝑥 𝑅1 𝑥 + 𝐴
′′ 𝑥 𝑅′′(𝑥)

𝐴′′ 𝑥 = 𝜌𝑖𝐴𝑖(𝑥)

𝑛

𝑖=2

 mod 𝐴1 𝑥

deg 𝐵 𝑥 = 2 ⋅ min
𝑖
deg𝐴𝑖 𝑥 − 1

Big win if max
𝑖
deg 𝐴𝑖 𝑥 ≫ min

𝑖
deg 𝐴𝑖 𝑥

Further Speedup via Batching
Recent fully homomorphic encryption schemes allow “batching”
(encrypt + process array of values at no extra cost):

1 2 3 4

7 5 3 1

+

8 7 6 5

Further Speedup via Batching
Split database into many smaller databases and run query against all
databases in parallel:

database

𝑟1, … , 𝑟𝑁 𝑟1, … , 𝑟𝑁/4

𝑟1+𝑁/4, … , 𝑟2𝑁/4

𝑟1+2𝑁/4, … , 𝑟3𝑁/4

𝑟1+3𝑁/4, … , 𝑟𝑁

In practice, arrays have length 5000+, so split into 5000+ databases

Further Speedup via Batching

database

𝑟1, … , 𝑟𝑁 𝑟1, … , 𝑟𝑁/4

𝑟1+𝑁/4, … , 𝑟2𝑁/4

𝑟1+2𝑁/4, … , 𝑟3𝑁/4

𝑟1+3𝑁/4, … , 𝑟𝑁

Runtime depends on size of small “database”:

 Faster computation, reduced bandwidth

 Crucial for scalability

Implementations

Basic scheme
(only requiring additive

homomorphism)

Paillier
cryptosystem

Modular reduction,
batching

(additive + multiplicative
homomorphism)

Brakerski
cryptosystem

Performance Characteristics

Balanced Query: number of records in each tag
approximately equal

𝑆1: 𝑎1 = 𝑣1 𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Experimental setup:

• Database of 1,000,000 records

• Queries consist of five tags

• Focus on time to perform set-intersection

Performance Characteristics

Performance Characteristics

Unbalanced Query: large disparity between size of smallest
set and size of largest set

𝑆1: 𝑎1 = 𝑣1

𝑆2: 𝑎2 = 𝑣2

𝑆3: 𝑎3 = 𝑣3

Experimental setup:

• Database of 1,000,000 records

• Intersection of five sets

• Size of smallest set at most 5% size of largest set

Performance Characteristics

Intersection of five sets of varying size

Performance Characteristics

Intersection of five sets of varying size

Conclusion

query

indices of records

• Fully private database query system for conjunction
queries

• Query support via polynomial encoding of database, can
be implemented via SWHE

• Modular reduction + batching optimizations crucial for
scalability and performance (reduction in time and
space for certain queries)

Thank you!

