
Computing with Lattices:
Commitments, Signatures, and Zero-Knowledge

David Wu

March 2020



Cryptography from Lattices

OWF

[Ajt96]

1996 2004

PKE

[Reg04]

2008

IBE

[GPV08]

signatures
CRHF OT

[PVW08]

low-depth
PRFsFHE ABE

homomorphic
signatures

NIZK

traitor
tracing

[Gen09] [GVW13]

[BGG+14] [PS19]

[GKW18]

[GVW15b]

[GVW15a][BPR12]

[BLMR13]

20122009 2013+

Figure not drawn to scale

PE

This talk

[BV15]

constrained
PRFs

[KW18]



Computing on Encrypted Data

confidentiality for computations

fully homomorphic encryption

ct ← Encrypt pk, 𝑥
pk sk

ct𝑓

ct𝑓 ← Eval 𝑓, ct

Decrypt sk, ct𝑓

𝑓(𝑥)



Computing on Encrypted Data

confidentiality for computations

fully homomorphic encryption

ct ← Encrypt pk, 𝑥
pk sk

ct𝑓

ct𝑓 ← Eval 𝑓, ct

Decrypt sk, ct𝑓

𝑓(𝑥)
Security: ct hides 𝑥

Compactness: ct𝑓 depends on 𝑓 𝑥 , not 𝑥 or 𝑓



Computing on Signed Data

integrity for computations

fully homomorphic signatures

𝜎 ← Sign sk, 𝑥
sk vk

𝑓, 𝑦, 𝜎𝑓

𝑦 ← 𝑓(𝑥)
𝜎𝑓 ← Eval 𝑓, 𝜎

𝑥

0/1

Verify vk, 𝑓, 𝑦, 𝜎𝑓



Computing on Signed Data

integrity for computations

𝜎 ← Sign sk, 𝑥
sk vk

𝑓, 𝑦, 𝜎𝑓

𝑦 ← 𝑓(𝑥)
𝜎𝑓 ← Eval 𝑓, 𝜎

𝑥

Verify vk, 𝑓, 𝑦, 𝜎𝑓

0/1
Security: if 𝑦 = 𝑓(𝑥), cannot convince verifier of 𝑦′ ≠ 𝑓(𝑥)

Compactness: 𝜎𝑓 depends on 𝑓 𝑥 , not 𝑥 or 𝑓



The GSW FHE Scheme

recall the GSW encryption scheme:

pk: 𝑨 ∈ ℤ𝑞
𝑛×𝑚 sk: 𝒔 ∈ ℤ𝑞

𝑛

𝒔𝑇𝑨 = 𝒆𝑇 ≈ 𝟎𝑇

ciphertext for 𝑥 ∈ 0,1 :

𝑪 = 𝑨𝑹 + 𝑥𝑮

෩𝑨

෤𝒔𝑇෩𝑨 + 𝒆𝑇

public key is an LWE matrix
(columns are LWE samples)

where 𝑹 is random short matrix

[GSW13]



The GSW FHE Scheme

recall the GSW encryption scheme:

pk: 𝑨 ∈ ℤ𝑞
𝑛×𝑚 sk: 𝒔 ∈ ℤ𝑞

𝑛

ciphertext for 𝑥 ∈ 0,1 :

𝑪 = 𝑨𝑹 + 𝑥𝑮

෩𝑨

෤𝒔𝑇෩𝑨 + 𝒆𝑇

where 𝑹 is random short matrix

𝑮 is the “gadget” matrix:

𝑮 = 1,2,4,… , 2ℓ ⊗ 𝑰𝑛 ∈ ℤ𝑞
𝑛×𝑛ℓ

𝑮−1: ℤ𝑞
𝑛×𝑘 → 0,1 𝑛ℓ×𝑘 is

“binary decomposition”

𝑮𝑮−1 𝑨 = 𝑨

[GSW13]



The GSW FHE Scheme

recall the GSW encryption scheme:

pk: 𝑨 ∈ ℤ𝑞
𝑛×𝑚 sk: 𝒔 ∈ ℤ𝑞

𝑛

𝒔𝑇𝑨 = 𝒆𝑇 ≈ 𝟎𝑇

ciphertext for 𝑥 ∈ 0,1 :

𝑪 = 𝑨𝑹 + 𝑥𝑮

decryption:

𝒔𝑻𝑪 = 𝒔𝑇𝑨𝑹 + 𝑥 ⋅ 𝒔𝑇𝑮 ≈ 𝑥 ⋅ 𝒔𝑇𝑮

෩𝑨

෤𝒔𝑇෩𝑨 + 𝒆𝑇

public key is an LWE matrix
(columns are LWE samples)

where 𝑹 is random short matrix

[GSW13]



Homomorphic Operations in GSW

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪+ = 𝑪1 + 𝑪2 = 𝑨(𝑹1 + 𝑹2) + (𝑥1 + 𝑥2)𝑮

𝑹+

[GSW13]



Homomorphic Operations in GSW

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪+ = 𝑪1 + 𝑪2 = 𝑨(𝑹1 + 𝑹2) + (𝑥1 + 𝑥2)𝑮

[GSW13]

= 𝑨𝑹+ + (𝑥1 + 𝑥2)𝑮

𝑪× = 𝑪1𝑮
−1 𝑪2 = 𝑨𝑹1𝑮

−1 𝑪2 + 𝑥1𝑪2

= 𝑨 𝑹1𝑮
−1 𝑪2 + 𝑥1𝑹2 + 𝑥1𝑥2𝑮

𝑹×



Homomorphic Operations in GSW

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪+ = 𝑪1 + 𝑪2 = 𝑨(𝑹1 + 𝑹2) + (𝑥1 + 𝑥2)𝑮

[GSW13]

= 𝑨𝑹+ + (𝑥1 + 𝑥2)𝑮

𝑪× = 𝑪1𝑮
−1 𝑪2 = 𝑨𝑹1𝑮

−1 𝑪2 + 𝑥1𝑪2

= 𝑨 𝑹1𝑮
−1 𝑪2 + 𝑥1𝑹2 + 𝑥1𝑥2𝑮

= 𝑨𝑹× + 𝑥1𝑥2𝑮

Correctness: 𝑹1, 𝑹2, 𝑥1 short ⇒𝑹+, 𝑹× also short



Homomorphic Operations in GSW

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

[GSW13]

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮
𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓(𝑥)𝑮

“input-independent” evaluation

𝑪𝑓 is a function of 𝑪1, … , 𝑪𝑛, 𝑓

(and independent of 𝑥)



Homomorphic Operations in GSW

𝑪+ = 𝑪1 + 𝑪2 = 𝑨(𝑹1 + 𝑹2) + (𝑥1 + 𝑥2)𝑮

= 𝑨𝑹+ + (𝑥1 + 𝑥2)𝑮

𝑪× = 𝑪1𝑮
−1 𝑪2 = 𝑨 𝑹1𝑮

−1 𝑪2 + 𝑥1𝑹2 + 𝑥1𝑥2𝑮

= 𝑨𝑹× + 𝑥1𝑥2𝑮

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

[GSW13]



Homomorphic Operations in GSW

𝑪+ = 𝑪1 + 𝑪2 = 𝑨(𝑹1 + 𝑹2) + (𝑥1 + 𝑥2)𝑮

= 𝑨𝑹+ + (𝑥1 + 𝑥2)𝑮

𝑪× = 𝑪1𝑮
−1 𝑪2 = 𝑨 𝑹1𝑮

−1 𝑪2 + 𝑥1𝑹2 + 𝑥1𝑥2𝑮

= 𝑨𝑹× + 𝑥1𝑥2𝑮

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

observation: 𝑹+ and 𝑹× is a short linear combination of 𝑹1 and 𝑹2

[GSW13]



The BGG+ Homomorphisms

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮 𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝒇 𝑥 𝑮 where 𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

⋯

equivalently:

𝑨𝑹1 ⋯ 𝑨𝑹𝑛 𝑯𝑓,𝑥 = 𝑨𝑹𝑓,𝑥

𝑪1 − 𝑥1𝑮 ⋯ 𝑪𝑛 − 𝑥𝑛𝑮 𝑯𝑓,𝑥 = 𝑪𝑓 − 𝑓 𝑥 𝑮

and 𝑯𝑓,𝑥 is short

[BGGHNSVV14]



The BGG+ Homomorphisms

“input-independent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓):

𝑪1, … , 𝑪𝑛 ↦ 𝑪𝑓

“input-dependent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓, 𝑥):

𝑪1 − 𝑥1𝑮 ⋯ 𝑪𝒏 − 𝑥𝑛𝑮 𝑯𝑓,𝑥 = 𝑪𝑓 − 𝑓 𝑥 𝑮

sufficient for FHE

[BGGHNSVV14]

applications:

attribute-based encryption

homomorphic signatures

constrained PRFs

input-independent
evaluation (𝑨𝑓)

input-dependent
evaluation (𝑯𝑓,𝑥)

key-generation decryption

verification signing

normal evaluation constrained evaluation

[BGGHNSVV14]

[GVW15]

[BV15]



GSW as a Homomorphic Commitment
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮
commitment messageopening

(check 𝑹 short)

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (LWE matrix)

encryption of 𝑥 with randomness 𝑅

commitment to 𝑥 with opening 𝑅



GSW as a Homomorphic Commitment
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮
commitment message

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (LWE matrix)

statistically binding: correctness of GSW (in fact, extractable)

computationally hiding: security of GSW (under LWE)

opening
(check 𝑹 short)



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

goal: open the committed value to 𝑦 = 𝑓 𝑥

syntax: Open pp, 𝑐, (𝑓, 𝑦), 𝑟

pp: public parameters
𝑐: commitment

(𝑓, 𝑦): value
𝑟: opening

binding:

adversary cannot open 𝑐
to (𝑓, 𝑦) ≠ (𝑓, 𝑦′)

Openings are with respect 
to a value 𝑦 and a 

function 𝑓



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

pp: public parameters
𝑐: commitment

binding:

Application:
preprocessing NIZKs

goal: open the committed value to 𝑦 = 𝑓 𝑥

syntax: Open pp, 𝑐, (𝑓, 𝑦), 𝑟

(𝑓, 𝑦): value
𝑟: opening

adversary cannot open 𝑐
to (𝑓, 𝑦) ≠ (𝑓, 𝑦′)



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮
𝑪𝑓 is a commitment to 𝑓 𝑥

with opening 𝑹𝑓,𝑥

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮
commitment:



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

check opening by computing 𝑪𝑓 from 𝑪1, … , 𝑪𝑛 (does not need to know 𝑥)

and verifying that 𝑹𝑓,𝑥 is small and 𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:



GSW as a Homomorphic Commitment
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

“input-independent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓):

𝑪1, … , 𝑪𝑛 ↦ 𝑪𝑓

“input-dependent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓, 𝑥):

𝑪1 − 𝑥1𝑮 ⋯ 𝑪𝒏 − 𝑥𝑛𝑮 𝑯𝑓,𝑥 = 𝑪𝑓 − 𝑓 𝑥 𝑮

verification

evaluation

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:



From Commitments to Proofs

homomorphic commitments can be used to prove relations on secret values

prover verifier

𝐶𝑥 ← Commit(pp, 𝑥)

compute opening for 𝐶ℛ,𝑥 to ℛ(𝑥)

opening for 𝐶ℛ,𝑥

opening can be viewed as a 
“proof” on the value ℛ(𝑥)

compute commitment 𝐶ℛ,𝑥 from 𝐶𝑥

Goal: prove that a (secret) statement 𝑥 satisfies some relation ℛ



From Commitments to NIZKs (Dream Version)

ℛ 𝑥,𝑤 : NP relation

prover verifier

𝐶𝑤 ← Commit(pp, 𝑤)

opening for 𝐶ℛ𝑥,𝑤

(𝑥, 𝑤) 𝑥ℛ𝑥 𝑤 ≔ ℛ(𝑥, 𝑤)

function that depends 
only on the statement 𝑥

common reference string

verifier checks
𝐶ℛ𝑥,𝑤 opens to 1



From Commitments to NIZKs (Dream Version)

ℛ 𝑥,𝑤 : NP relation

𝐶𝑤 ← Commit(pp, 𝑤)

opening for 𝐶ℛ𝑥,𝑤

Zero-Knowledge (“proof hides 𝑤”):
• 𝐶𝑤 hides 𝑤 (commitment is hiding)
• 𝐶ℛ𝑥,𝑤 is a public function of 𝐶𝑤
• opening to 𝐶ℛ𝑥,𝑤 might leak information about 𝑤 (can be fixed)



From Commitments to NIZKs (Dream Version)

ℛ 𝑥,𝑤 : NP relation

𝐶𝑤 ← Commit(pp, 𝑤)

opening for 𝐶ℛ𝑥,𝑤

Soundness (for 𝑥 where ℛ𝑥 𝑤 = 0 for all 𝑤):
• if 𝐶𝑤∗ is an honestly-generated commitment to some value 𝑤∗, then 
𝐶ℛ𝑥,𝑤

∗ is a commitment to ℛ𝑥 𝑤∗ = 0 by correctness

• statistical soundness follows by statistical binding



From Commitments to NIZKs (Dream Version)

Soundness (for 𝑥 where ℛ𝑥 𝑤 = 0 for all 𝑤):
• if 𝐶𝑤∗ is an honestly-generated commitment to some value 𝑤∗, then 
𝐶ℛ𝑥,𝑤

∗ is a commitment to ℛ𝑥 𝑤∗ = 0 by correctness

• statistical soundness follows by statistical binding

Open Problem: NIZK proof of well-formedness of GSW ciphertext 𝑪 ∈ ℤ𝑞
𝑛×𝑚

∃𝑥 ∈ 0,1 , short 𝑹 ∈ ℤ𝑞
𝑚×𝑚 ∶ 𝑪 = 𝑨𝑹 + 𝑥𝑮

Would yield direct construction of NIZK for NP (lattice “analog” of [GOS06])
• Construction makes black-box use of cryptography

(in contrast to Fiat-Shamir approach [CCHLRRW19, PS19])



From Commitments to Preprocessing NIZKs

ℛ 𝑥,𝑤 : NP relation

𝐶𝑤 ← Commit(pp, 𝑤)

opening for 𝐶ℛ𝑥,𝑤

[KW18]

Can we still use this approach to obtain some type of NIZK?

Yes! But in a weaker “preprocessing” or “correlated randomness” model



NIZKs in the Preprocessing Model

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉

(trusted) setup algorithm generates both proving key 
𝑘𝑃 and a verification key 𝑘𝑉 (statement-independent)

[DMP88]

Verify(𝑘𝑉 , 𝑥, 𝜋)

prover algorithm takes proving 
key 𝑘𝑃, NP statement 𝑥, and 

NP witness 𝑤

prover verifier



NIZKs in the Preprocessing Model
[DMP88]

simpler than CRS model:
• soundness holds assuming 𝑘𝑉 is hidden
• zero-knowledge holds assuming 𝑘𝑃 is hidden

CRS model: 𝑘𝑃 and 𝑘𝑉
are both public

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉
main requirement: 

reusability

suffices for many 
applications of NIZKs



From Commitments to Preprocessing NIZKs

𝐶𝑤 ← Commit(pp, 𝑤)

opening for 𝐶ℛ𝑥,𝑤

[KW18]

challenge: proving that 𝐶𝑤 is a valid commitment

solution: have a trusted party generate it!

𝑘𝑃 = 𝐶𝑤, 𝑅𝑤 𝑘𝑉 = 𝐶𝑤

openings



From Commitments to Preprocessing NIZKs

opening for 𝐶ℛ𝑥,𝑤

[KW18]

problem: preprocessing is witness-dependent

𝑘𝑃 = 𝐶𝑤, 𝑅𝑤 𝑘𝑉 = 𝐶𝑤

openings

solution: add a layer of indirection



From Commitments to Preprocessing NIZKs
[KW18]

solution: add a layer of indirection

𝑘, 𝐶𝑘 , 𝑅𝑘 prover is given commitment
and opening to an encryption key 𝑘



From Commitments to Preprocessing NIZKs
[KW18]

solution: add a layer of indirection

𝑘, 𝐶𝑘 , 𝑅𝑘 𝐶𝑘verifier given commitment to 𝑘



From Commitments to Preprocessing NIZKs
[KW18]

solution: add a layer of indirection

𝑘, 𝐶𝑘 , 𝑅𝑘 𝐶𝑘

𝑤
𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

opening for 𝐶𝑓𝑥,ct,𝑘

𝑓𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]



From Commitments to Preprocessing NIZKs
[KW18]

𝑘, 𝐶𝑘 , 𝑅𝑘 𝐶𝑘

𝑤
𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

𝑓𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

opening for 𝐶𝑓𝑥,ct,𝑘

verifier computes 𝐶𝑓𝑥,ct,𝑘 from 𝑥, ct, 𝐶𝑘 and

checks that it opens to 1



From Commitments to Preprocessing NIZKs
[KW18]

𝑘, 𝐶𝑘 , 𝑅𝑘 𝐶𝑘

𝑤
𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

𝑓𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

opening for 𝐶𝑓𝑥,ct,𝑘

Soundness: 𝐶𝑓𝑥,ct,𝑘 is a commitment on 𝑓𝑥,ct 𝑘 = 0 for all 𝑘 and a false 𝑥;

soundness follows by statistical binding of commitment scheme



From Commitments to Preprocessing NIZKs
[KW18]

𝑘, 𝐶𝑘 , 𝑅𝑘 𝐶𝑘

𝑤
𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

𝑓𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

opening for 𝐶𝑓𝑥,ct,𝑘

Zero-Knowledge: commitment + opening hide 𝑘 and encryption scheme hides 𝑤



From Commitments to Preprocessing NIZKs
[KW18]

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 = 𝑘, 𝐶𝑘 , 𝑅𝑘

Verify(𝑘𝑉 , 𝑥, 𝜋)
designated-prover NIZK from homomorphic commitments (under LWE)

𝑘𝑉 = 𝐶𝑘

can be entirely public!



From Commitments to Preprocessing NIZKs
[KW18]

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 = 𝑘, 𝐶𝑘 , 𝑅𝑘

Verify(𝑘𝑉 , 𝑥, 𝜋)
designated-prover NIZK from homomorphic commitments (under LWE)

𝑘𝑉 = 𝐶𝑘

can be entirely public!

Using homomorphic commitments to construct 
correlation-intractable hash functions ⇒

full NIZKs for NP from LWE [PS19]!



Back to Homomorphic Commitments
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

Requirement (for ZK): openings hides 
𝑥 up to what is revealed by 𝑓 𝑥

(“context-hiding”)

not true as written since 𝑹𝑓,𝑥 leaks information about 𝑹1, … , 𝑹𝑛

commitment:

opening:



Back to Homomorphic Commitments
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

Requirement (for ZK): openings hides 
𝑥 up to what is revealed by 𝑓 𝑥

(“context-hiding”)

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥

commitment:

opening:



Another Ingredient: Lattice Trapdoors

𝑨

𝑹

𝑮

random matrix 𝑨
short matrix
(trapdoor) 𝑹

gadget matrix 𝑮

gadget trapdoors [MP12]

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]



Another Ingredient: Lattice Trapdoors

gadget trapdoors [MP12]

short 𝑹 such that 𝑨𝑹 = 𝑮

enables preimage sampling for SIS:
• let 𝑓𝑨 𝒙 ≔ 𝑨𝒙
• given 𝒖 = 𝑓𝑨 𝒙 and 𝑹, can sample short 𝒙′ where

𝑓𝑨 𝒙′ = 𝒖
and 𝒙′ is Gaussian-distributed

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]



Another Ingredient: Lattice Trapdoors

suppose 𝑨 = 𝑨1 𝑨2

[Ajt99, GPV08, AP09, CHKP10, MP12, LW15]

two possible trapdoors:
• if 𝑹1 is trapdoor for 𝑨1, then 𝑨1𝑹1 = 𝑮 and

𝑨1ห𝑨2 ⋅
𝑹1
𝟎

= 𝑮

• if 𝑨2 = 𝑨1𝑹2 ± 𝑮 for short 𝑹2, then

𝑨1ȁ𝑨2 ⋅
∓𝑹2

𝑰
= 𝑮

two statistically-indistinguishable ways to sample 𝑓𝑨
−1(𝒖)

real

simulation



Context-Hiding for Commitments
[GVW14]

computing on committed values:

𝑪1 = 𝑨𝑹1 + 𝑥1𝑮

𝑪2 = 𝑨𝑹2 + 𝑥2𝑮

𝑪𝑛 = 𝑨𝑹𝑛 + 𝑥𝑛𝑮

⋮

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥



Context-Hiding for Commitments
[GVW14]

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥

for simplicity: only support openings to 𝑓 𝑥 = 1

suffices for zero-knowledge
(can consider 𝑓, ҧ𝑓 more generally)



Context-Hiding for Commitments
[GVW14]

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥

opening can be used to obtain trapdoor for
𝑨 𝑪𝑓] = 𝑨 𝑨𝑹𝑓,𝑥 + 𝑮]

if simulator chooses 𝑨, 
can choose 𝑨 with 

trapdoor 

if commitments are 
well-formed, committer 

also has trapdoor

for simplicity: only support openings to 𝑓 𝑥 = 1



Context-Hiding for Commitments
[GVW14]

𝑪𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

commitment:

opening:

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥

opening can be used to obtain trapdoor for
𝑨 𝑪𝑓] = 𝑨 𝑨𝑹𝑓,𝑥 + 𝑮]

idea: include random target vector 𝒖 in public 
parameters

opening: short vector 𝒗 such that
𝑨 𝑪𝑓]𝒗 = 𝒖

for simplicity: only support openings to 𝑓 𝑥 = 1



Context-Hiding for Commitments
[GVW14]

Context-Hiding: public parameters 𝑨, commitments 𝑪1, … , 𝑪𝑛 and opening 

𝑹𝑓,𝑥 can be simulated given only 𝑓, 𝑓 𝑥

to simulate:

public parameters:
• sample 𝑨 with trapdoor 𝑹
• sample random 𝒖

commitments:
• sample random matrices 𝑪𝑖

opening:
• compute 𝑪𝑓 from 𝑪1, … , 𝑪𝑛
• sample short 𝒗 such that

𝑨 𝑪𝑓]𝒗 = 𝒖

using 𝑹

real scheme:

public parameters:
• LWE matrix 𝑨
• sample random 𝒖

commitments:
• 𝑪𝑖 ← 𝑨𝑹𝑖 + 𝑥𝑖𝑮

opening:
• compute 𝑪𝑓 from 𝑪1, … , 𝑪𝑛
• sample short 𝒗 such that

𝑨 𝑪𝑓]𝒗 = 𝒖

using 𝑹𝑓,𝑥 ← 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

LWE

sampling

LHL



Dual-Mode Homomorphic Commitments
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮
commitment message

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (LWE matrix)

statistically binding: correctness of GSW (in fact, extractable)

computationally hiding: security of GSW (under LWE)

opening
(check 𝑹 short)



Dual-Mode Homomorphic Commitments
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮
commitment message

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (uniformly random)

statistically hiding: leftover hash lemma (in fact, equivocable)

computational binding: switch 𝑨 to LWE matrix

opening
(check 𝑹 short)



Homomorphic Signatures
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (uniformly random)

public 
parameters

messagesignature
(check 𝑹 short)

equivocation ⇒ signature



Homomorphic Signatures
[GVW14]

𝑪 = 𝑨𝑹 + 𝑥𝑮
public 

parameters
messagesignature

(check 𝑹 short)

public parameters 𝑨 ∈ ℤ𝑞
𝑛×𝑚 (uniformly random)

verification key: random 𝑨, 𝑪1, … , 𝑪𝑛

signing key: trapdoor for 𝑨



Homomorphic Signatures
[GVW14]

vk: 𝑨, 𝑪1, … , 𝑪𝑛 ∈ ℤ𝑞
𝑛×𝑚

sk: trapdoor for 𝑨

signature on 𝑥 ∈ 0,1 𝑛:

short 𝑹1, … , 𝑹𝑛 ∈ ℤ𝑞
𝑛×𝑚

where 𝑪𝑖 = 𝑨𝑹𝑖 + 𝑥𝑖𝑮

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

compute 𝑓 on signatures:

verify signature 𝑹 on 𝑓, 𝑓 𝑥

𝑪1, … , 𝑪𝑛, 𝑓 ↦ 𝑪𝑓

check 𝑨𝑹 + 𝑓 𝑥 𝑮 = 𝑪𝑓

unforgeability follows from binding
property of the commitment scheme



Summary

𝑪𝑖 = 𝑨𝑹𝑖 + 𝑥𝑖𝑮
GSW ciphertexts:

“input-independent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓):

𝑪1, … , 𝑪𝑛 ↦ 𝑪𝑓

“input-dependent” evaluation (given 𝑪1, … , 𝑪𝑛, 𝑓, 𝑥):

𝑪1 − 𝑥1𝑮 ⋯ 𝑪𝑛 − 𝑥𝑛𝑮 𝑯𝑓,𝑥 = 𝑪𝑓 − 𝑓 𝑥 𝑮

𝑨 is LWE matrix ⇒ extractable commitments
𝑨 is uniform ⇒ equivocable commitments (homomorphic signatures)
homomorphic commitments/signatures ⇒ designated-prover NIZKs



Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

𝐻𝑓,𝑥 scales with exponentially in 

the depth 𝑑 of the function 𝑓, so 

modulus 𝑞 > 2𝑂 𝑑



Open Questions

NIZK proof of well-formedness of GSW ciphertexts?

Fully homomorphic commitments/signatures from lattices?

𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹𝑛 𝑯𝑓,𝑥

Thank you!

Short public parameters without random oracles?


