Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Interactive Arguments for NP

L-={x:C(x,w) =1 for some w}

accept / reject

Completeness: C(x,w) =1 = Pr[(P(x,w),V(x))=1] =1

Soundness: for all provers P* of size 24:
x & Lo = Pr[(P*(x),V(x))=1] <274

Interactive Arguments for NP

L-={x:C(x,w) =1 for some w}

accept / reject

Completeness: C(x,w) =1 = Pr[(P(x,w),V(x))=1] =1

Soundness: for all provers P* of size 24: BRZAMER VALl S

x & Lo = Pr[(P*(x),V(x))=1] <274

Succinct Arguments

Le={x:C(x,w) =1 for some w}

Pow) [T VW

accept / reject

Argument system is succinct if:
* Prover communication is poly(A + log|C})
e V can be implemented by a circuit of size poly(A + |x| + log|C|)

Verifier complexity significantly

smaller than classic NP verifier

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in the

random oracle model [micoa]

Argument consists of a

single message
accept / reject

Succinct Non-Interactive Arguments (SNARGs)

Can consider publicly-
common reference verifiable and secretly-

string (CRS) == T verifiable SNARGs
Preprocessing SNARGs: I_O_- __________
allow “expensive” setup

Argument consists of a
single message

accept / reject

Complexity Metrics for SNARGs

Soundness: for all provers P* of size 24:
x & Lo = Pr{P*(),V(x))=1] <274

How short can the proofs be?
TR, Cven in the designated-

verifier setting

[See paper for details]

How much work is needed to generate the proof?
[P =Q([C])

Quasi-Optimal SNARGs

Soundness: for all provers P* of size 24:
x & Lo = Pr{P*(x),V(x))=1] <274

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

* Quasi-optimal succinctness:
|| = A - polylog(A, |C]) = O(4)

* Quasi-optimal prover complexity:
|P| = O(|C|) + poly(4,log|C])

Quasi-Optimal SNARGs

Prover Proof

Construction Complexity Size Assumption
CS Proofs [Mic94] o(c)h 0(1%) Random Oracle
Groth [Gro16] O(AlC) 0(1) Generic Group

- 5 , -
Groth [Gro10] O(A|C|* + |C|A%) 0o1) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] 0(1|C)) o) Linear-Only Encryption
BISW (LWE/RLWE) [BIS\\/17] olch 01 Linear-Only

Vector Encryption

For simplicity, we ignore low order

terms poly (4, log|C]|)

Prover Proof

Construction Complexity Size Assumption
CS Proofs [Mic94] o(c) 0(1?) Random Oracle
Groth [Gro16] 0(AC)) 0(1) Generic Group

- 5 : -
Groth [Gro10] O(AlCl -+ C|/1) O(/l) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] 6()[|C) 5(/1) Linear-Only Encryption
BISW (LWE/RLWE) [BIS\V/17] och 01 Linear-Only

Vector Encryption

For simplicity, we ignore low order

terms poly (4, log|C]|)

Prover Proof
Construction Complexity Size Assumption
CS Proofs [Mic94] o(c) 0(1?) Random Oracle
Groth [Gro16] 0(AC)) 0(1) Generic Group
- 5 : -
Groth [Gro10] O(AlCl -+ C|/1) O(/l) Knowledge of
GGPR [GGPR12] olch O Exponent
BCIOP (Pairing) [BCIOP13] 6()[|C) 5(/1) Linear-Only Encryption
_ ~ Linear-Only
B LWE/RLWE
ISW (LWE/RLWE) [BIS\W/17] 0(A|C)) o) Vector Encryption
This work o(|C)) o) Linear-Only

Vector Encryption

This Work

New framework for building preprocessing SNARGs (following [BciopP13, BISW17])

Step 1 (information-theoretic):
e Linear multi-prover interactive proofs (linear MIPs)
* This work: first construction of a quasi-optimal linear MIP

Step 2 (cryptographic):
* Linear-only vector encryption to simulate linear MIP model
 This work: linear MIP = preprocessing SNARG

Results yield the first quasi-optimal SNARG (from linear-only vector encryption
over rings)

Linear PCPS (koo

PCP where the proof (x, w)
oracle implements a

linear function T € F™ In these instantiations,

verifier is oblivious (queries

independent of statement)

qg € F™

Instantiations:
(g,) € F e 3-query LPCP based on the Walsh-
Hadamard code: m = O(|C|?) [ALmss92]
e 3-query LPCP based on quadratic span
Verifier programs: m = O(|C|) [6GPRr13]

From Linear PCPs to SNARGS sciop13;

Verifier encrypts its queries using
a linear-only encryption scheme

part of the CRS

Encryption scheme that only

supports linear homomorphism

Verifier encrypts its queries using
a linear-only encryption scheme

V

part of the CRS

Ps to SNARGS sciop13;

From Linear PCPs to SNARGS sciop13;

Verifier encrypts its queries using Prover constructs linear
a linear-only encryption scheme PCP it from (x,w)

Prover homomorphically computes
V" responses to linear PCP queries

part of the CRS

(T[, ql) (T[, q2>
SNARG proof

From Linear PCPs to SNARGS sciop13;

Evaluating inner product requires Prover constructs linear
O (km) homomorphic operations
on ciphertexts: prover complexity

O(A) - 0(km) = 0(A|C))

PCP it from (x,w)

d1 42 43 - 4k

Prover homomorphically computes

Proof consists of a constant _ _
responses to linear PCP queries

number of ciphertexts: total length
O (A) bits

(T[, d1) (TL’, d>) T <7T’ Ak >'J
SNARG proof

From Linear PCPs to SNARGS sciop13;

Evaluating inner product requires Prover COFSUUC'CS linear
O (km) homomorphic operations PCP 7 from (x, w)
on ciphertexts: prover complexity

O(A) - 0(km) = 0(A|C))

q1 92 43 -+ qx We pay O(A) for each
homomorphic

operation. Can we
reduce this?
Proof consists of a constant

number of ciphertexts: total length
O (A) bits

SNARG proof

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,[x]/®,(x) = IFf;

Homomorphic operations
correspond to component-wise
additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt £ = O0(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring R, = Z,[x]/®,(x) = IFf;

Homomorphic operations

Amortized cost of homomorphic
operation on a single field

element is polylog(A)

Using RLWE-based encryption schemes, can
encrypt £ = O0(X) field elements (p = poly(1))
with ciphertexts of size O (1)

Plaintext space can be viewed
as a vector of field elements

Linear-Only Encryption over Rings

(g, qp) |

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Linear Multi-Prover Interactive Proofs (MIPs)

(x, w)

/\

preprocessing SNARG using linear-
only (vector) encryption over rings

Verifier has oracle access to
multiple linear proof oracles
Can convert linear MIP to 8

Linear Multi-Prover Interactive Proofs (MIPs)

Suppose
e Number of provers £ = 0(1)
* Proofsmy, .., mp € F' wherem = |C|/¢
* Number of queries to each m; is polylog(4)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Prover complexity:

0(¢m) = 0(ICI)

Linear MIP size:
O(¢ - polylog(1)) = 0(2)
Suppose

e Number of provers £ = 0(1)
* Proofs my, ...,y € IF"IZ‘ where m =

* Number of queries to each m; is polylog(4)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
e Number of provers is O(1)
e Each proof has length O(|C|/2)
* Proofs are over a polynomial-size field: p = poly(1)
* Query complexity is polylog(A)

More provers, shorter (individual) proofs

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
* Number of provers is 0~(/'l) Linear PCPs used in
* Each proof has length O(|C|/4) [BCIOP13] require a field of
* Proofs are over a polynomial-size field: p = poly(1) size 29A)
* Query complexity is polylog(A1)

Can we use existing
linear PCPs?

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
e Number of provers is O(1)
e Each proof has length O(|C|/2)
* Proofs are over a polynomial-size field: p = poly(21)
* Query complexity is polylog(4)

Linear PCPs used in Can we use existing

[BIS\W17] have query linear PCPs?
complexity 2(4)

Linear Multi-Prover Interactive Proofs (MIPs)

Goal: Construct quasi-optimal linear MIP (with soundness 27%) and following properties:
e Number of provers is O(1)
e Each proof has length O(|C|/2)
* Proofs are over a polynomial-size field: p = poly(1)
* Query complexity is polylog(A)

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Robust Consistency Quasi-Optimal

Decomposition Check Linear MIP

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(xw) T

Each constraint only needs to
read a subset of the input bits

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., fy

Statement-
witness for C

(xw) T

Each constraint only needs to -
read a subset of the input bits ' t t t

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

Each constraint only needs to
read a subset of the input bits

Decompose C into constraint
functions f4, ..., fz, where each

constraint can be computed by Boolean circuit C of size s
a circuit of size s /¥

Robust Decomposition

Only depends on x Statement-witness

for f1, ..., f¢

Statement-
witness for C

(xw) T

Completeness: If C(x,w) = 1, -
then f;(x",w") = 1 forall i t t t t

Robustness: If x € L, then for all
w', atmost 2/3 of f;(x',w') =1

Boolean circuit C of size s

Efficiency: (x',w') can be
computed by a circuit of size 0(s)

Robust Decomposition

. G, w) IEEEED (', w)

Statement-witness Statement-witness
for C for f1, ..., fr

Boolean
circuit C of Using constant-query linear PCP
based on QSPs [GGPR13], ; €

7' wherem = O(|C|/#) and
provides soundness 1/poly(A1)

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

. G, w) IEEEED (', w)

Statement-witness Statement-witness
for C for f1, ..., fr

Boolean
circuit C of

Verifier invokes linear PCP verifier

for each instance

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

Completeness: Follows by
completeness of decomposition and
linear PCPs

Boolean i Soundness: Each linear PCP provides
circuit C of 1/poly(A) soundness and for false
: statement, at least 1/3 of the
statements are false, so if £ = (1),

verifier accepts with probability
Tty 2-Q(4)

m;: linear PCP that f;(x',-) is satisfiable
(instantiated over [F), where p = poly(4))

Robust Decomposition

Robustness: If x & L, then for all w’,
at most 2/3 of f;(x',w') =1

For false x, no single w' can
simultaneously satisfy f;(x',);
however, all of the f;(x',-) could
individually be satisfiable

Completeness: Follows by

completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides

1/poly(A) soundness and for false
statement, at least 1/3 of the
statements are false, so if £ = (1),

verifier accepts with probability
2—.(2(/1)

Problematic however if prover

uses different (x’,w') to
construct proofs for different f;’s

Consistency Checking

Require that linear PCPs are systematic: linear PCP T contains a copy of the witness:

W{ Wé other components

Goal: check that assignments
W; (W5 other components to w’ are consistent via
linear queries to m;

Wé Wé other components

First few components of proof Each proof induces an
correspond to witness associated ‘ assignment to a few bits of
with the statement the common witness w'

[See paper for details]

Quasi-Optimal Linear MIPs

/Robust Decomposition\

C

AN

h 2 fe

e Checking satisfiability of C
corresponds to checking
satisfiability of f4, ..., f, (each
of which can be checked by a
circuit of size |C|/¥)

* For afalse statement, no
single witness can

simultaneously satisfy more
than a constant fraction of f;

/ Consistency Check \

[l !

1Y) ﬂfé

-

A
I
i3 3

r
ﬂ.-4 H Tf4
s

* Check that consistent witness is
used to prove satisfiability of
each f;

* Relies on pairwise consistency
checks and permuting the
entries to obtain a “nice”
replication structure

o /

Quasi-Optimal Linear MIPs

ﬂobust Decomposition\

C

AN

h 2 fe

e Checking satisfiability of C
corresponds to checking
satisfiability of f4, ..., f, (each
of which can be checked by a
circuit of size |C|/¥)

* For afalse statement, no
single witness can

simultaneously satisfy more
than a constant fraction of f;

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[Ik0s07] with a robust MPC protocol with
polylogarithmic overhead [DIk10]

More generally: viewing a general MPC
protocol as a PCP over a large alphabet

[See paper for details]

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:
» Quasi-optimal succinctness: || = O(1)
» Quasi-optimal prover complexity: |P| = 0(|C]) + poly(4,log|C])

New framework for building quasi-optimal SNARGs by combining quasi-optimal
linear MIP with linear-only vector encryption

* Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

What if we had a 1-bit SNARG? Implies a form of witness encryption!

[See paper for details]

Open Problems

Quasi-optimal SNARGs with additional properties:
* Publicly-verifiable / multi-theorem (in designated verifier setting)
* Zero-knowledge

Thank you!

