
Constraining Pseudorandom

Functions Privately

David Wu

Stanford University

Joint work with Dan Boneh and Kevin Lewi

Pseudorandom Functions (PRFs) [GGM84]

�: 	� �� → �

��

� ∈ �

� �, �

�
�

←�

Pseudorandom

�

� ∈ �

�	�

�
�

←Funs��,��

Random

�

Constrained PRFs [BW13, BGI13, KPTZ13]

�: 	� � � → �

Constrained PRF: PRF with additional “constrain”

functionality

Constrain�

PRF key constrained key

can be used to evaluate at all

points � ∈ � where � � � 1

Example Constraints

Puncturing:

�� � = �1, � ≠ �
 0, � = �

Punctured key can evaluate PRF at all but one point

Example Constraints

Left/right PRF:
• Domain of PRF are tuples �,�
• Left constraints:

�
�
�,� = �1, � = �

 0, � ≠ �
• Right constraints:

�
�
�,� = �1, � = �

 0, � ≠ �
• Can be used to build non-interactive identity-based key

exchange [BW13]

Accepts if right

components match

Accepts if left

components match

Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain�

Correctness: constrained evaluation at � ∈ �
where � � � 1 yields PRF value at �

Security: PRF value at points � ∈ � where

� � � 0 are indistinguishable from random

given the constrained key

Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain�

Many applications:

• Identity-Based Key Exchange, Optimal Broadcast

Encryption [BW13]

•Punctured Programming Paradigm [SW14]

•Multiparty Key Exchange, Traitor Tracing [BZ14]

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

• Puncturable PRF: constrained keys allow evaluation at all but

a single point

• Easily constructed from a length-doubling PRG via GGM:

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

given root key �, can evaluate PRF everywhere

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

puncture at � = 01

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

these two values suffice to evaluate at all other

points

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

in general, punctured key consists of � nodes if

domain of PRF is 0,1 �

Puncturable PRFs from GGM

�

�� ��

� � = �� ∥ ��

��� ��� ��� ���

� �� = ��� ∥ ��� � �� = ��� ∥ ���

given �� and ���, easy to tell that 01 is the

punctured point

Constraining PRFs Privately

Constrain�

Can we build a constrained PRF where the

constrained key for a circuit � hides �?

msk sk�

Constraining PRFs Privately

��

��, ��

Constrain�msk, ���

msk ← Setup 1�

World 0

�

��, ��

World 1

�

Constrain�msk, ���

msk ← Setup 1�

Single-key privacy Definitions generalize to multi-key privacy. See paper for details.

Constraining PRFs Privately

��

��, ��

Constrain�msk, ���

msk ← Setup 1�

World 0

�

��, ��

World 1

�

Constrain�msk, ���

msk ← Setup 1�

Private Puncturing

•Correctness: constrained evaluation at � � �

yields � �, �

•Security: ���, �� is indistinguishable from random

•Privacy: constrained key hides �

Puncture�
msk sk�

Implications of Privacy

Consider value of
�

:

•Security: Independent of ��msk, �	

•Privacy: Unguessable by the adversary

Puncture�
msk sk�

Using Privacy: Restricted Keyword Search

PRF��Honeycomb� → 5,8,13

PRF��KitKat� → 18, 21

PRF��Lollipop� → 3,10,11

PRF� Marshmallow → (1,9,22*

server with

encrypted index

key issuer

ConstrainEval�sk, Honeycomb�

5,8,13

sk����������	

msk

create index

Using Privacy: Restricted Keyword Search

PRF��Honeycomb� → 5,8,13

PRF��KitKat� → 18, 21

PRF��Lollipop� → 3,10,11

PRF� Marshmallow → (1,9,22*

server with

encrypted index

ConstrainEval�sk, Jelly	Bean�

No results

search for non-existent

keyword

Using Privacy: Restricted Keyword Search

PRF��Honeycomb� → 5,8,13

PRF��KitKat� → 18, 21

PRF��Lollipop� → 3,10,11

PRF� Marshmallow → (1,9,22*

server with

encrypted index

ConstrainEval�sk,Marshmallow�

No results

search for “restricted”

keyword

Using Privacy: Restricted Keyword Search

PRF��Honeycomb� → 5,8,13

PRF��KitKat� → 18, 21

PRF��Lollipop� → 3,10,11

PRF� Marshmallow → (1,9,22*

server with

encrypted index

ConstrainEval�sk,Marshmallow�

No results

• Security: ConstrainEval sk,Marshmallow 0

Eval msk,Marshmallow

• Privacy: Does not learn that no results were

returned because no matches for keyword or if

the keyword was restricted

The Many Applications of Privacy

• Private constrained MACs

• Parties can only sign messages satisfying certain policy (e.g., enforce a
spending limit), but policies are hidden

• Symmetric Deniable Encryption [CDNO97]

• Two parties can communicate using a symmetric encryption scheme

• If an adversary has intercepted a sequence of messages and coerces one of
the parties to produce a decryption key for the messages, they can produce a
“fake” key that decrypts all but a subset of the messages

• Constructing a family of watermarkable PRFs

• Can be used to embed a secret message within a PRF that is “unremovable” –
useful for authentication [CHNVW15]

See paper for details!

Summary of our Constructions

• From indistinguishability obfuscation (iO):

• Private puncturable PRFs from iO + one-way functions

• Private circuit constrained PRFs from sub-exponentially
hard iO + one-way functions

• From concrete assumptions on multilinear maps:

• Private puncturable PRFs from subgroup hiding
assumptions

• Private bit-fixing PRF from multilinear Diffie-Hellman
assumption

This talk

See paper

Private Puncturing from

Indistinguishability Obfuscation

Constructing Private Constrained PRFs

Tool: indistinguishability obfuscation [BGI�01, GGH�13]

Program �
 Program ��

iO iO

iO(��) ≈� iO(��)

iO(1�) iO(1�)

∀� ∶ �� � = ��(�)

Indistinguishability Obfuscation (iO)

• First introduced by Barak et al. [BGI�01]

• First construction from multilinear maps [GGH�13]
• Subsequent constructions from multilinear maps [BR13,

BGK�14, AGIS14, Zim14, AB15, …]

• Constructions also from (compact) functional encryption
[AJ15, AJS15]

Indistinguishability Obfuscation (iO)

Many applications – “crypto complete”

• Functional encryption [GGH�13]

• Deniable encryption [SW13]

• Witness encryption [GGSW13]

• Private broadcast encryption [BZ14]

• Traitor tracing [BZ14]

• Multiparty key exchange [BZ14]

• Multiparty computation [GGHR14]

• and more…

Private Puncturing from iO

•Starting point: puncturable PRFs (e.g. GGM)

•Need a way to hide the point that is punctured

• Intuition: obfuscate the puncturable PRF

•Question: what value to output at the punctured
point?

Private Puncturing from iO

Use iO to hide the punctured point and output
uniformly random value at punctured point

��(�):

• If � = �, output �

• Else, output PRF(�, �)

Program for punctured PRF

(punctured at �)

real value of

the PRF

random value

(hard coded)

Private Puncturing from iO

Suppose PRF is puncturable (e.g., GGM)

• Master secret key: PRF key �

• PRF output at � ∈ �: PRF �, �

Punctured key for a point � is an obfuscated program

Constrained evaluation corresponds to evaluating obfuscated
program

��(�):

• If � = �, output �

• Else, output PRF(�, �)
iO

Private Puncturing from iO: Privacy

Recall privacy notion:

��

2�, 2� ∈ 4

Puncture�5, 2��

msk ← Setup 1�

World 0

�

2�, 2� ∈ 4

World 1

�

Puncture�5, 2��

msk ← Setup 1�

Private Puncturing from iO: Privacy

���(�):

• If � = �
, output �

• Else, output PRF(�, �)

Private Puncturing from iO: Privacy

���(�):

• If � = �
, output �

• Else, output PRF(�, �)

���
� (�):

• If � = �
, output �

• Else, output PRF(��� , �)

By correctness of puncturing, ���
and ���

� compute identical functions

≈�
iO iO

Private Puncturing from iO: Privacy

���(�):

• If � = �
, output �

• Else, output PRF(�, �)
≈�

iO iO

Hybrid 0: Real game Hybrid 1: Challenger

responds to puncture

query with iO of this

program

���
� (�):

• If � = �
, output �

• Else, output PRF(��� , �)

Private Puncturing from iO: Privacy

Hybrid 1

iO

Invoke puncturing security

���
� (�):

• If � = �
, output �

• Else, output PRF(��� , �)

Given punctured key ���, cannot

distinguish real value PRF(�, �
) from

uniformly random value

Private Puncturing from iO: Privacy

Hybrid 1 Hybrid 2

iO iO≈�

Invoke puncturing security

1��
�� (2):

• If 2 = 2�, output PRF(5, 2�)

• Else, output PRF(5�� , 2)

���
� (�):

• If � = �
, output �

• Else, output PRF(��� , �)

Given punctured key ���, cannot

distinguish real value PRF(�, �
) from

uniformly random value

Private Puncturing from iO: Privacy

Hybrid 2

iO

1��
�� (2):

• If 2 = 2�, output PRF(5, 2�)

• Else, output PRF(5�� , 2)

Private Puncturing from iO: Privacy

Hybrid 2 Hybrid 3

iO iO≈�

Invoke iO security

���
���(�):

• Output PRF(�, �)

1��
�� (2):

• If 2 = 2�, output PRF(5, 2�)

• Else, output PRF(5�� , 2)

The program in Hybrid 3 is independent of ��. Similar

argument holds starting from ���(�)

Private Puncturing from iO: Summary

Use iO to hide the punctured point and output
uniformly random value at punctured point

��(�):

• If � = �, output �

• Else, output PRF(�, �)

Private Circuit Constrained PRF from iO

Construction generalizes to circuit constraints, except
random values now derived from another PRF

��(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)

�′ is independently

sampled PRF key

“real” PRF value

Private Circuit Constrained PRF from iO

Recall intuitive requirements for
private constrained PRF:

• Security: Values at constrained

points independent of actual

PRF value at those points

• Privacy: Values at constrained

points are unguessable by the

adversary

��(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)

Private Circuit Constrained PRF from iO

Security proof similar to that for
private puncturable PRF

Number of hybrids equal to
number of points that differ
across the two circuits, so sub-
exponential hardness needed in
general

��(�):

• If � � = 0, output PRF(��, �)

• If � � = 1, output PRF(�, �)

Private Puncturing from

Multilinear Maps

Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps* [BS04]

• Fix composite modulus � = ��

• Base group �� and target group �� (of order �) with
canonical generators �� and ��, respectively

• Multilinear map operation:

� ��
�� ,��

�� , … ,��
�� = ��

����⋯��

For simplicity, we describe our construction using ideal multilinear maps. It is straightforward to translate our

construction to use composite-order graded multilinear encodings [CLT13]

*

Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps [BS04]

• Let ��,� be subgroup of order � of ��

• Subgroup decision assumption [BGN05]: hard to
distinguish random elements of the full group �� from
random elements of the subgroup ��,�

Private Puncturing from Multilinear Maps

Starting point: multilinear analog of Naor-Reingold [NR97,
BW13]

��
��,�

��
��,�

��
��,�

��
��,�

⋯

⋯

��
��,�

��
��,�

master secret

key:

collection of 2� random group elements

from ��

Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

��
��,�

�� 01101 = � ��
��,� ,��

��,�
, ��

��,�
, ��

��,�
, ��

��,�

Private Puncturing from Multilinear Maps

Puncture PRF by exploiting orthogonality

master secret

key:

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

��,�
��,�

puncture at

01101:

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��,�
��,�

��
��,�

all elements in subgroup

punctured components in full group

Private Puncturing from Multilinear Maps

Correctness

puncture at

�∗ = 01101:

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��,�
��,�

��
��,�

Correctness by multilinearity (and CRT):

� 	

�� , … ,	

�� = � 	
,�, … ,	
,�

��⋯�� ��� �
� 	
,�, … ,	
,�

��⋯�� ��� �

For all � ≠ �∗, there is some � where �� ≠ ��
∗ so ��,��

∗ = 0 (mod �)

where ���,� ,���,� is the �	
 component of the secret key

Private Puncturing from Multilinear Maps

Privacy

puncture at

�∗ = 01101:

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��,�
��,�

��
��,�

Follows directly by subgroup decision: elements of �� look

indistinguishable from elements of ��,�

Private Puncturing from Multilinear Maps

Puncturing Security

puncture at

�∗ = 01101:

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��
��,�

��,�
��,�

��,�
��,�

��
��,�

��,�
��,�

��
��,�

Follows from a multilinear Diffie-Hellman subgroup decision

assumption on composite-order multilinear maps

See paper for details!

Conclusions

•New notion of private constrained PRFs

• Simple definitions, but require powerful tools to
construct: iO / multilinear maps

•Private constrained PRFs immediately provide natural
solutions to many problems

Open Questions

• Puncturable PRFs can be constructed from OWFs

• Can we construct private puncturable PRFs from OWFs?

• Does private puncturing necessitate strong assumptions like
multilinear maps?

• Can we construct private circuit-constrained PRFs without requiring
sub-exponentially hard iO?

• Most of our candidate applications just require private
puncturable PRFs

• New applications for more expressive families of constraints?

Questions?

https://eprint.iacr.org/2015/1167.pdf

