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𝝈

Commitment Schemes

Takes a common reference string and commits to a message

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st



𝝈

Commitment Schemes

𝑥Open + Verify
𝑥

Open st → 𝜋

Takes the commitment state and outputs an opening 𝜋

Verify crs, 𝜎, 𝑥, 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to 𝑥

Alternatively: Could define Commit to 
output (𝜎, 𝜋) and remove Open

𝜋



Commitment Schemes

𝑥

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 

𝝈

𝝈

𝑥0

𝑥1

Open + Verify

𝜋0

𝜋1

Verify crs, 𝜎, 𝑥0, 𝜋0 = 1

Verify crs, 𝜎, 𝑥1, 𝜋1 = 1

𝜋



Commitment Schemes

𝑥

𝑥

Hiding: the commitment 𝜎 hides the input 𝑥

𝝈
Open + Verify

𝑥0

𝑥1
≈

Commit crs, 𝑥0
𝝈

𝝈 Commit crs, 𝑥1

≈

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Note: successful opening of 𝜎 to 𝑦
with respect to 𝑓 does not mean 
there exists 𝑥 where 𝑦 = 𝑓 𝑥

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Hiding: commitment 𝜎 and opening 𝜋 only reveal 𝑓 𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋



Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 +⋯+ 𝛼𝑑𝑥
𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥



Connection to Succinct Arguments

Goal: prove that 𝑥 ∈ ℒ (where ℒ is an NP language)

𝝈

𝑤
Commit to NP witness 𝑤

𝑅 𝑥,𝑤

open to NP
relation 𝑅(𝑥,⋅)

𝑤

𝜋

Proof consists of commitment 𝜎 and opening 𝜋

Succinctness means that 𝜎 , 𝜋 = poly 𝜆, log𝑤

Soundness relies on stronger version of binding

More generally: can view functional commitments as 
providing succinct proofs on committed data



Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19] vector commitment groups of unknown order

[BFS19] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic
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Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

short (i.e., low-norm) vector 
satisfying 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 = ෍

𝑖∈ ℓ

𝑥𝑖𝒕𝑖

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑦 ⋅ 𝒕𝑖

Honest opening:

𝒗𝑖 =෍

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖=෍

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗 + 𝑥𝑖𝒕𝑖 = ෍

𝑗∈ ℓ

𝑥𝑗𝒕𝑗 = 𝒄



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚 and 𝒕𝑖 ← ℤ𝑞

𝑛 are independent and uniform

[ACLMT21]: 𝑨𝑖 = 𝑾𝑖𝑨 and 𝒕𝑖 = 𝑾𝑖𝒖𝑖 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛, 𝑨 ← ℤ𝑞

𝑛×𝑚, 𝒖𝑖 ← ℤ𝑞
𝑛

suffices for vector commitments (from SIS)

generalizes to functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)

(one candidate adaptation to the integer case)



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛
⋱ ⋮

𝑨ℓ −𝑰𝑛

⋅

𝒗1
⋮
𝒗ℓ
𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖
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∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it 
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”
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⋱ ⋮
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Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions 
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports commitments to arbitrary (i.e., large) values over ℤ𝑞

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ
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Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports statistically private openings
(commitment + opening hides unopened positions)

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that

trapdoor for 𝑩ℓ

given matrices 𝑨1, … , 𝑨ℓ set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ set 𝒕𝑖 = 𝒆1 = 1,0,… , 0 T

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖 − 𝑥𝑖

′ 𝒆1

given 𝑨 ← ℤ𝑞
𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Short integer solutions (SIS)

𝒗𝑖 − 𝒗𝑖
′ is a SIS solution for 𝑨𝑖

without the first row



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖
(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖
given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Can simulate CRS from BASIS challenge:

trapdoor for 𝑩ℓ

matrices 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚



Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)



Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ ℤ𝑞
ℓ : sample solution (𝒗1, … , 𝒗ℓ, ො𝒄)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒆1
⋮

−𝑥ℓ𝒆ℓ

Commitment is 𝒄 = 𝑮ො𝒄 Openings are 𝒗1, … , 𝒗ℓ

Can commit and open to 
arbitrary ℤ𝑞 vectors

Commitments and openings 
statistically hide unopened 
components

Linearly homomorphic:
𝒄 + 𝒄′ is a commitment to 

𝒙 + 𝒙′ with openings 𝒗𝑖 + 𝒗𝑖
′



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation
[GSW13, BGGHNSVV14]

Let 𝑨 = 𝑨1 ⋯ 𝑨ℓ ∈ ℤ𝑞
ℓ𝑛×𝑚 be an arbitrary matrix

Input-independent evaluation: 𝑨, 𝑓 ↦ 𝑨𝑓 ∈ ℤ𝑞
𝑛×𝑚

Input-dependent evaluation: 𝑨, 𝑓, 𝒙 ↦ 𝑯𝑨,𝑓,𝒙 ∈ ℤ𝑞
ℓ𝑛×𝑚

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑨,𝑓,𝒙 = 𝑨𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑨𝑖 − 𝑥𝑖𝑮: “encoding” of 𝑥𝑖 with respect to 𝑨𝑖



Functional Commitments using Structured 𝑨𝒊

Instead of using random 𝑨𝑖, consider structured 𝑨𝑖 (like in [ACLMT22])

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾1, … ,𝑾ℓ ← ℤ𝑞
𝑛×𝑛 𝑨𝒊 = 𝑾𝑖𝑨

(invertible)

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Common reference string still consists of trapdoor for 𝑩ℓ (with the structured 𝑨𝑖)



Functional Commitments using Structured 𝑨𝒊

Instead of using random 𝑨𝑖, consider structured 𝑨𝑖 (like in [ACLMT22])

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾1, … ,𝑾ℓ ← ℤ𝑞
𝑛×𝑛

𝑨𝒊 = 𝑾𝑖𝑨

(invertible) 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to an input 𝒙 ∈ 0,1 ℓ:
Use trapdoor for 𝑩ℓ to jointly sample 𝑽1, … , 𝑽ℓ, ෡𝑪 that satisfy

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

for all 𝑖 ∈ ℓ

𝑨𝑖𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑨𝑖 = 𝑾𝑖𝑨

𝑾𝑖𝑨𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑾𝑖 is invertible

𝑨𝑽𝑖 −𝑾𝑖
−1𝑮෡𝑪 = −𝑥𝑖𝑮

rearranging

𝑾𝑖
−1𝑮෡𝑪 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅
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⋮
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=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮
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Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

for all 𝑖 ∈ ℓ

𝑨𝑖𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑨𝑖 = 𝑾𝑖𝑨

𝑾𝑖𝑨𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑾𝑖 is invertible

𝑨𝑽𝑖 −𝑾𝑖
−1𝑮෡𝑪 = −𝑥𝑖𝑮

rearranging

𝑾𝑖
−1𝑮෡𝑪 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪function only of the commitment 𝑪 = 𝑮෡𝑪



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮
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𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪function only of the commitment 𝑪 = 𝑮෡𝑪

෩𝑪𝑖 is a GSW encryption of 𝑥𝑖 with randomness 𝑽𝑖

Can also be viewed as a homomorphic 
commitment to 𝑥𝑖 with opening 𝑽𝑖 [GVW15]

[GVW15]: independent 𝑽𝑖 is sampled for each 
input bit, so commitments 𝑪𝑖 are independent 
• long commitment, security from SIS

This work: publish a trapdoor that allows 
deriving 𝑪𝑖 (and associated 𝑽𝑖) from a single 
commitment ෡𝑪
• short commitment, stronger assumption



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
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Homomorphic evaluation:
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𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]
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𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]
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⋮
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𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:
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෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Define opening to be 𝑽𝑓,𝑓 𝑥 = ෩𝑽𝑯෩𝑪,𝑓,𝒙

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]
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⋮
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𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Define opening to be 𝑽𝑓,𝑓 𝑥 = ෩𝑽𝑯෩𝑪,𝑓,𝒙

Verification relation (for opening 𝑪 to 𝑓, 𝑧 ):

𝑨𝑽𝑓,𝑧 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

where 𝑨𝑖 = 𝑾𝑖𝑨 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛 and 𝑨 ← ℤ𝑞

𝑛×𝑚

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when ℓ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 where 𝑨𝑖 = 𝑾𝑖𝑨

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ 0,1 ℓ: sample (𝑽1, … , 𝑽ℓ, ෡𝑪)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment is 𝑪 = 𝑮෡𝑪 Openings for function 𝑓 is 𝑽1 ⋯ 𝑽ℓ ⋅ 𝑯෩𝑪,𝑓,𝒙

crs = ℓ2 ⋅ poly 𝜆, 𝑑, log ℓ

Scheme supports functions 
computable by Boolean circuits 

of (bounded) depth 𝑑

𝑪 = poly 𝜆, 𝑑, log ℓ

𝑽𝑓,𝑓 𝒙 = poly 𝜆, 𝑑, log ℓ

Verification time scales with 𝑓
(i.e., size of circuit computing 𝑓)



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = ෍

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖෩𝑪𝑖

Can be precomputed

= σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1𝑪 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖

−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = ෍

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖෩𝑪𝑖

Can be precomputed

= σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1𝑪 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖

−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ

Captures polynomial commitments as a special case
(polynomial evaluation can be described by a linear function)



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to 𝐴 is hard given a trapdoor for a related matrix 𝐵

“Random” variant of BASIS assumption implies vector commitments and reduces to SIS

“Structured” variant of BASIS assumption implies functional commitments
• Yields linear and polynomial commitments with fast preprocessed verification
• Structure also enables aggregating openings [see paper for details]



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Functional commitments for circuits that supports fast preprocessed verification
• [ACLMT22]: fast preprocessed verification for constant-degree polynomials

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with linear-size CRS?

Thank you!

https://eprint.iacr.org/2022/1515
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