New Constructions of Reusable

Designated-Verifier NIZKs

Alex Lombardi, Willy Quach, Ron D. Rothblum,
Daniel Wichs, and David J. Wu

Proof Systems and Argument Systems

[GMR85]

NP language L € {0,1}"

prover

verifier

Completeness: Vx € L: Pr[(P,V)(x) = accept] =1
“Honest prover convinces honest verifier of true statements”

(Computational)

Vx & L, V efficient P* : Pr[(P*,V)(x) = accept] < ¢
Soundness:

“No efficient prover can convince honest verifier of false statement”

Zero-Knowledge Arguments for NP

[GMR85]

NP language L

J

real distribution ideal distribution

Zero-Knowledge: for all efficient verifiers V™, there exists an efficient simulator
S such that:

Vx €L:(P,V*)(x) =, S5(x)

Non-Interactive Zero-Knowledge (NIZK)
[BFM88]

NP language L

real distribution ideal distribution

In the standard model, this is only achievable for languages L € BPP

Which Assumptions give NIZKs for NP?

prover verifier
prover verifier
Common Reference String (CRS) Model
Random Oracle Model * Quadratic Residuos'ity [BFM88, DMP87, BDMP91]
[FS86, PSO6] e Trapdoor Permutations [FLS90, DDO+01, Gro10]

* Pairings [GOS06]
* Learning with Errors [PS19]

Which Assumptions give NIZKs for NP?

 Many different approaches: hidden-bits
model, correlation-intractability, homomorphic
commitments

* Some assumptions still missing: Diffie-Hellman
assumptions, learning parity with noise (LPN)

prover verifier
Common Reference String (CRS) Model
. dratic Residuosity [BFM88, DMP87, BDMP91
Random Oracle Model . Trapdoor Permutations [F1550, DDOS0A, Gro10]
[FS86, PS96] P ' ’

* Pairings [GOS06]
* Learning with Errors [PS19]

Designated-Verifier NIZKs

Is there a general framework for constructing NIZKs?

secret verification key

prover 486 verifier

This work: focus on the designated-verifier model

Designated-Verifier NIZKs

Is there a general framework for constructing NIZKs?

secret verification key

prover 4 verifier

Requirement: soundness should hold even
if the prover has access to the verification oracle

Why Designated-Verifier NIZKs?

Is there a general framework for constructing DV-NIZKs?

e Sufficient to instantiate many classic applications of NIZKs (e.g., CPA-
security to CCA-security, boosting security of MPC protocols, etc.)

* Non-trivial relaxation of standard NIZKs:
e Until very recently: instantiations of reusable DV-NIZKs are all NIZK
constructions in standard CRS model
* Recently: DV-NIZKs based on CDH/DDH (specific algebraic instantiation of the
hidden-bits model) [CH19, KNYY19, QRW19]
* Non-reusable DV-NIZKs: known from homomorphic encryption [DFNO6],
public-key encryption [PsV06]

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘

LWE Hiding (Single-Ke
bl 1cin¢ (> ngle-ey) QRS

GESEELIE)

Designated-Verifier
NIZK for NP

(assuming PKE)

Remark: PKE implies single-key ABE
[SS10, GVW12]

CDH PKE + KDM-Secure

LWE Symmetric Open question: Can we build single-key function-
: hiding ABE from PKE? If so, then we would show
E ’
LPN ncryption that CPA-security generically implies CCA-security!

Part |I: From ABE to DV-NIZK

Is there a general framework for constructing DV-NIZKs?

Weak Function- (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE NIZK for NP

Starting Point: A Non-Reusable DV-NIZK

[PsVO6]

“commitment” a
“challenge” ¢ « {0,1}

“response” z

—

accept/reject

2-protocol with 1-bit challenge
(e.g., Blum’s protocol for graph Hamiltonicity [Blusé])

Starting Point: A Non-Reusable DV-NIZK

[PsV06]

common < -
reference string Miod verification state

CRS consists of two public keys, secret verification state
consists of one of the secret keys (unknown to the prover)

Starting Point: A Non-Reusable DV-NIZK

[PsVO6]

verifier’s
challenge bit

| b sky |

Zy, is the prover’s response

if the challenge bit was b

cty <« Encrypt(pky, zp)
ct; « Encrypt(pky, z1)

accept/reject
CRS consists of two public keys, secret verification state

consists of one of the secret keys (unknown to the prover)

Starting Point: A Non-Reusable DV-NIZK

4 \
(pk(l) pk(1\ b, sk,gll)
(n) k(n)
Ko

P¥1

Repeat the protocol n times in parallel to amplify soundness

Starting Point: A Non-Reusable DV-NIZK

4 \
(pk(l) pk(1\ b, sk,gll)
(n) k(n)
Ko

P¥1

Zero-knowledge: follows by semantic-security of PKE scheme and
special zero-knowledge of the X-protocol

Starting Point: A Non-Reusable DV-NIZK

4 \
(pk(l) pk(1\ b, sk,gll)
(n) (n)
\pk &

P¥1

(One-time) soundness: verifier’s challenges are uniformly random and perfectly
hidden from the prover, so soundness reduces to that of the X-protocol

Starting Point: A Non-Reusable DV-NIZK

-

\P

p

kgl) pkgl)\

kS

Does not provide reusable soundness!

Starting Point: A Non-Reusable DV-NIZK

[PsVO6]

o o . . . f \
fpk(l) pk(1\ Verlfl.er rejection attack: t.ake b, Skl(all)
. valid proof and perturb it .
(n)
pk
\ "0

If verifier accepts,
then b; = 1, and
else, by =0

Recover verifier’s challenge bit-by-bit!

Does not provide reusable soundness!

Starting Point: A Non-Reusable DV-NIZK

[PsVO6]

o o . . . f \
fpk(l) pk(1\ Verlfl.er rejection attack: t.ake b, Skl(all)
. valid proof and perturb it .
(n)
pk
\ "0

If verifier accepts,
then b; = 1, and
else, by =0

Recover verifier’s challenge bit-by-bit!

Problem: Verifier uses same randomness to verify all proofs

Our Compiler: ABE = DV-NIZK

(pkgl) pkgl)\ Idea: Derive by, ..., b,
from the statement x
(n)
Ko

Key idea: Use independent randomness to verify each statement x

Core Ingredient: Attribute-Based Encryption (ABE)

[SWO05, GPSWO06]

Public-key attribute-based encryption (ABE):

m o
ct sk

Ciphertexts associated with public Secret keys associated with
attribute x € X’ and message m function f: X — {0,1}

l ‘ Semantic security: ct
hides message m if
f(x)=0

if f(x)=1 if f(x)=20

Our Compiler: ABE = DV-NIZK

(pkgl) pkgl)\ Idea: Derive by, ..., b,
from the statement x
(n)
Ko

Key idea: Use independent randomness to verify each statement x

Our Compiler: ABE = DV-NIZK

Key idea: Use independent randomness to verify each statement x

Our Compiler: ABE = DV-NIZK

Encrypt responses with
attribute (index, bit)

Our Compiler: ABE = DV-NIZK

Decrypts ciphertext
with attribute (j, bj)

sk;: key for function f;(i,b) = {1 if i =jand b = b;
0 otherwise

Our Compiler: ABE = DV-NIZK

Idea: Derive by, ..., b,
from the statement x

Key idea: Use independent randomness to verify each statement x

Our Compiler: ABE = DV-NIZK

Derive bi(x) by computing
PRF(k, (x,1))

sk;: key for function f;(x,i,b) = {1 if i = jand b = PRF(k, (x,1))
0 otherwise

Our Compiler: ABE = DV-NIZK

Derive bi(x) by computing
PRF(k, (x,1))

sk;: key for function f;(x,i,b) = {1 if i = jand b = PRF(k, (x,1))
0 otherwise

Our Compiler: ABE = DV-NIZK

Derive bi(x) by computing
PRF(k, (x,1))

Zero-knowledge: Follows from semantic security of the ABE scheme and (special) ZK of

underlying Sigma protocol: for all x, sk; can decrypt exactly one of ctgi) and ctgi)

Our Compiler: ABE = DV-NIZK

Derive bi(x) by computing
PRF(k, (x,1))

Soundness: Follows if verifier’s queries are uniformly random and unknown to the
adversary — intuitively should follow from security of the PRF (since prover does not see k)

Our Compiler: ABE = DV-NIZK

Problem: Prover gets to query the verifier (who
would evaluate the ABE decryption function); ABE
decryption could leak information about the secret

decryption key which depends on the PRF key k

Soundness: Follows if verifier’s queries are uniformly random and unknown to the
adversary — intuitively should follow from security of the PRF (since prover does not see k)

Our Compiler: ABE = DV-NIZK

mpk (mpk, msk) « Setup(1%)
sky « KeyGen(msk, f)
ct
Decrypt(sky, ct)
mpk (mpk, msk) « Setup(1%)
ct Decryption queries can be
simulated given msk and
Sf(') (msk Ct) oracle access to f (simulator

can query f once per
decryption query)

(Weak) Function-Privacy: Output of ABE decryption
should hide the associated function

Our Compiler: ABE = DV-NIZK

If ABE scheme satisfies weak function-privacy, then decryption
gueries can be simulated just given oracle access to the PRF;
soundness follows from PRF security and soundness of the Z-protocol

Our Compiler: ABE = DV-NIZK

Is there a general framework for constructing DV-NIZKs?

Weak Function- (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE NIZK for NP

Simple variant of lattice-based ABE scheme [BGGHNSVV14] satisfies this notion

Part ll: From PKE to Function-Hiding ABE

Is there a general framework for constructing DV-NIZKs?

Weak Function-
Hiding (Single-Key)
ABE

CDH PKE + KDM-Secure
LWE Symmetric
LPN Encryption

Part ll: From PKE to Function-Hiding ABE

: _ Weak Function-
PkE i e iding Singl-

Key ABE
[S$10, GVW12]

This Work
KDM-Secure 4

SKE

Will rely on “mirroring” technique that has been developed for
constructing TDFs/CCA-security [GRM18, KW18, KMT19]

Constructing Function-Hiding ABE

Sample symmetric encryption key k < {0,1}*

Commit to each bit of the key k
c; < Commit(k; ; p;)

comput.atlonal.-hlgllng, commitment
statistically-binding,
equivocable (in CRS model) randomness

Constructing Function-Hiding ABE

Sample symmetric encryption key k < {0,1}*

Commit to each bit of the key k
c; < Commit(k; ; p;)
encryption

randomness

if k; = 0: encrypt p; using ABE scheme
if k; = 1: encrypt L using ABE scheme

ABE ABE ABE

ABE

if k; = 0: encrypt L using PKE scheme
if k; = 1: encrypt p; using PKE scheme

PKE

Constructing Function-Hiding ABE

ki Ky k3

AR

Sample symmetric encryption key k < {0,1}*

Commit to each bit of the key k
c; < Commit(k; ; p;)

£ T0 Encrypt message m and subset
‘ m of encryption randomness
ABE using SKE scheme
& "1 m, rl’kl, ...,r/‘l’k/,l ﬁ

PKE

SKE

Constructing Function-Hiding ABE

Sample symmetric encryption key k < {0,1}*

Commit to each bit of the key k
c; < Commit(k; ; p;)

|

|

E Encrypt message m and subset
: of encryption randomness
|

|

L

using SKE scheme

----J

Constructing Function-Hiding ABE

Decryption algorithm:
1. Decrypt ABE ciphertexts using secret key to obtain
messages Z;
If c; = Commit(0;z;),setk; =0,elsek; =1
Decrypt symmetric ciphertext with recovered key k
Validity check: check that ABE/PKE ciphertexts
corresponding to bits of k; are well formed

| Note: Validity check requires that we
J can recover message given the

| encryption randomness (follows

! without loss of generality)
I
L

----J

Constructing Function-Hiding ABE

Function-Hiding: Decryption oracle (with sk) hides f
(up to what is revealed by f(x))

Commitments are Any collection of ciphertexts
statistically-binding so can only bind to a single Instead of decrypting using
adversary cannot signal possible k (which is checked the ABE secret key, we can

both 0 and 1 for a bit by validity test) decrypt using the secret key
for the PKE scheme

(consistency check ensures
that behavior is identical)

[

“Ideal” decryption function is
independent of f

—----J

Constructing Function-Hiding ABE

Semantic Security: If f(x) = 0, then message is hidden

----J

Constructing Function-Hiding ABE

Semantic Security: If f(x) = 0, then message is hidden

Switch commitments to equivocable mode

ci = Commit(k; ; p;) = Commit(1 —k; ; p;) Indistinguishable by
!'“““'C'l“'gz'“'c'g """" c /{“i equivocation and
! B iy ! semantic security of
|
| S, _8no i ABE/PKE
O, O, m :
1 I
1 I
| b 1.
i & " & 1 & 31 m, rl,kl' , rﬂ,k,’[ﬂ i
i SKE !

Constructing Function-Hiding ABE

Semantic Security: If f(x) = 0, then message is hidden

Switch commitments to equivocable mode

¢; = Commit(k; ; p;) = Commit(1 — k; ; p;)

Message p; is always a
commitment opening to
RTINS AT LT the bit 0 for ¢;

----J

Constructing Function-Hiding ABE

Semantic Security: If f(x) = 0, then message is hidden

Switch commitments to equivocable mode

¢; = Commit(k; ; p;) = Commit(1 — k; ; p;)
Messages are

independent of key k
B B (i.e., can be simulated

m m m ' without knowing k)

----J

Constructing Function-Hiding ABE

Semantic Security: If f(x) = 0, then message is hidden

Switch commitments to equivocable mode

¢; = Commit(k; ; p;) = Commit(1 — k; ; p;)

Semantically secure by
KDM-security

t__/’ rlO t_m_) TZO

----J

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘

LWE Hiding (Single-Ke
bl 1cin¢ (> ngle-ey) QRS

GESEELIE)

Designated-Verifier
NIZK for NP

(assuming PKE)

CDH PKE + KDM-Secure
LWE Symmetric
LPN Encryption

Malicious DV-NIZKs

prover i verifier

Standard DV-NIZK: CRS and verification state needs to be
generated by a trusted party

Malicious DV-NIZKs

common random string
| 11101001101111100110110000001 |

prover verifier

Malicious DV-NIZK [qrw19]: only trusted setup needed is common
random string, verifier publishes its own public/secret key-pair

Our Results: Malicious DV-NIZKs

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘

Hiding (Single-Key) Designated-Verifier
AB-SFE _ NIZK for NP
(assuming PKE)

(Reusable) Malicious

CDH 2-Message (Extractable) Same general approach works, but requires a

LWE Oblivious Transfer + KDM (malicious) generalization of single-key ABE:
LPN Secure SKE attribute-based secure function evaluation (AB-SFE)

Our Results: Malicious DV-NIZKs

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘

Hiding (Single-Key) Designated-Verifier
AB-SFE _ NIZK for NP
(assuming PKE)

(Reusable) Malicious

CDH 2-Message (Extractable) (Reusable) Non-
LWE Oblivious Transfer + KDM Interactive Secure

LPN secure SKE Computation

Open Questions

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘ (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE — NIZK for NP
(assuming PKE)

Can we construct weak function-hiding single-key ABE from PKE?
[Would mean that CPA-security generically implies CCA-security! |

Open Questions

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘ (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE — NIZK for NP
(assuming PKE)

Can we construct weak function-hiding single-key ABE from PKE?

Can we construct weak function-hiding single-key ABE from CCA-secure PKE?
[Converse of Naor-Yung |

Open Questions

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘ (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE — NIZK for NP
(assuming PKE)

Can we construct weak function-hiding single-key ABE from PKE?
Can we construct weak function-hiding single-key ABE from CCA-secure PKE?

Can we get reusable preprocessing NIZKs from OWFs?

Open Questions

Is there a general framework for constructing DV-NIZKs?

Weak Function- ‘ (Reusable)

Hiding (Single-Key) Designated-Verifier
ABE — NIZK for NP
(assuming PKE)

Thank you!
https://eprint.iacr.org/2019/242.pdf

