
Order-Revealing Encryption:
Definitions, Constructions, and Challenges

David Wu



Searching on Encrypted Data

Database breaches have 
become the norm rather 

than the exception

[Data taken from Vigilante.pw]



Searching on Encrypted Data

Database breaches have 
become the norm rather 

than the exception
2 days ago!



Why Not Encrypt?

Database breaches have 
become the norm rather 

than the exception

“Because it would have hurt Yahoo’s 
ability to index and search messages 

to provide new user services”
– Jeff Bonforte (Yahoo SVP)

2 days ago!



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Any client (e.g., web client, 
employee) who hold a secret 
key can query the database

encrypted database

Searching on Encrypted Data

sk

Can we construct an encryption scheme that still supports 
searching over encrypted data?



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Any client (e.g., web client, 
employee) who hold a secret 
key can query the database

encrypted database

Searching on Encrypted Data

sk

Can we construct an encryption scheme that still supports 
searching over encrypted data?

This talk: focus will be on
range queries



Order-Preserving Encryption (OPE)
[BCLO09, BCO11]

ct𝑥 = Enc(sk, 𝑥) ct𝑦 = Enc(sk, 𝑦)

Secret-key encryption scheme

ct𝑥 ≥ ct𝑦𝑥 ≥ 𝑦

Impose additional structural requirement on ciphertexts:
ciphertexts themselves preserve the ordering



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Searching on Encrypted Data

ID Name Age Zip Code

0

1

2

3

Alice

Bob

Emily

Jeff

31

47

41

45

68107

60015

38655

46304

Encrypt each column with an OPE 
scheme (with different keys)

Encrypted values preserve the ordering, so server can 
still sort and perform range queries on encrypted values



Defining Security

Starting point: Semantic security (IND-CPA)

Semantic security: Adversary cannot guess 𝑏
(except with probability negligibly close to 1/2)

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

Challenger Adversary



Best-Possible Security for OPE

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

Must impose restriction on messages: otherwise trivial to 
break semantic security using comparison operator

[BCLO09, BCO11]



Best-Possible Security for OPE

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

∀𝑖, 𝑗: 𝑚0
𝑖
< 𝑚0

𝑗
⟺𝑚1

𝑖
< 𝑚1

𝑗

[BCLO09, BCO11]



Best-Possible Security for OPE

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

Order of “left” set of messages same
as order of “right” set of messages

[BCLO09, BCO11]



Best-Possible Security for OPE
[BCLO09, BCO11]

Best-possible notion of security is difficult to achieve for OPE

• [BCLO09]: If message space is 𝑀 and ciphertext space is 𝑁 , then

best-possible security requires 𝑁 > 2Ω 𝑀

ciphertext length scales linearly in the size of plaintext space

• [LW16]: If message space is 𝑀 for 𝑀 > 3 and ciphertext space is 𝑁 ,

then best-possible security requires 𝑁 > 22
𝜔 log 𝜆

ciphertext length is super-polynomial in security parameter

Both lower bounds exploit the fact that ciphertexts
preserve the natural ordering over the integers



Alternative Security Definitions

Order-preserving encryption (OPE) [BCLO09, BCO11]:
• No “best-possible” security, so instead, compare with 

random order-preserving function (ROPF)

Encryption function implements a 
random order-preserving function

domain range



Alternative Security Definitions

domain range

ROPF is an “ideal” order-preserving 
primitive – security definition similar 

in flavor to PRF security

Encryption function implements a 
random order-preserving function



OPE Security
[BCLO09, BCO11]

domain range

Disadvantage: Difficult to completely 
characterize what is hidden by a random 
order-preserving function
• Each ciphertext roughly reveals half of the most 

significant bits
• Each pair of ciphertexts roughly reveals half of 

the most significant bits of their difference

Advantage: Meaningful security definition 
that admits efficient constructions (based 
on just PRFs)

Big gap compared to best-possible security!



Order-Revealing Encryption (ORE)

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦
Public comparison 

function for ciphertexts

[BCO11, BLRSZZ15]

Insight: Allow ciphertexts to 
have arbitrary structure and just 
require a “comparison” function 

(e.g., functional encryption)

Lower bounds on best-possible security leverage the fact that 
ciphertexts preserve the natural ordering over the integers

(also called efficiently orderable encryption)



Order-Revealing Encryption (ORE)

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦
Public comparison 

function for ciphertexts

[BCO11, BLRSZZ15]

Server can still use public 
comparison function to 

compare ciphertexts and 
support range queries

Lower bounds on best-possible security leverage the fact that 
ciphertexts preserve the natural ordering over the integers

(also called efficiently orderable encryption)



Order-Revealing Encryption (ORE)

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

[BCO11, BLRSZZ15]

Server can still use public 
comparison function to 

compare ciphertexts and 
support range queries

Possible to achieve best-
possible security, but 

constructions rely on multilinear 
maps or obfuscation…

Lower bounds on best-possible security leverage the fact that 
ciphertexts preserve the natural ordering over the integers

(also called efficiently orderable encryption)



The Landscape of ORE

Security

Pe
rf

o
rm

an
ce

Not drawn to scale

Theoretical

Practical
Constructions based on 

multilinear maps [BLRSZZ15] or 
obfuscation [GGGJKLSSZ14]

OPE [BCLO09]

Something in 
between?



A New Security Notion: SIM-ORE

Idea: Augment “best-possible” security with a leakage function ℒ

𝑚1 𝑚1 ∣ ℒ 𝑚1

Enc sk,𝑚1 ct1

sk

𝑚2

Enc sk,𝑚2

𝑚2 ∣ ℒ 𝑚1, 𝑚2

ct2

⋮ ⋮

???

Real World Ideal World

[CLWW16]



A New Security Notion: SIM-ORE

Idea: Augment “best-possible” security with a leakage function ℒ

𝑚1 𝑚1 ∣ ℒ 𝑚1

Enc sk,𝑚1 ct1

sk

𝑚2

Enc sk,𝑚2

𝑚2 ∣ ℒ 𝑚1, 𝑚2

ct2

⋮ ⋮Real World Ideal World

[CLWW16]

Similar to SSE definitions [CGKO06, CK10]

Leakage function specifies exactly what is 
leaked by the encryption scheme



A Simple ORE Construction

1 0 0 1 0 1

For each index 𝑖, apply a PRF 
(e.g., AES) to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 3)𝐹𝑘: 0,1 ∗ → 0,1,2

37

[CLWW16]



A Simple ORE Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

Empty prefix
For each index 𝑖, apply a PRF 

(e.g., AES) to the first 𝑖 − 1 bits, 
then add 𝑏𝑖 (mod 3)𝐹𝑘: 0,1 ∗ → 0,1,2

37

[CLWW16]



A Simple ORE Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0

For each index 𝑖, apply a PRF 
(e.g., AES) to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 3)𝐹𝑘: 0,1 ∗ → 0,1,2

37

[CLWW16]



A Simple ORE Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0

𝐹𝑘(10) + 0

For each index 𝑖, apply a PRF 
(e.g., AES) to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 3)𝐹𝑘: 0,1 ∗ → 0,1,2

37

[CLWW16]



A Simple ORE Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 0 𝐹𝑘(1000) + 1 𝐹𝑘(10001) + 1

1 0 0 0 1 1

same prefix = same 
ciphertext block

different prefix = value 
hidden

first block 
that differs

Additional leakage: 
first differing bit

Recall: All additions happen modulo 3

37

35

[CLWW16]



A Simple ORE Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 0 𝐹𝑘(1000) + 1 𝐹𝑘(10001) + 1

1 0 0 0 1 1

same prefix = same 
ciphertext block

different prefix = value 
hidden

first block 
that differs

Additional leakage: 
first differing bit

Key insight: Embed comparisons into ℤ3

37

35

[CLWW16]



The Landscape of ORE

Security

Pe
rf

o
rm

an
ce

Not drawn to scale

Theoretical

Practical
Constructions based on 

multilinear maps [BLRSZZ15] or 
obfuscation [GGGJKLSSZ14]

OPE [BCLO09]

ORE [CLWW16]



ID Name Age Zip Code

wpjOos 2wzXW8 SqX9l9 KqLUXE

XdXdg8 y9GFpS gwilE3 MJ23b7

P6vKhW EgN0Jn S0pRJe aTaeJk

orJRe6 KQWy9U tPWF3M 4FBEO0

+

ID Name Age Zip Code

??? Alice 30-35 68???

??? Bob 45-50 60???

??? Emily 40-45 38???

??? Jeff 40-45 46???

Encrypted database Public information

Frequency and 
statistical analysis

Plaintext 
recovery

Inference Attacks and Database Reconstruction
[NKW15, DDC16, KKNO16, GSBNR17, LMP18, GLMP19]



ORE schemes reveal order of 
ciphertexts and thus, are 

vulnerable to offline inference 
attacks

Can we extend ORE to
defend against offline inference attacks?

Inference Attacks and Database Reconstruction
[NKW15, DDC16, KKNO16, GSBNR17, LMP18, GLMP19]



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Database server

Snapshot Adversaries

Adversary breaks into the database 
server and steals the contents of the 

database on disk (i.e., obtains a 
“snapshot” of the database)



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Snapshot Adversaries

Adversary breaks into the database 
server and steals the contents of the 

database on disk (i.e., obtains a 
“snapshot” of the database)

Database server

Here, we assume the “snapshot” just 
contains the encrypted database 

contents and nothing more
(e.g., no query caches, etc.)



Approach: Require additional properties from the underlying ORE scheme

Enc 37

ctL
ctR

Ciphertexts naturally split into two 
components (“left-right” ORE)

EncL 37

EncR 35

ctL

ctR

Greater than

Defending Against Snapshot Adversaries
[LW16]

Key primitive: order-revealing encryption scheme where ciphertexts have 
a decomposable structure



ctR

EncL 37

EncR 35

ctL

Comparison can be performed 
between left ciphertext and 

right ciphertext

Right ciphertexts reveal nothing
about underlying messages!

Robustness against offline 
inference attacks!

Defending Against Snapshot Adversaries
[LW16]

But will require different protocol 
to implement range queries



Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)EncR(Jeff)

EncR(Emily)

EncR(Alice)

EncR(Bob)
Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

Build encrypted 
index

Store right 
ciphertexts in 
sorted order

Record IDs 
encrypted under 
independent key

Separate index for each 
searchable column, and 
using different ORE keys

Range Queries on Encrypted Data

EncR(31)

EncR(41)

EncR(31)

EncR(45)

EncR(47)

EncR(41)

EncR(45)

EncR(47)

Zip Code ID

Enc(2)

Enc(3)

Enc(1)

Enc(0)

EncR(38655)

EncR(46304)

EncR(60015)

EncR(68107)

[LW16]



ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Encrypted database:

Columns (other than ID) are 
encrypted using standard 

encryption scheme

Encrypted search indices

Range Queries on Encrypted Data

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)EncR(Jeff)

EncR(Emily)

EncR(Alice)

EncR(Bob)
Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Zip Code ID

Enc(2)

Enc(3)

Enc(1)

Enc(0)

EncR(38655)

EncR(46304)

EncR(60015)

EncR(68107)

To perform range query, client provides 
left ciphertexts corresponding to its range

[LW16]



Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

Range Queries on Encrypted Data

client

sk

[LW16]



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

Range Queries on Encrypted Data

EncR(31)

EncR(41)

EncR(45)

EncR(47)

[LW16]



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

Query for all records where 40 ≥ age ≥ 45:

EncL(40)

EncL(45)

Use binary search to determine 
endpoints (comparison via ORE)

Range Queries on Encrypted Data

EncR(31)

EncR(41)

EncR(45)

EncR(47)

[LW16]



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

Query for all records where 40 ≥ age ≥ 45:

EncL(45)
EncL(40)

Range Queries on Encrypted Data

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Use binary search to determine 
endpoints (comparison via ORE)

[LW16]



Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

Query for all records where 40 ≥ age ≥ 45:

Return encrypted 
indices that match 

queryEncL(45)

EncL(40)

Range Queries on Encrypted Data

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Use binary search to determine 
endpoints (comparison via ORE)

[LW16]



Range Queries on Encrypted Data

Encrypted database hides 
the contents!

ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Encrypted search indices

Encrypted database:

Name ID

Enc(0)

Enc(1)

Enc(2)

Enc(3)EncR(Jeff)

EncR(Emily)

EncR(Alice)

EncR(Bob)
Age ID

Enc(0)

Enc(2)

Enc(3)

Enc(1)

EncR(31)

EncR(41)

EncR(45)

EncR(47)

Zip Code ID

Enc(2)

Enc(3)

Enc(1)

Enc(0)

EncR(38655)

EncR(46304)

EncR(60015)

EncR(68107)

[LW16]



Left-Right ORE Construction
[LW16]

“Small-domain” ORE with 
best-possible security

Block-by-block extension 
similar to previous 

construction

“Large-domain” ORE 
with leakage



Left-Right ORE Construction
[LW16]

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Small-domain left-right ORE that 
provides best-possible security



Left-Right ORE Construction
[LW16]

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Each block encrypted with key derived 
from prefix (domain extension)



Left-Right ORE Construction
[LW16]

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8

Comparison proceeds 
block-by-block

Overall leakage: First block that differs

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)



Domain Extension for ORE
[LW16]

Same decomposition into left and right ciphertexts:

Left ciphertext Right ciphertext

𝑘𝜋 𝑖
′

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋 1
′ 𝑘𝜋 2

′ 𝑘𝜋 𝑗
′ 𝑘𝜋 𝑗+1

′ 𝑘𝜋 𝑁
′𝑘𝜋(𝑖)

1 1 ⋯ 1 0 ⋯ 0

𝑘𝜋(1) 𝑘𝜋 2 𝑘𝜋(𝑖)𝑘𝜋 𝑖+1 𝑘𝜋(𝑁)

Right ciphertexts are semantically secure
(inherited from underlying small-domain left-right ORE)



Scheme Encrypt (𝛍𝐬) Compare (𝛍𝐬) 𝐜𝐭 (bytes)

OPE [BCLO’09] 3601.82 0.36 8

Bit-by-Bit ORE 2.06 0.48 8

Left-Right (4-bit blocks) 16.50 0.31 192

Left-Right (8-bit blocks) 54.87 0.63 224

Benchmarks taken for C implementation of 
different schemes (with AES-NI). Measurements 

for encrypting 32-bit integers.

Performance Measurements



The Landscape of ORE

Security

Pe
rf

o
rm

an
ce

Not drawn to scale

Theoretical

Practical
constructions based on 

multilinear maps [BLRSZZ15] or 
obfuscation [GGGJKLSSZ14]

OPE [BCLO09]

ORE [LW16]

pairing-based 
constructions 

[CLOZ16, JP16,CLOZZ18]

ORE [CLWW16]
left-right 
security



Challenges in Using ORE

ID Name Age Zip Code

0 Alice 31 68107

1 Bob 47 60015

2 Emily 41 38655

3 Jeff 45 46304

Real databases will cache query-
processing data, so in practice, snapshots 

will contain query information

Motivates search for 
stronger notions of ORE

Can we construct a left-right ORE that 
achieves best-possible security if adversary 

only sees a small number of left ciphertexts?



Challenges in Using ORE

Attacks motivate design of new kinds of cryptographic primitives that 
better capture practical requirements

• New notions of ORE: parameter-hiding ORE [CLOZZ18]

ORE as a building block: direct application of ORE to construct encrypted 
databases has limitations, but perhaps can combine with other 
cryptographic tools (e.g., MPC) for better security



Conclusions

Searching on encrypted data is an important problem

Role of cryptography: Identify and construct useful cryptographic building 
blocks to enable and facilitate new designs of encrypted databases

OPE ORE Left-Right 
ORE

Parameter-
Hiding ORE

Better attacks and security analysis motivate new cryptographic notions 
and raise interesting questions both for theory and for practice!

Thank you!


