Computing with Lattices:

Commitments, Signatures, and Zero-Knowledge

David Wu
March 2020



Cryptography from Lattices

This talk
[ homomorphic NIZK ]
signatures
IBE
OWF signatures low-depth PE .
CRHF PKE oT FHE PRFs ABE constrained traitor
I I I I I I PRFs tracing
1996 2004 2008 2009 2012 2013+
[Ajt96] [Reg04] [PVWO08] [Gen09] [BPR12] [GVW13] [GVW15a] [GKW18] [K\W18]
[GPVO0S8] [BLMR13] [BGG*14] [GVW15b] [PS19]
[BV15]

Figure not drawn to scale



Computing on Encrypted Data

confidentiality for computations

pk 8 ct < Encrypt(pk, x) 1
— ;

l Decrypt(sk, ctf)

fully homomorphic encryption f(x)



Computing on Encrypted Data

confidentiality for computations

pk 8 ct < Encrypt(pk, x) 1
— ;

Security: ct hides x l Decrypt(sk, cty)
Compactness: |th| depends on |f(x)], not |x]| or |f] f(x)




Computing on Signhed Data

integrity for computations

X

sk
8 o « Sign(sk, x)
—
lVerify(vk, f,v, O'f)

fully homomorphic signatures  0/1




Computing on Signhed Data

integrity for computations

X

sk
8 o « Sign(sk, x)
—

Security: if y = f(x), cannot convince verifier of y' # f(x)

Compactness: |o;| depends on |f (x)], not |x| or |f]




The GSW FHE Scheme

[GSW13]
recall the GSW encryption scheme:

public key is an LWE matrix
(columns are LWE samples)

sTA=eT =~ 07

pk: A € Zg™™ sk: s € Zg

ciphertext for x € {0,1}:
C = AR + xG where R is random short matrix



The GSW FHE Scheme

[GSW13]

recall the GSW encryption scheme: G is the “gadget” matrix:

G=(124.,2")Q®1I, €z

G 1 ZZXR N {0,1}n€><k is
“binary decomposition”

pk: A € Zg™™

GG 1(A)=A

ciphertext for x € {0,1}:
C = AR + xG where R is random short matrix



The GSW FHE Scheme

[GSW13]
recall the GSW encryption scheme:

public key is an LWE matrix
(columns are LWE samples)

sTA=eT =~ 07

pk: A € Zg™™ sk: s € Zg

ciphertext for x € {0,1}:
C = AR + xG where R is random short matrix

decryption:
sIC=sTAR+x -s"TG~x -s'G



Homomorphic Operations in GSW

[GSW13]

Cl —_ AR1 + le Cz —_ AR2 + sz

C_|_ — Cl —+ Cz — A(Rl + Rz) + (x1 + xZ)G

Y

R,




Homomorphic Operations in GSW

[GSW13]

Cl —_ AR1 + le Cz —_ AR2 + sz

C_|_ — Cl —+ CZ — A(Rl + Rz) + (x1 + xZ)G
= AR+ + (x1 + Xz)G

Cx = C,671(C,) = AR G7(Cy) + x,C;
= A(RlG_l(Cz) + lez) + xlsz

R,



Homomorphic Operations in GSW

[GSW13]

Cl —_ AR1 + le Cz —_ AR2 + sz

C_|_ — Cl —+ CZ — A(Rl + Rz) + (x1 + xZ)G
= AR+ + (x1 + Xz)G

Cx = C,67*(C,) = AR;G7'(C;) + x,C;
= ARG 1(C,) + x{R,) + x1x,G
= AR, + x1x,G

Correctness: R, R,, x, short = R, R, also short



Homomorphic Operations in GSW

[GSW13]

Cl — AR1 T X1G

Cz — ARZ T sz
| B - AR (6

C,=AR, + x,G

“input-independent” evaluation

Crisa functionof C4, ..., C,,, f
(and independent of x)




Homomorphic Operations in GSW
[GSW13]

Cl —_ AR1 + le Cz —_ AR2 + sz

C_|_ — Cl —+ Cz — A(Rl + Rz) + (x1 + xZ)G
= AR+ + (x1 + Xz)G

There is another
CX — ClG_l(Cz) —_ A(RlG_l(Cz) + lez) + XleG
— ARX + xleG



Homomorphic Operations in GSW
[GSW13]

Cl —_ AR1 + le Cz —_ AR2 + sz

C_|_ — Cl —+ Cz — A(Rl + Rz) + (x1 + xZ)G
= AR_|_ + (x1 + XZ)G

There is another
Cx =C1G67(Cy) = ARG (Cy) + x1R,) + x1%,G
— ARX ~+ xleG

observation: R, and R, is a short linear combination of R; and R,




The BGG* Homomorphisms

[BGGHNSVV14]

Cl —_ AR1 + le CTL — ARn + an

Cr=AR;, + f(x)G where Rf,=|[Ry|"|R,]JHf,

and H; , is short

equivalently:
[ARl | | ARn]Hf,x — ARf,x

[C1 — x1G || C, —xp,G]Hf , = C; — f(X)G



The BGG* Homomorphisms

[BGGHNSVV14]

“input-independent” evaluation (given Cy, ..., Cp, f):

C,..,C,P Cf sufficient for FHE

“input-dependent” evaluation (given Cq, ..., C,,, f, x):

[C1 —x:G || €, — an]Hf,x — Cf — f(x)G

applications: input-independent input-dependent
evaluation (Ar) evaluation (H )
attribute-based encryption key-generation decryption
[BGGHNSVV14]
homomorphic signatures verification signing
[GVW15]
constrained PRFs normal evaluation constrained evaluation

[BV15]



GSW as a Homomorphic Commitment

[GVW14]

public parameters A € Zg*™ (LWE matrix)
C = AR + xG

opening
message
m (check R short)

encryption of x with randomness R

L}

commitment to x with opening R




GSW as a Homomorphic Commitment

public parameters A € Zg*™ (LWE matrix)
C = AR + xG

opening
message
m (check R short)

statistically binding: correctness of GSW (in fact, extractable)

computationally hiding: security of GSW (under LWE)

[GVW14]



GSW as a Homomorphic Commitment

[GVW14]
computing on committed values: binding:
C, =AR; +x,G adversary cannot open ¢

C, = AR; + x,G to (f,y) # (fLy")

C,=AR, + x,,G

goal: open the committed valueto y = f(x)

Openings are with respect

syntax: Open(pp, c, (f,y),1) to a value y and a
function f

pp: public parameters  (f,y): value
c: commitment r:opening



GSW as a Homomorphic Commitment

[GVW14]
computing on committed values: binding:
C, =AR; +x,G adversary cannot open ¢

C, = AR; + x,G to (f,y) # (fLy")

C,=AR, + x,,G

goal: open the committed valueto y = f(x)

Application:

syntax: Open(pp, c, (f,y),1)

pp: public parameters  (f,y): value
c: commitment r:opening

preprocessing NIZKs




GSW as a Homomorphic Commitment

[GVW14]

computing on committed values: ., mitment:

C, = AR, + x,G Cr =ARf, + f(X)G

C, = AR; + x,G ‘ Cf IS a commitment to f(x)
with opening Ry ,

C,=AR, + x,G



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values: . mitment:

C, = AR, + x,G Cr =ARf, + f(X)G
CZ — ARZ 1 sz opening:

mm)  Rr.o=[Ri ]| RyHp,

C,=AR, + x,,G

check opening by computing C; from Cy, ..., C;, (does not need to know x)
and verifying that R¢ , is small and C; = AR, + f(x)G



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values: ., mitment:

C, = AR, + x,G Cr =ARf, + f(X)G
C, = AR, + x,G opening:

mm)  Rr.o=[Ri ]| RyHp,

C,=AR, + x,G

“input-independent” evaluation (given C4, ..., C,, f):
Cy,...,Cph » Cs verification

“input-dependent” evaluation (given C4, ..., Cy, f, X):



From Commitments to Proofs

homomorphic commitments can be used to prove relations on secret values

C, < Commit(pp, x)

opening for C4 .
—)

opening can be viewed as a o
Prover “proof” on the value R(x) verifier
compute opening for Cy , to R(x) compute commitment Cy , from C,

Goal: prove that a (secret) statement x satisfies some relation R



From Commitments to NIZKs (Dream Version)

R(x,w): NP relation

common reference string

C,, < Commit(pp,w)

opening for C_,
——————————————————

prover verifier

(x,w) Ry(w) = R(x,w) X

function that depends verifier checks
only on the statement x Cr,w Opensto 1




From Commitments to NIZKs (Dream Version)

R(x,w): NP relation

C,, < Commit(pp,w)

opening for C_,
—————————————————

Zero-Knowledge (“proof hides w”):
* C,, hides w (commitment is hiding)
* Cg_w is apublic function of C,
* openingto Cg_,, might leak information about w (can be fixed)



From Commitments to NIZKs (Dream Version)

R(x,w): NP relation

C,, < Commit(pp,w)

opening for C_,
—————————————————

Soundness (for x where R,.(w) = 0 for all w):
* if C,,~ is an honestly-generated commitment to some value w*, then
Cg,,w* isa commitment to R, (w*) = 0 by correctness

 statistical soundness follows by statistical binding




From Commitments to NIZKs (Dream Version)

Open Problem: NIZK proof of well-formedness of GSW ciphertext € € Zg*™
3x € {0,1},short R € Z7**™ : C = AR + xG

Would yield direct construction of NIZK for NP (lattice “analog” of [GOS06])
e Construction makes black-box use of cryptography
(in contrast to Fiat-Shamir approach [CCHLRRW19, PS19])

Soundness (for x where R 0 for all w):
* if C,,~ is an honestly-generated commitment to some value w*, then
Cg,,w* isa commitment to R, (w*) = 0 by correctness

 statistical soundness follows by statistical binding




From Commitments to Preprocessing NIZKs
[KW18]

R(x,w): NP relation

C,, < Commit(pp,w)

opening for C_,
—————————————————

Can we still use this approach to obtain some type of NIZK?

Yes! But in a weaker “preprocessing” or “correlated randomness” model



NIZKs in the Preprocessing Model

[DMP88]

(trusted) setup algorithm generates both proving key
kp and a verification key ky (statement-independent)

prover : : prover algorithm takes proving l verifier
' key kp, NP statement x, and

NP witness w Verify(kv, X, T[)



NIZKs in the Preprocessing Model

simpler than CRS model:

soundness holds assuming ky, is hidden
zero-knowledge holds assuming kp is hidden

[DMP88]

main requirement:
reusability

suffices for many
applications of NIZKs

CRS model: kp and ky,

are both public




From Commitments to Preprocessing NIZKs
[KW18]

kP — (CW, Rw)

openings

challenge: proving that C,, is a valid commitment

solution: have a trusted party generate it!



From Commitments to Preprocessing NIZKs
[KW18]

kP — (CW, Rw)

openings

opening for C_,
————————————————————

problem: preprocessing is withess-dependent

solution: add a layer of indirection



From Commitments to Preprocessing NIZKs
[KW18]

prover is given commitment
and opening to an encryption key k

solution: add a layer of indirection



From Commitments to Preprocessing NIZKs
[KW18]

solution: add a layer of indirection



From Commitments to Preprocessing NIZKs
[KW18]

fx,ct(k) — R(X, Decrypt(k, Ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witness w]

solution: add a layer of indirection



From Commitments to Preprocessing NIZKs
[KW18]

fx,ct(k) — R(X, Decrypt(k, Ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witness w]

verifier computes C¢__ , from (x, ct, C) and
checks that it opensto 1



From Commitments to Preprocessing NIZKs
[KW18]

fx,ct(k) — R(X, Decrypt(k, Ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witness w]

Soundness:  Cf__  isa commitment on f, (k) = 0 for all k and a false x;
soundness follows by statistical binding of commitment scheme



From Commitments to Preprocessing NIZKs
[KW18]

fx,ct(k) — R(X, Decrypt(k, Ct))
[Checks that ct encrypts a valid witness]

ct « Encrypt(k, w)
[ctis an encryption of the witness w]

Zero-Knowledge: commitment + opening hide k and encryption scheme hides w



From Commitments to Preprocessing NIZKs

[KW18]

can be entirely public!

ky = Cx

Verity(ky, x, )

designated-prover NIZK from homomorphic commitments (under LWE)




From Commitments to Preprocessing NIZKs

[KW18]

can be entirely public!

ky = Cx

Using homomorphic commitments to construct

correlation-intractable hash functions =
full NIZKs for NP from LWE [PS19]!

Verity(ky, x, )

designated-prover NIZK from homomorphic commitments (under LWE)




Back to Homomorphic Commitments

[GVW14]

computing on committed values: ., mitment:

C, = AR, + x,G Cr =ARf, + f(X)G
C. = AR + -G opening:
27T TR ey Ry =Ry || RylH

Cn, = AR, + x,G Requirement (for ZK): openings hides

x up to what is revealed by f(x)
(“context-hiding”)

not true as written since R¢ ,, leaks information about R4, ..., Ry,



Back to Homomorphic Commitments

[GVW14]

computing on committed values: ., mitment:

C, = AR, + x,G Cr =ARf, + f(X)G
C. = AR + -G opening:
27T TR ey Ry =Ry || RylH

Cn, = AR, + x,G Requirement (for ZK): openings hides

x up to what is revealed by f(x)
(“context-hiding”)

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Another Ingredient: Lattice Trapdoors
[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]

gadget trapdoors [MP12]

I
I

random matrix 4 (trapdoor) R gadget matrix G

short matrix



Another Ingredient: Lattice Trapdoors
[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]

gadget trapdoors [MP12]

short R suchthat AR = G

enables preimage sampling for SIS:
o let fu(x) == Ax
* givenu = f4(x) and R, can sample short x" where
falx') =u

and x’ is Gaussian-distributed



Another Ingredient: Lattice Trapdoors
[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]

suppose A = [A4|A4,]

two possible trapdoors:
* if Ry istrapdoor for A{,then A{R, = G and

[A1‘A2 [ ] G simulation
* ifA, = AR, + G forshort R,, then
[4,14,] - [*F2] = ¢ real

two statistically-indistinguishable ways to sample f; *(u)



Context-Hiding for Commitments

[GVW14]

computing on committed values: ., mitment:

C, = AR, + x,G Cr =ARf, + f(X)G
CZ — ARZ 1 sz opening:

mm)  Rr.o=[Ri ]| RyHp,

C,=AR, + x,,G

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Context-Hiding for Commitments

[GVW14]
for simplicity: only support openingsto f(x) =1 commitment:
suffices for zefo-knowledge .
(can consider f, f more generally) opening:

Rf,x — [Rl K Rn]Hf,x

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Context-Hiding for Commitments

[GVW14]

for simplicity: only support openingsto f(x) =1 commitment:

opening can be used to obtain trapdoor for Cf o ARf;x + f(X')G
[A| Cs] = [A| ARy, + G] opening:

Rf,x — [Rl K Rn]Hf,x

if simulator chooses A, if commitments are

can choose 4 with well-formed, committer
trapdoor also has trapdoor

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Context-Hiding for Commitments

[GVW14]

for simplicity: only support openingsto f(x) =1 commitment:

opening can be used to obtain trapdoor for Cf o ARf;x + f(X')G
[A| Cs] = [A| ARy, + G] opening:

R, =[R,||R,H
idea: include random target vector u in public f’x [ 1 | | TL] f'x
parameters

opening: short vector v such that
[A| Cslv=u

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Context-Hiding for Commitments

[GVW14]
real scheme: to simulate:
public parameters: public parameters:
* LWE matrix 4  sample A with trapdoor R
 sample randomu * sample randomu LWE
commitments: commitments:
« C; < AR; + x;G « sample random matrices C; LHL
opening: opening:
* compute Cy fromC4, ..., C, * compute Cy fromCq,...,C,
 sample short v such that  sample short v such that
A CGlv=u [A] Celv =u sampling
using Re, < [Ry |-+ | Ry[Hf using R

Context-Hiding: public parameters A, commitments C4, ..., C,, and opening
R; , can be simulated given only (f,f(x))



Dual-Mode Homomorphic Commitments
[GVW14]

public parameters A € Zg*™ (LWE matrix)
C = AR + xG

opening
message
m (check R short)

statistically binding: correctness of GSW (in fact, extractable)

computationally hiding: security of GSW (under LWE)



Dual-Mode Homomorphic Commitments
[GVW14]

public parameters A € Z7*™ ( )
C = AR + xG

opening
message
m (check R short)

statistically hiding: leftover hash lemma (in fact, equivocable)

computational binding: switch A to LWE matrix



Homomorphic Signatures

[GVW14]

public parameters A € Z7*™ ( )
C = AR + xG

ublic i
P signature message
parameters (check R short)

equivocation = signature




Homomorphic Signatures

[GVW14]

public parameters A € Z7*™ ( )
C = AR + xG

ublic i
P signature message
parameters (check R short)

verification key: random A4,C4, ..., C,

signing key: trapdoor for A



Homomorphic Signatures

vk: A,C4, ...,C,, € Z’C’lem
sk: trapdoor for A

sighature on x € {0,1}":
short Ry, ..., R, € Z7*™
where Ci = ARl + Xl'G

compute f on signatures:
Rf,x = [Ry || Rn]Hf,x

[GVW14]
verify signature R on (f,f(x))
C,...C, [V Cs
check AR + f(x)G = C¢

unforgeability follows from binding
property of the commitment scheme



Summary

GSW ciphertexts:
Ci — ARl —+ XiG
“input-independent” evaluation (given C4, ..., C,,, f):
Cl’ neny C’I’l = Cf

“input-dependent” evaluation (given Cy, ..., Cy,, f, X):

[C; —x,G | | Cp — %, G]Hf , = C; — f(X)G

A is LWE matrix = extractable commitments
A is uniform = equivocable commitments (homomorphic signatures)
homomorphic commitments/signatures = designated-prover NIZKs



Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

Rf,x — [Rl | | Rn]Hf,x

||Hf’x|| scales with exponentially in

the depth d of the function f, so
modulus g > 29(@)




Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

Rf,x — [Rl | | Rn]Hf,x

Short public parameters without random oracles?

Thank you!



