Watermarking Cryptographic Functionalities from Standard Lattice Assumptions

Sam Kim and <u>David J. Wu</u> Stanford University

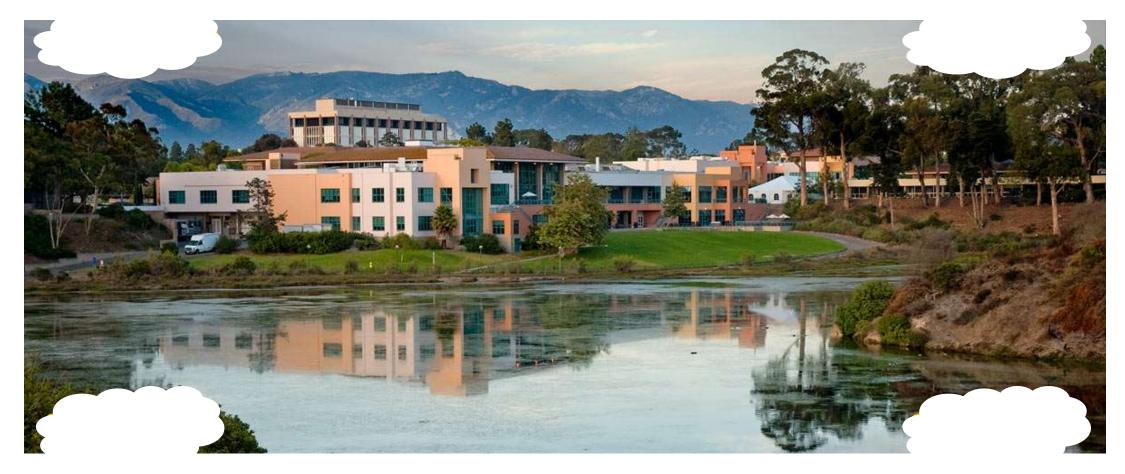
Digital Watermarking

Often used to identify owner of content and prevent unauthorized distribution

Digital Watermarking

Content is (mostly) viewable

Digital Watermarking



- Content is (mostly) viewable
- Watermark difficult to remove (without destroying the image)

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

Embed a "mark" within a program

If mark is removed, then program is destroyed

Two main algorithms:

- Mark(wsk, C) $\rightarrow C'$: Takes a circuit C and outputs a marked circuit C'
- Verify(wsk, C') \rightarrow {0,1}: Tests whether a circuit C' is marked or not

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

```
void serveurl(portServ ports)
{
   int sockServ1, sockServ2, sockClient;
   struct sockaddr_in monAddr, addrClient, addrServ2;
   socklen_t lenAddrClient;

   if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
   }
   if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
   }
}
```


Embe Both marking and verification require a <u>secret</u> watermarking key wsk

If mark is removed, then program is destroyed

Two main args.

- Mark(wsk, C) $\rightarrow C'$: Takes a circuit C and outputs a marked circuit C'
- Verify(wsk, C') \rightarrow {0,1}: Tests whether a circuit C' is marked or not

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

```
void serveurl(portServ ports)
{
   int sockServ1, sockServ2, sockClient;
   struct sockaddr_in monAddr, addrClient, addrServ2;
   socklen_t lenAddrClient;

   if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
   if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
   }
}
```


Emb

Extends to setting where watermark can be an (arbitrary) string [See paper]

If mark is removed, then program is destroyed

Two main args

- Mark(wsk, C) $\rightarrow C'$: Takes a circuit C and outputs a marked circuit C'
- Verify(wsk, C') \rightarrow {0,1}: Tests whether a circuit C' is marked or not

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

```
void serveur1(portServ ports)
{
   int sockServ1, sockServ2, sockClient;
   struct sockaddr_in monAddr, addrClient, addrServ2;
   socklen_t lenAddrClient;

   if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
      perror("Erreur socket");
      exit(1);
   }
   if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
      perror("Erreur socket");
      exit(1);
   }
}
```



```
void serveurl(portServ ports)
{
    int sockServ1, sockServ2, sockClient;
    struct sockaddr_in monAddr, addrClient, addrServ2;
    socklen_t lenAddrClient;

    if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
    if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
        CRYPTO
```

Functionality-preserving: On input a program (modeled as a circuit C), the Mark algorithm outputs a circuit C' where:

$$C(x) = C'(x)$$

on all but a negligible fraction of inputs x

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

```
Perfect functionality-preserving

if period serveur1(portServ ports)

if period serveur1(portServ ports)

Perfect functionality-preserving

impossible assuming

obfuscation [BGIRSVY12]
```

```
void serveurl(portServ ports)
{
   int sockServ1, sockServ2, sockClient;
   struct sockaddr_in monAddr, addrClient, addrServ2;
   socklen_t lenAddrClient;

   if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
    if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
        CRYPTO
```

Functionality-preserving: On input a program (modeled as a circuit C), the Mark algorithm outputs a circuit C' where:

$$C(x) = C'(x)$$

on all but a negligible fraction of inputs x

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

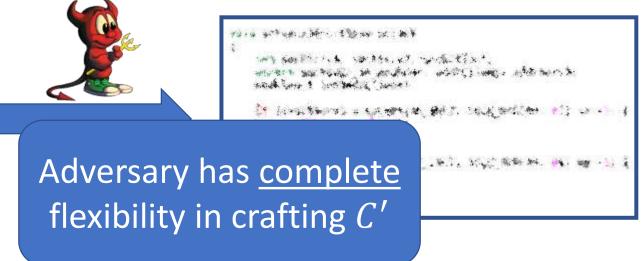
```
void serveurl(portServ ports)
{
    int sockServ1, sockServ2, sockClient;
    struct sockaddr_in monAddr, addrClient, addrServ2;
    socklen_t lenAddrClient;

    if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
    if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
        CRYPTO
```


Unremovability: Given a marked program C, no efficient adversary can construct a circuit C' where

- C'(x) = C(x) on all but a negligible fraction of inputs x
- Verify(wsk, C') = 1

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]



Unremovability: Given a marked program C, no efficient adversary can construct a circuit C' where

- C'(x) = C(x) on all but a negligible fraction of inputs x
- Verify(wsk, C') = 1

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

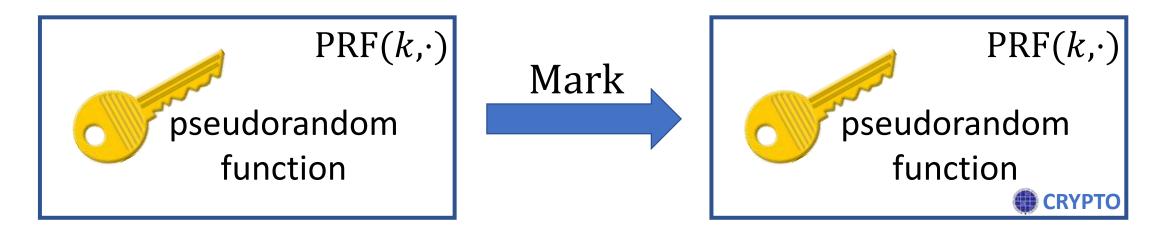
```
void serveurl(portServ ports)
{
   int sockServ1, sockServ2, sockClient;
   struct sockaddr_in monAddr, addrClient, addrServ2;
   socklen_t lenAddrClient;

   if ((sockServ1 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
    }
   if ((sockServ2 = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
        perror("Erreur socket");
        exit(1);
   }
        CRYPTO
```


- Notion only achievable for functions that are not learnable
- Focus has been on cryptographic functions

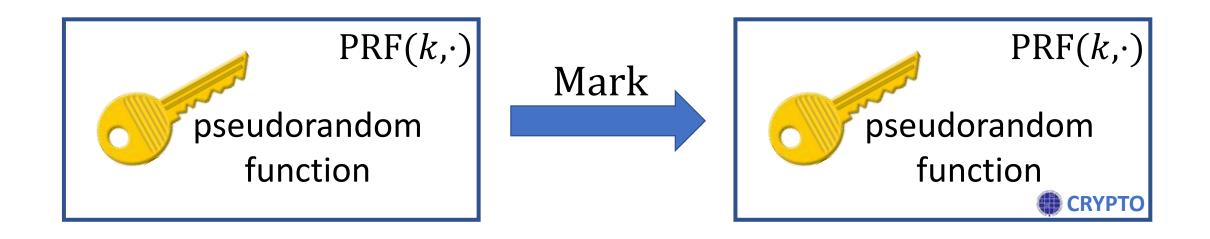
Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17]

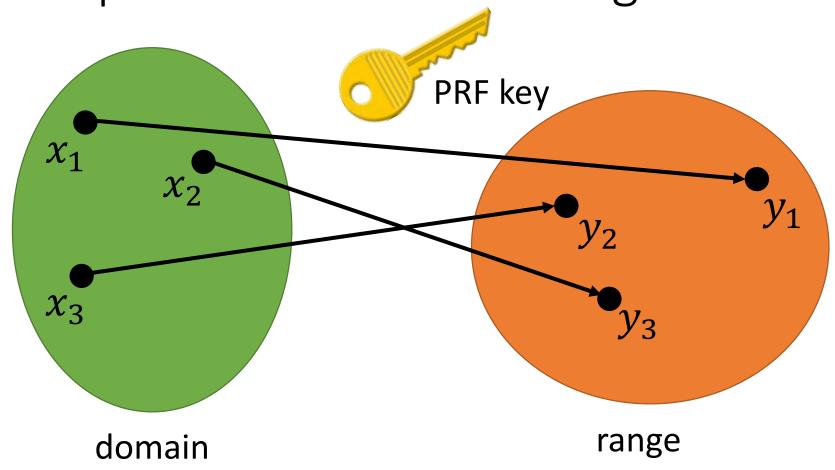


- Focus of this work: watermarking PRFs [CHNVW16, BLW17]
- Enables watermarking of symmetric primitives built from PRFs (e.g., encryption, MACs, etc.)

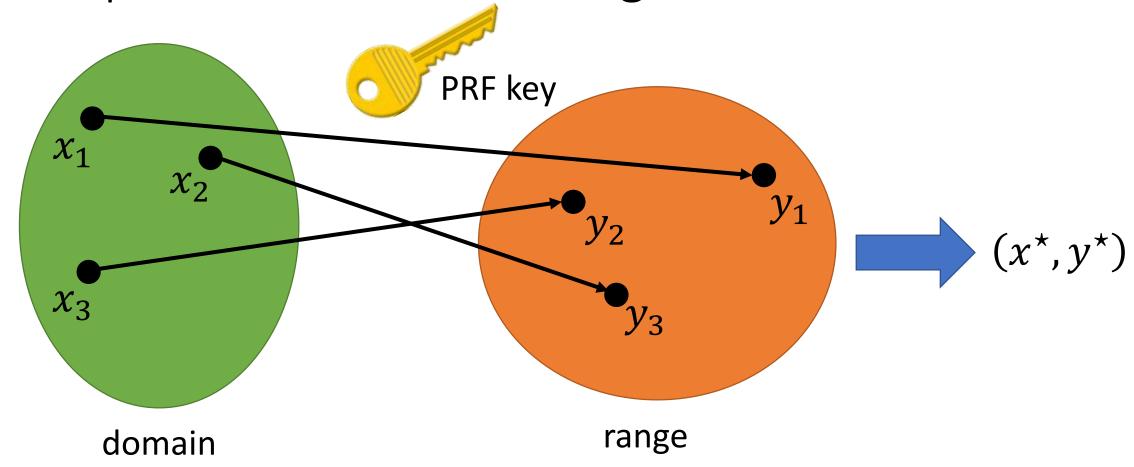
Main Result



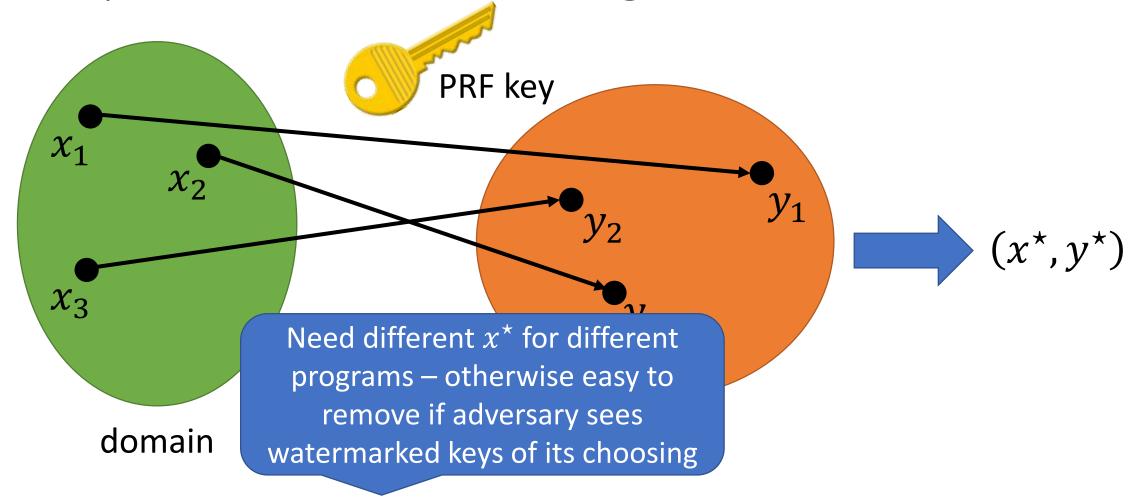
This work: Under *standard lattice assumptions,* there exists a (secretly)-verifiable watermarkable family of PRFs.



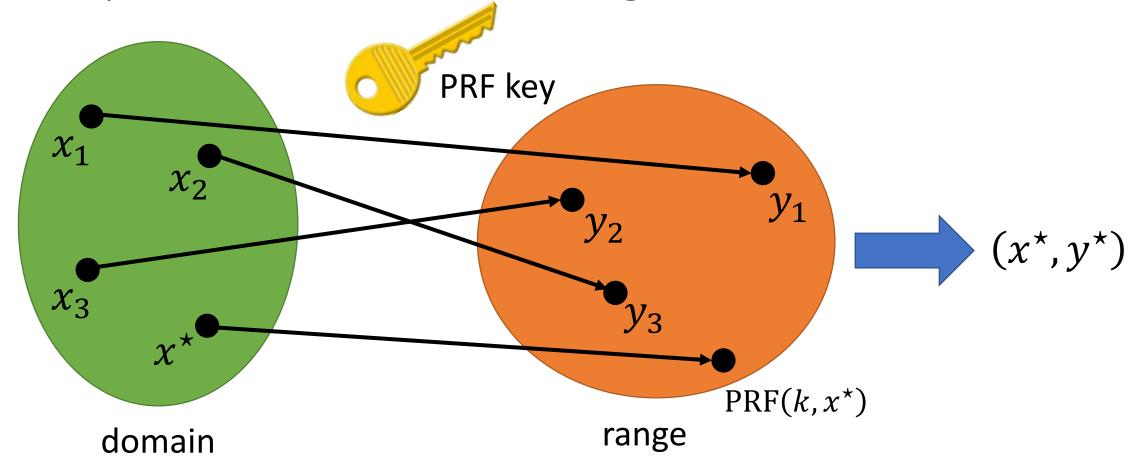
Step 1: Evaluate PRF on test points x_1, x_2, x_3 (part of the watermarking secret key)



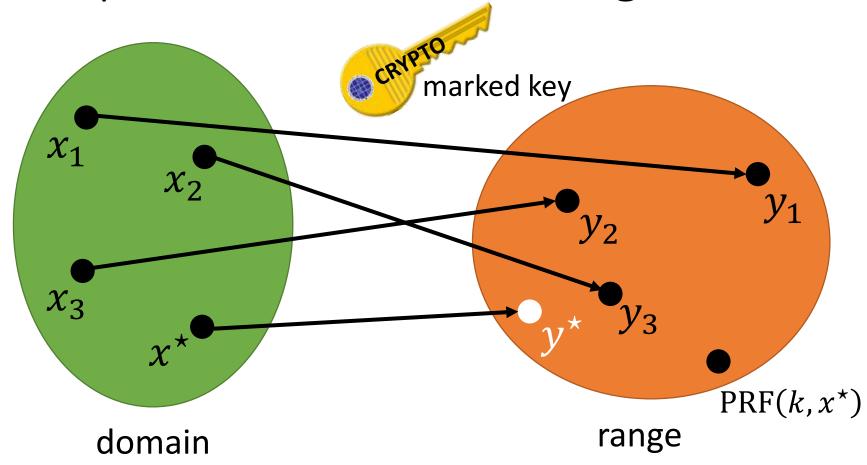
Step 2: Derive a pair (x^*, y^*) from y_1, y_2, y_3



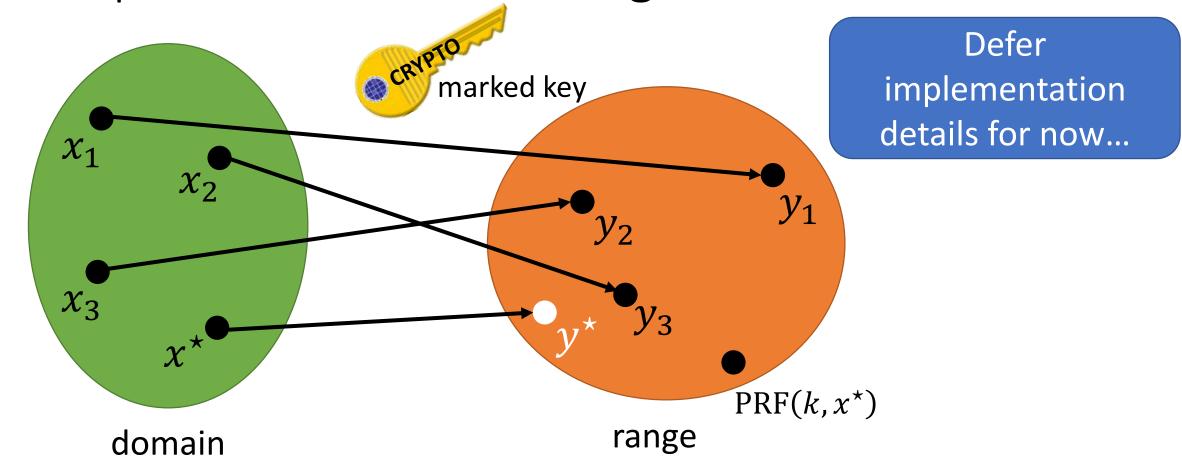
Step 2: Derive a pair (x^*, y^*) from y_1, y_2, y_3



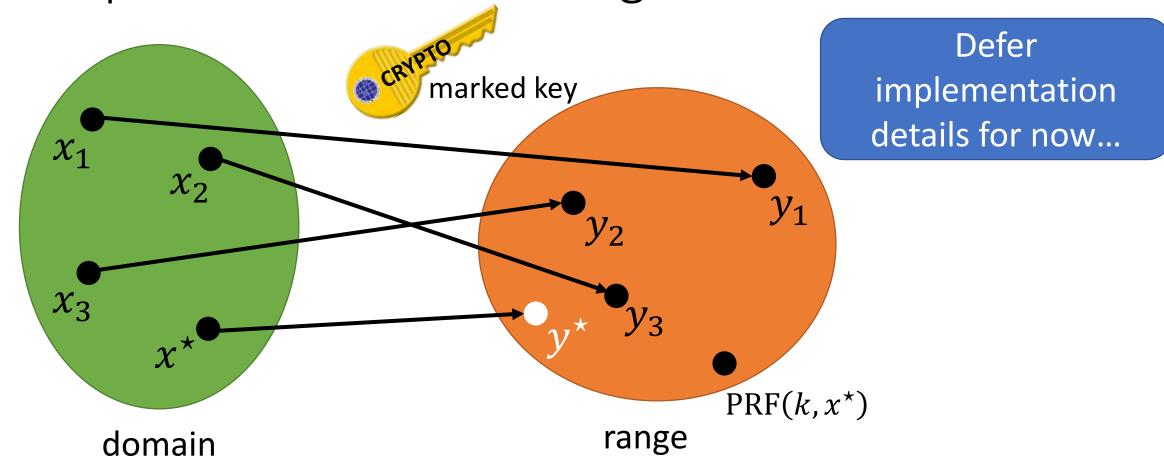
Step 3: "Marked key" is a circuit that implements the PRF at all points, except at x^* , the output is changed to y^*



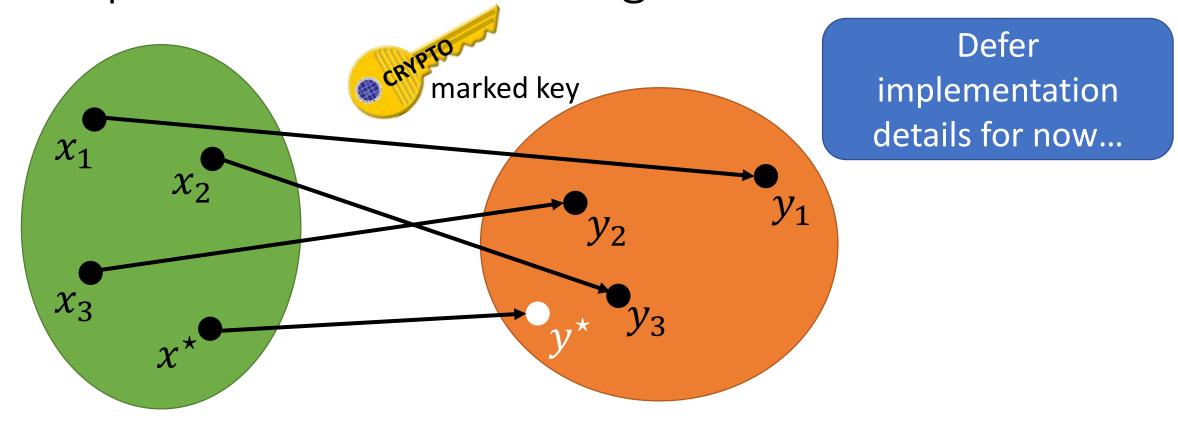
Step 3: "Marked key" is a circuit that implements the PRF at all points, except at x^* , the output is changed to y^*



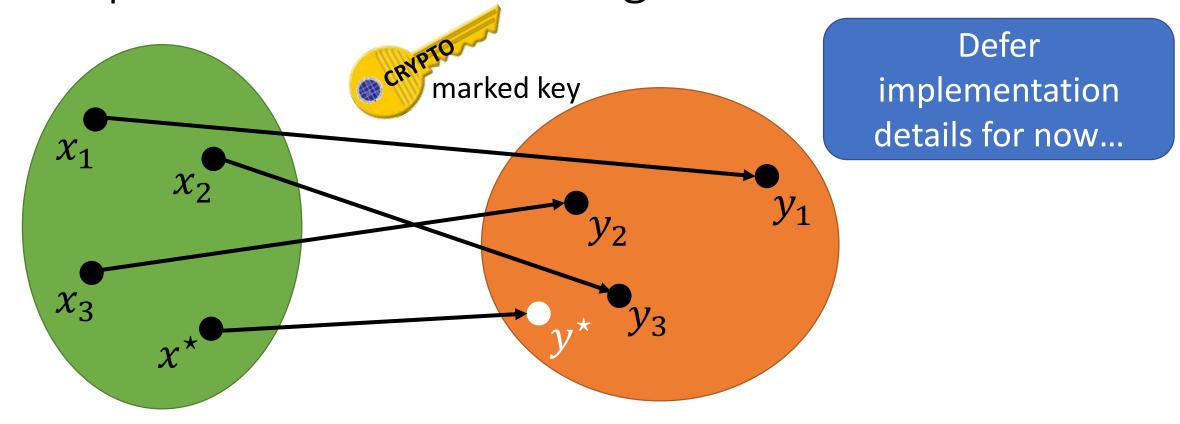
Step 3: "Marked key" is a circuit that implements the PRF at all points, except at x^* , the output is changed to y^*



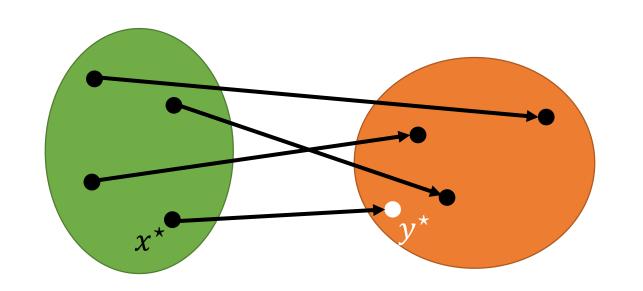
Verification: Evaluate function at x_1, x_2, x_3 , derive (x^*, y^*) and check if the value at x^* matches y^*



Functionality-preserving: function differs at a single point



- ▼ Functionality-preserving: function differs at a single point
- Unremovable: as long as adversary cannot tell that (x^*, y^*) is "special"



Prior solutions: use obfuscation to hide (x^*, y^*)

How to implement this functionality?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x)$$
:

- if $x = x^*$, output y^*
- else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k,x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

How to implement this functionality?

Obfuscated program:

$$P_{(x^{\star},y^{\star})}(x)$$
:

- if $x = x^*$, output y^*
- else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k,x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

Essentially relies on secretly re-programming the value at x^*

functionality?

Obfuscated program:

$$P_{(x^*,y^*)}(x)$$
:
• if $x = x^*$, output y^*

• else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

Obfuscated program has PRF key embedded inside and outputs PRF(k,x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

Key technical challenge: How to hide (x^*, y^*) within the watermarked key (without obfuscation)?

Obfuscated program:

Prior solutions: use obfuscation to hide (x^*, y^*)

$$P_{(x^{\star},y^{\star})}(x)$$
:

- if $x = x^*$, output y^*
- else, output PRF(k, x)

Has an obfuscation flavor: need to embed a secret inside a piece of code that cannot be removed

ted its x^*

F key

Key technical challenge: How to hide (x^*, y^*) within the watermarked key (without obfuscation)?

Obfuscated program:

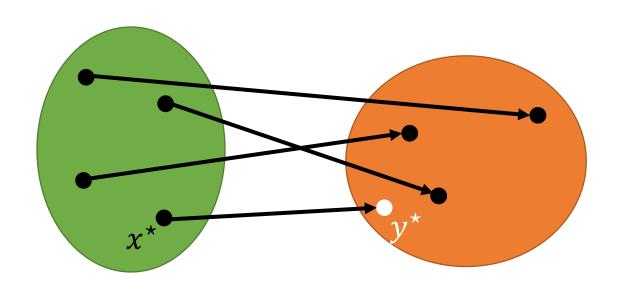
$$P_{(x^*,y^*)}(x)$$
:
• if $x = x^*$, output y^*

• else, output PRF(k, x)

Prior solutions: use obfuscation to hide (x^*, y^*)

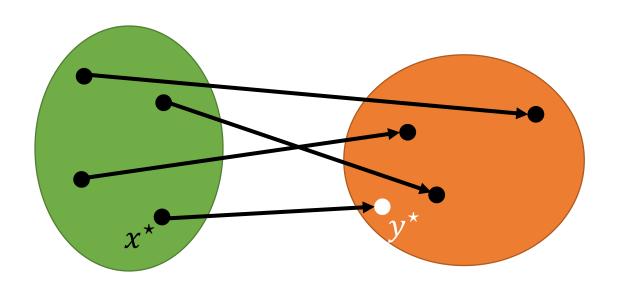
Obfuscated program has PRF key embedded inside and outputs PRF(k,x) on all inputs $x \neq x^*$ and y^* when $x = x^*$

This work: Under *standard lattice assumptions*, there exists a (secretly)-verifiable watermarkable family of PRFs.



- Watermarked PRF implements
 PRF at all but a single point
- Structurally very similar to a puncturable PRF [BW13, BG113, KPTZ13]

Puncturable PRF:



- Watermarked PRF implements
 PRF at all but a single point
- Structurally vary similar to a

Can be used to evaluate the PRF on all points $x \neq x^*$

Puncturable PRF:

Recall general approach for watermarking:

- 1. Derive (x^*, y^*) from input/output behavior of PRF
- 2. Give out a key that agrees with PRF everywhere, except has value

$$y^*$$
 at $x = x^*$

PRF key

punctured at x^*

However, punctured key does not necessarily hide x^* , which allows adversary to remove watermark

Punctured keys typically do not provide flexibility in programming value at punctured point: difficult to test if a program is watermarked or not

or of PRF

2. Give that agrees with PKF everywhere, except has value

$$y^*$$
 at $x = x^*$

R

PRF key punctured at x^*

However, punctured key does not necessarily hide x^* , which allows adversary to remove watermark

Problem 1: Punctured keys do not hide the punctured point x^*

Use private puncturable PRFs

Problem 2: Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point

In existing lattice-based private puncturable PRF

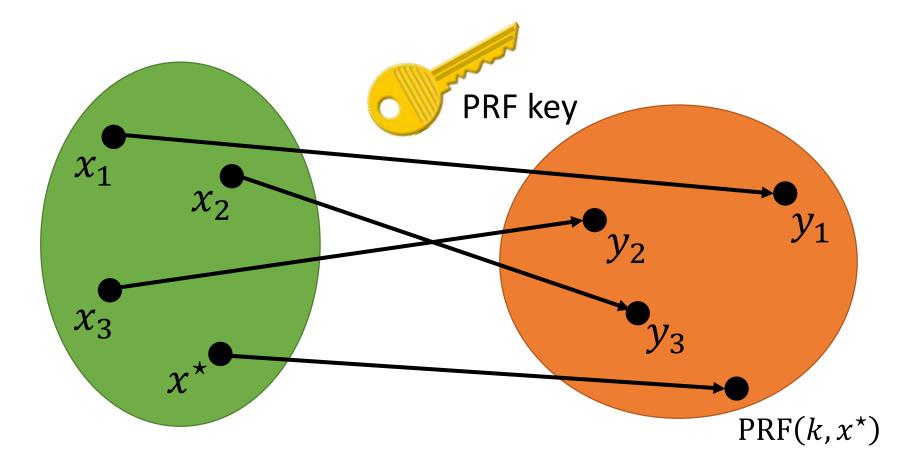
constructions [BKM17, CC17], value of punctured key at punctured point is a *deterministic* function of Problem 1: P the PRF key

Use pr

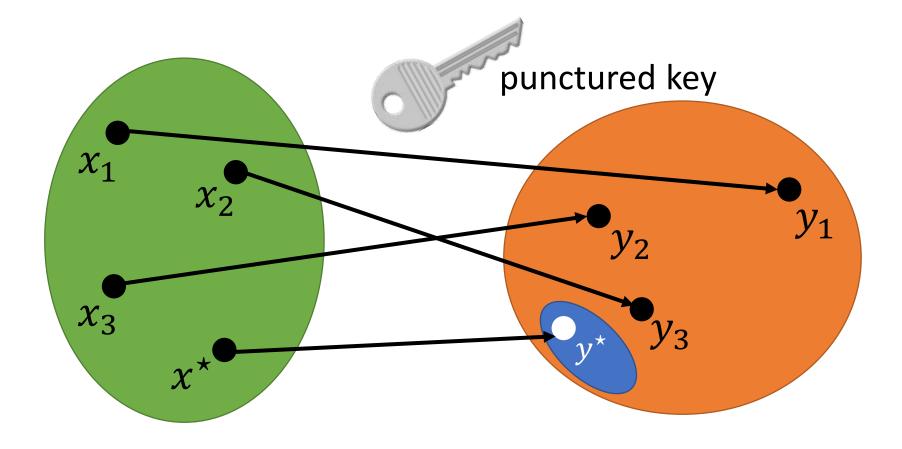
Problem 2: Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point

Problem 1: Punctured keys do not hide the punctured point x^*

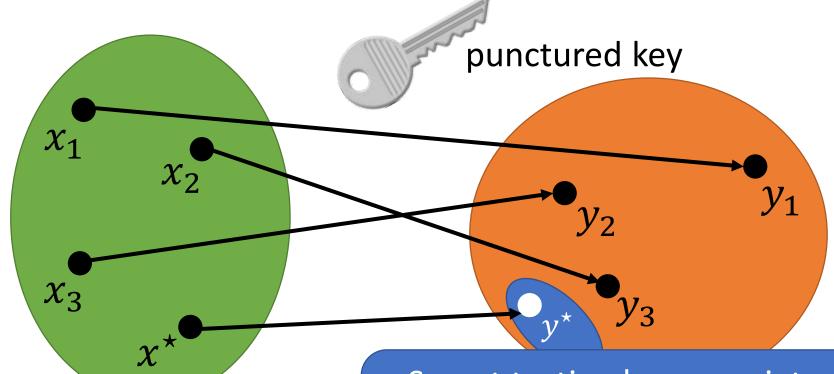
- Use privately puncturable PRFs
- **Problem 2:** Difficult to test whether a value is the result of using a punctured key to evaluate at the punctured point
 - Relax programmability requirement



Private puncturable PRF family with the property that output of any punctured key on a punctured point lies in a sparse, hidden subspace



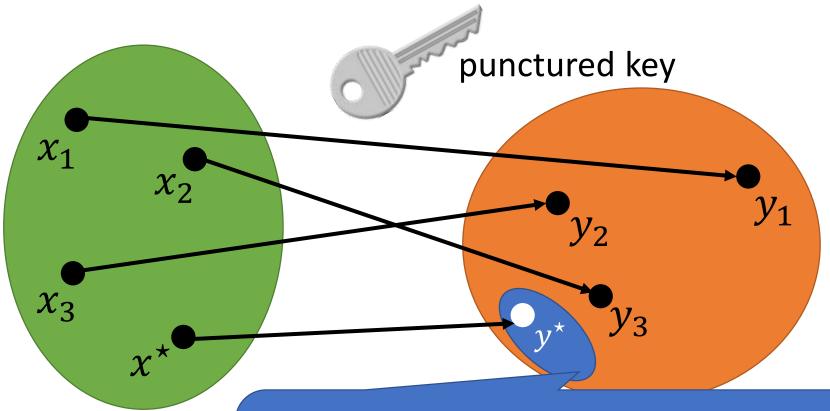
Private puncturable PRF family with the property that output of any punctured key on a punctured point lies in a sparse, hidden subspace



Secret testing key associated with the PRF family can be used to test for membership in the hidden subspace

Private puncturable PRF family

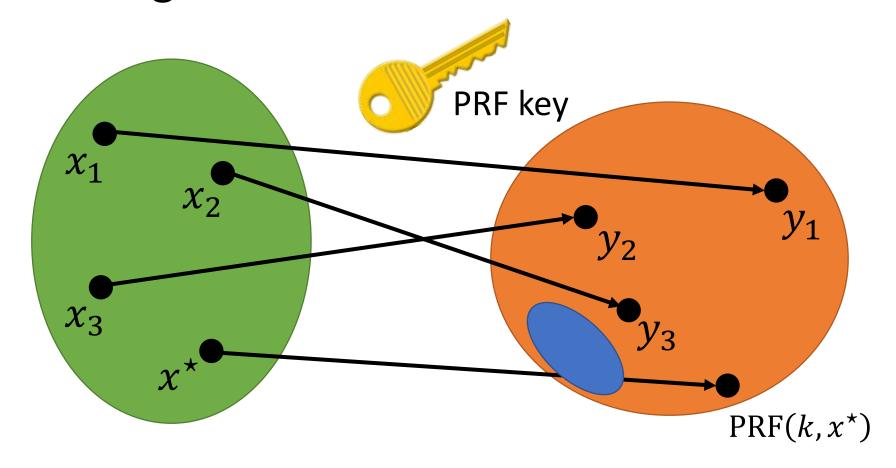
punctured key on a punctured point lies in a sparse, hidden subspace



Sets satisfying such properties are called *translucent* [CDNO97]

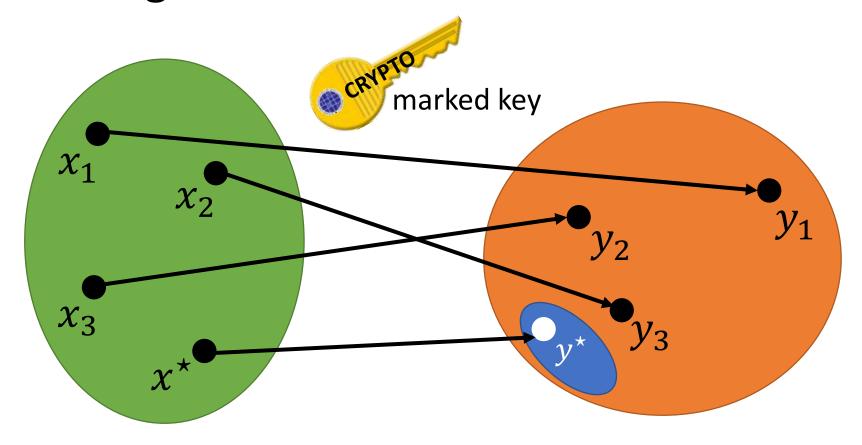
- Values in special set looks indistinguishable from a random value (without secret testing key)
- Indistinguishable even though it is easy to sample values from the set

Watermarking from Private Translucent PRFs



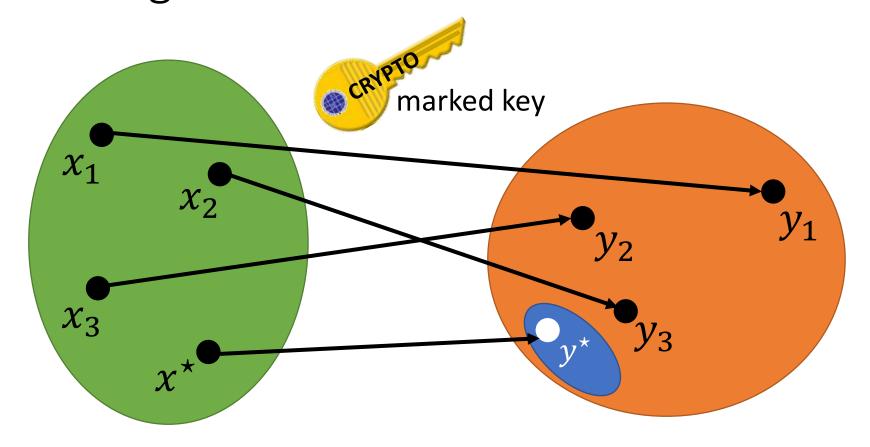
Watermarking secret key (wsk): test points x_1, \dots, x_d and testing key for private translucent PRF

Watermarking from Private Translucent PRFs



To mark a PRF key k, derive special point x^* and puncture k at x^* ; watermarked key is a program that evaluates using the punctured key

Watermarking from Private Translucent PRFs



To test whether a program C' is watermarked, derive test point x^* and check whether $C'(x^*)$ is in the translucent set (using the testing key for the private translucent PRF)

Constructing Private Translucent PRFs

Learning with Errors (LWE) [Reg05]:

$$(A, s^T A + e^T) \approx (A, u^T)$$

$$A \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_q^{n \times m}$$
, $s \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_q^n$, $e \stackrel{\mathrm{R}}{\leftarrow} \chi^m$, $u \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_q^m$

A way to encode $x \in \{0,1\}^{\ell}$ as a collection of LWE samples take LWE matrices $A_1, \dots, A_{\ell} \in \mathbb{Z}_q^{n \times m}$ and a secret $s \in \mathbb{Z}_q^n$:

LWE matrix associated with each input bit

G denotes a special "gadget" matrix

ction of LWE samples m and a secret $s \in \mathbb{Z}_q^n$:

$$\mathbf{s}^T(\mathbf{A}_1 + \mathbf{x}_1 \cdot \mathbf{G}) + \mathbf{e}_1$$

encoding of x_1 with respect to A_1

LWE matrix associated with each input bit

G denotes a special"gadget" matrix

ction of LWE samples m and a secret $s \in \mathbb{Z}_q^n$:

$$m{s}^T(m{A}_1 + m{x}_1 \cdot m{G}) + m{e}_1$$

$$\vdots \quad \text{encoding of } x_1 \text{ with respect to } m{A}_1$$
 $m{s}^T(m{A}_\ell + m{x}_\ell \cdot m{G}) + m{e}_\ell$

LWE matrix associated with each input bit

G denotes a special "gadget" matrix

$$s^T(A_1 + x_1 \cdot G) + e_1$$

•

$$s^T(A_\ell + x_\ell \cdot G) + e_\ell$$

ction of LWE samples

m and a secret $s \in \mathbb{Z}_q^n$:

Function of f and

$$A_1, \ldots, A_\ell$$

$$s^T(A_f + f(x) \cdot G) + \text{noise}$$

Encodings support homomorphic operations

$$s^T(A_1 + x_1 \cdot G) + e_1$$

 \vdots
 $s^T(A_f + f(x) \cdot G) + \text{noise}$
 $s^T(A_\ell + x_\ell \cdot G) + e_\ell$

For any function f , two ways to (approximately) compute ${m s}^T{m A}_f$

- Directly given the LWE secret s and public matrices A_1, \dots, A_ℓ
- Homomorphically given encodings $\mathbf{s}^T(\mathbf{A}_i + x_i \cdot \mathbf{G})$
 - Works as long as f(x) = 0

$$s^{T}(A_{1} + x_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{f} + f(x) \cdot G) + \text{noise}$$

$$s^{T}(A_{\ell} + x_{\ell} \cdot G) + e_{\ell}$$

For puncturing at x^* , let $f_x(x^*) = eq(x, x^*)$ be the equality function

• PRF evaluation at x with secret key s: $PRF(s, x) \coloneqq |s^T A_{f_x}|_p$

$$s^T(A_1 + x_1 \cdot G) + e_1$$

 \vdots $s^T(A_f + f(x) \cdot G) + \text{noise}$
 $s^T(A_\ell + x_\ell \cdot G) + e_\ell$ To evaluate at x_ℓ

homomorphically compute $A_{f_{\mathcal{X}}}$ For puncturing at x^* , let $f_{\mathcal{X}}(x^*) = \operatorname{eq}(x,x)$ be the equality for

• PRF evaluation at x with secret key s: $PRF(s, x) := |s^T A_{f_x}|_n$

$$s^{T}(A_{1} + x_{1} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T}(A_{f} + f(x) \cdot G) + \text{noise}$$

$$s^{T}(A_{\ell} + x_{\ell} \cdot G) + e_{\ell}$$

For puncturing at x^* , let $f_x(x^*) = eq(x, x^*)$ be the equality function

- PRF evaluation at x with secret key s: $PRF(s, x) \coloneqq \left[s^T A_{f_x} \right]_p$
- Punctured key consists of encodings of bits of x^*
 - Allows computing $\mathbf{s}^T (\mathbf{A}_{f_x} + \operatorname{eq}(x, x^*) \cdot \mathbf{G}) + \operatorname{noise}$ for all x

$$s^T(A_1 + x_1 \cdot G) + e_1$$

 \vdots
 $s^T(A_f + f(x) \cdot G) + \text{noise}$
 $s^T(A_\ell + x_\ell \cdot G) + e_\ell$

- PRF evaluation at x with set except when $x = x^*$ except when $x = x^*$
 - Punctured key consists of encount
 - Allows computing $\mathbf{s}^T (\mathbf{A}_{f_x} + \operatorname{eq}(x, x^*) \cdot \mathbf{G}) + \operatorname{noise} \text{ for all } x$

Privately Puncturable PRFs [BKM17]

$$PRF(s, x) \coloneqq \begin{bmatrix} s^{T} A_{f_{x}} \end{bmatrix}_{p}$$

$$s^{T} (A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T} (A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$

Evaluating PRF using punctured key requires knowledge of x^*

Key idea in [BKM17]: encrypt the punctured point using an FHE scheme and homomorphically evaluate the equality function

Evaluating using punctured key outputs

$$\mathbf{s}^T \mathbf{A}_{f_{\mathcal{X}}} + \mathbf{s}^T \left(\frac{q}{2} \cdot \operatorname{eq}(x, x^*) + e \right) \cdot \mathbf{G} + \mathbf{e}'$$

Privately Puncturable PRFs [BKM17]

$$PRF(s,x) \coloneqq \begin{bmatrix} s^{T} A_{f_{x}} \end{bmatrix}_{p}$$

$$s^{T} (A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T} (A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$

Evaluating PRF using punctured

key requir

Value after FHE evaluation and decryption

Evaluating usin

Key idea in [BKM17]: encrypt the punctured point using an FHE scheme and homomorphically evaluate the equality function

$$\mathbf{s}^T \mathbf{A}_{f_x} + \mathbf{s}^T \left(\frac{q}{2} \cdot \operatorname{eq}(x, x^*) + e \right) \cdot \mathbf{G} + \mathbf{e}'$$

Privately Puncturable PRFs [BKM17]

$$PRF(s, x) \coloneqq \begin{bmatrix} s^{T} A_{f_{x}} \end{bmatrix}_{p}$$

$$s^{T} (A_{1} + x_{1}^{\star} \cdot G) + e_{1}$$

$$\vdots$$

$$s^{T} (A_{\ell} + x_{\ell}^{\star} \cdot G) + e_{\ell}$$

Evaluating PRF using punctured key requires knowledge of x^*

Key idea in [BKM17]: encrypt the punctured point using an FHE scheme and homomorphically evaluate the equality function

Evaluating using punctured key outputs

$$\mathbf{s}^T \mathbf{A}_{f_x} + \mathbf{s}^T \left(\frac{q}{2} \cdot \operatorname{eq}(x, x^*) + e \right) \cdot \mathbf{G} + \mathbf{e}'$$

Rounding away the FHE error: small if *s* is short and we restrict to lownorm columns of *G*

Change real PRF evaluation: $PRF(s, x) := [s^T A_{f_x} G^{-1}(D)]_p$

Evaluating using a punctured key yields

$$s^T (A_{f_x} + (w \cdot eq(x, x^*) + e) \cdot G)G^{-1}(D) + noise$$

Use a different scaling factor in FHE scheme (instead of q/2)

Change real PRF evaluation: $PRF(s, x) := [s^T A_{f_x} G^{-1}(D)]_p$

Evaluating using a punctured key yields

$$s^{T}(A_{f_{x}}G^{-1}(D) + (w \cdot eq(x, x^{*}) + e) \cdot D) + noise$$

When $x = x^*$, this becomes $[s^T(A_{f_x}G^{-1}(D) + wD)]_p$

Can choose w (part of the punctured key) to tweak the value at punctured point

If $x = x^*$, evaluating using the punctured key yields $\left[s^T (A_{f_x} G^{-1}(D) + wD) \right]_p$

Key idea: sum up multiple evaluations with different multiples w_i and \boldsymbol{D}_i yields

$$\left| \sum_{i} \mathbf{s}^{T} (\mathbf{A}_{f_{x}} \mathbf{G}^{-1}(\mathbf{D}) + w_{i} \mathbf{D}_{i}) \right| = \left| \mathbf{s}^{T} \mathbf{W} \right|_{p}$$

Output at punctured point is an LWE sample with respect to \boldsymbol{W} (fixed public matrix) – critical for implementing a translucent set

If $x = x^*$, evaluating using the punctured key yields $[s^T (A_{f_x} G^{-1}(D) + wD)]_p$

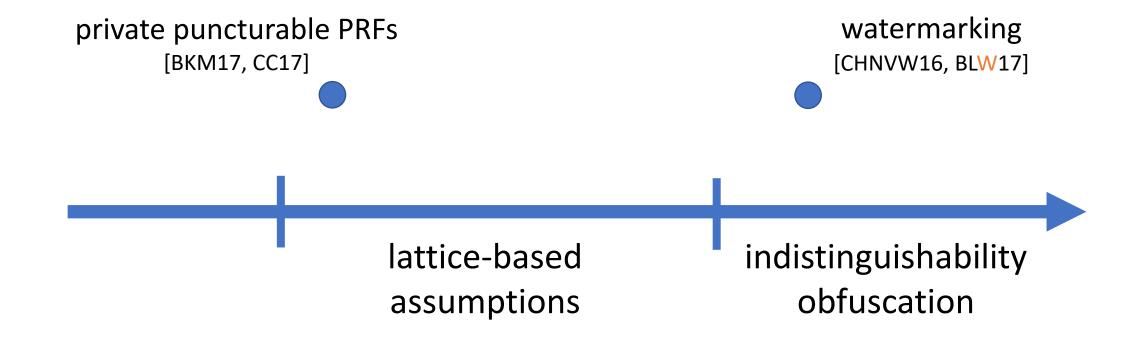
Key idea: sum up multiple evaluations with different multiples w_i and \boldsymbol{D}_i yields

$$\left[\sum_{i} \mathbf{s}^{T} (\mathbf{A}_{f_{\mathcal{X}}} \mathbf{G}^{-1}(\mathbf{D}) + w_{i} \mathbf{D}_{i})\right]_{p} = \left[\mathbf{s}^{T} \mathbf{W}\right]_{p}$$

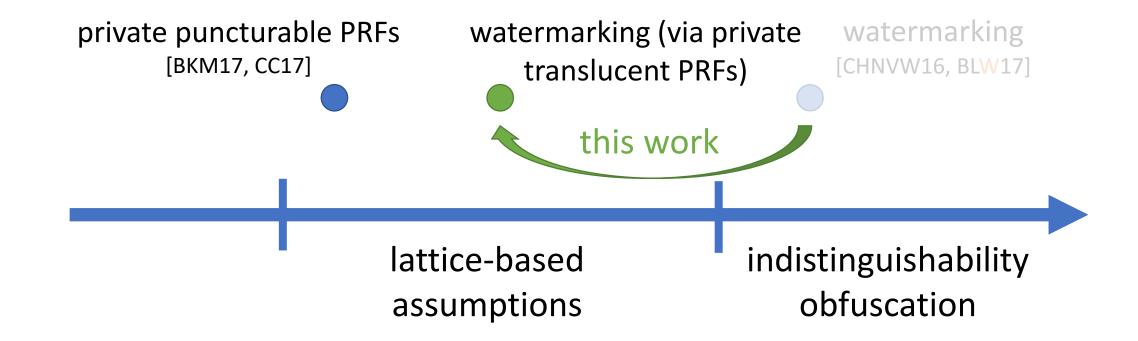
Testing key is a short vector z where Wz = 0:

$$\left\langle \left[\mathbf{s}^T \mathbf{W} \right]_p, \mathbf{z} \right\rangle \approx \left[\mathbf{s}^T \mathbf{W} \mathbf{z} \right]_p = 0$$

Conclusions



Conclusions



Open Problems

Publicly-verifiable watermarking without obfuscation?

• Current best construction relies on iO [CHNVW16]

Additional applications of private translucent PRFs?

Thank you!

http://eprint.iacr.org/2017/380