
Succinct Vector, Polynomial, and
Functional Commitments from Lattices

Hoeteck Wee and David Wu

March 2023



Commitment Schemes

𝑥

cryptographic analog of a sealed envelope



Commitment Schemes

cryptographic analog of a sealed envelope

𝑥



Commitment Schemes

cryptographic analog of a sealed envelope



𝝈

Commitment Schemes

Takes a common reference string and commits to a message

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st



𝝈

Commitment Schemes

𝑥Open + Verify
𝑥

Open st → 𝜋

Takes the commitment state and outputs an opening 𝜋

Verify crs, 𝜎, 𝑥, 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to 𝑥

Alternatively: Could define Commit to 
output (𝜎, 𝜋) and remove Open

𝜋



Commitment Schemes

𝑥

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 

𝝈

𝝈

𝑥0

𝑥1

Open + Verify

𝜋0

𝜋1

Verify crs, 𝜎, 𝑥0, 𝜋0 = 1

Verify crs, 𝜎, 𝑥1, 𝜋1 = 1

𝜋



Commitment Schemes

𝑥

𝑥

Hiding: the commitment 𝜎 hides the input 𝑥

𝝈
Open + Verify

𝑥0

𝑥1
≈

Commit crs, 𝑥0
𝝈

𝝈 Commit crs, 𝑥1

≈

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Note: successful opening of 𝜎 to 𝑦
with respect to 𝑓 does not mean 
there exists 𝑥 where 𝑦 = 𝑓 𝑥

𝜋



This Talk: Succinct Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Hiding: commitment 𝜎 and opening 𝜋 only reveal 𝑓 𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋



Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 +⋯+ 𝛼𝑑𝑥
𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥



Connection to Succinct Arguments

Goal: prove that 𝑥 ∈ ℒ (where ℒ is an NP language)

𝝈

𝑤
Commit to NP witness 𝑤

𝑅 𝑥,𝑤

open to NP
relation 𝑅(𝑥,⋅)

𝑤

𝜋

Proof consists of commitment 𝜎 and opening 𝜋

Succinctness means that 𝜎 , 𝜋 = poly 𝜆, log𝑤

Soundness relies on stronger version of binding

More generally: can view functional commitments as 
providing succinct proofs on committed data



Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19] vector commitment groups of unknown order

[BFS19] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic



Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19] vector commitment groups of unknown order

[BFS19] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

short (i.e., low-norm) vector 
satisfying 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 = ෍

𝑖∈ ℓ

𝑥𝑖𝒕𝑖

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑦 ⋅ 𝒕𝑖

Honest opening:

𝒗𝑖 =෍

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖=෍

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗 + 𝑥𝑖𝒕𝑖 = ෍

𝑗∈ ℓ

𝑥𝑗𝒕𝑗 = 𝒄



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚 and 𝒕𝑖 ← ℤ𝑞

𝑛 are independent and uniform

[ACLMT21]: 𝑨𝑖 = 𝑾𝑖𝑨 and 𝒕𝑖 = 𝑾𝑖𝒖𝑖 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛, 𝑨 ← ℤ𝑞

𝑛×𝑚, 𝒖𝑖 ← ℤ𝑞
𝑛

suffices for vector commitments (from SIS)

generalizes to functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)

(one candidate adaptation to the integer case)



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛
⋱ ⋮

𝑨ℓ −𝑰𝑛

⋅

𝒗1
⋮
𝒗ℓ
𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it 
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions 
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports commitments to arbitrary (i.e., large) values over ℤ𝑞

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports statistically private openings
(commitment + opening hides unopened positions)

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Proving Security

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that

trapdoor for 𝑩ℓ

given matrices 𝑨1, … , 𝑨ℓ set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ set 𝒕𝑖 = 𝒆1 = 1,0,… , 0 T

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖 − 𝑥𝑖

′ 𝒆1

given 𝑨 ← ℤ𝑞
𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Short integer solutions (SIS)

𝒗𝑖 − 𝒗𝑖
′ is a SIS solution for 𝑨𝑖

without the first row



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖
(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖
given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Can simulate CRS from BASIS challenge:

trapdoor for 𝑩ℓ

matrices 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚



Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)



Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ ℤ𝑞
ℓ : sample solution (𝒗1, … , 𝒗ℓ, ො𝒄)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒆1
⋮

−𝑥ℓ𝒆ℓ

Commitment is 𝒄 = 𝑮ො𝒄 Openings are 𝒗1, … , 𝒗ℓ

Can commit and open to 
arbitrary ℤ𝑞 vectors

Commitments and openings 
statistically hide unopened 
components

Linearly homomorphic:
𝒄 + 𝒄′ is a commitment to 

𝒙 + 𝒙′ with openings 𝒗𝑖 + 𝒗𝑖
′



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation
[GSW13, BGGHNSVV14]

Let 𝑨 = 𝑨1 ⋯ 𝑨ℓ ∈ ℤ𝑞
ℓ𝑛×𝑚 be an arbitrary matrix

Input-independent evaluation: 𝑨, 𝑓 ↦ 𝑨𝑓 ∈ ℤ𝑞
𝑛×𝑚

Input-dependent evaluation: 𝑨, 𝑓, 𝒙 ↦ 𝑯𝑨,𝑓,𝒙 ∈ ℤ𝑞
ℓ𝑛×𝑚

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑨,𝑓,𝒙 = 𝑨𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑨𝑖 − 𝑥𝑖𝑮: “encoding” of 𝑥𝑖 with respect to 𝑨𝑖



Functional Commitments using Structured 𝑨𝒊

Instead of using random 𝑨𝑖, consider structured 𝑨𝑖 (like in [ACLMT22])

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾1, … ,𝑾ℓ ← ℤ𝑞
𝑛×𝑛 𝑨𝒊 = 𝑾𝑖𝑨

(invertible)

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Common reference string still consists of trapdoor for 𝑩ℓ (with the structured 𝑨𝑖)



Functional Commitments using Structured 𝑨𝒊

Instead of using random 𝑨𝑖, consider structured 𝑨𝑖 (like in [ACLMT22])

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾1, … ,𝑾ℓ ← ℤ𝑞
𝑛×𝑛

𝑨𝒊 = 𝑾𝑖𝑨

(invertible) 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to an input 𝒙 ∈ 0,1 ℓ:
Use trapdoor for 𝑩ℓ to jointly sample 𝑽1, … , 𝑽ℓ, ෡𝑪 that satisfy

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

for all 𝑖 ∈ ℓ

𝑨𝑖𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑨𝑖 = 𝑾𝑖𝑨

𝑾𝑖𝑨𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑾𝑖 is invertible

𝑨𝑽𝑖 −𝑾𝑖
−1𝑮෡𝑪 = −𝑥𝑖𝑮

rearranging

𝑾𝑖
−1𝑮෡𝑪 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

for all 𝑖 ∈ ℓ

𝑨𝑖𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑨𝑖 = 𝑾𝑖𝑨

𝑾𝑖𝑨𝑽𝑖 − 𝑮෡𝑪 = −𝑥𝑖𝑾𝑖𝑮

recall 𝑾𝑖 is invertible

𝑨𝑽𝑖 −𝑾𝑖
−1𝑮෡𝑪 = −𝑥𝑖𝑮

rearranging

𝑾𝑖
−1𝑮෡𝑪 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪function only of the commitment 𝑪 = 𝑮෡𝑪



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪function only of the commitment 𝑪 = 𝑮෡𝑪

෩𝑪𝑖 is a GSW encryption of 𝑥𝑖 with randomness 𝑽𝑖

Can also be viewed as a homomorphic 
commitment to 𝑥𝑖 with opening 𝑽𝑖 [GVW15]

[GVW15]: independent 𝑽𝑖 is sampled for each 
input bit, so commitments 𝑪𝑖 are independent 
• long commitment, security from SIS

This work: publish a trapdoor that allows 
deriving 𝑪𝑖 (and associated 𝑽𝑖) from a single 
commitment ෡𝑪
• short commitment, stronger assumption



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Define opening to be 𝑽𝑓,𝑓 𝑥 = ෩𝑽𝑯෩𝑪,𝑓,𝒙

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪 Opening to function 𝑓 proceeds exactly as in [GVW15]



Functional Commitments using Structured 𝑨𝒊

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment relation:

𝑩1 − 𝑥1𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Homomorphic evaluation:

𝑩 = 𝑩𝟏 ⋯ 𝑩ℓ

𝑩, 𝑓 ↦ 𝑩𝑓input-independent evaluation:

𝑩, 𝑓, 𝒙 ↦ 𝐻𝑩,𝑓,𝒙input-dependent evaluation:

෩𝑪𝑖 − 𝑥𝑖𝑮 = 𝑨𝑽𝑖

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

for all 𝑖 ∈ [ℓ]

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 ⋅ 𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

Can be computed by the verifier from 
commitment 𝑪 and function 𝑓

෩𝑪1 − 𝑥1𝑮 ⋯ ෩𝑪ℓ − 𝒙ℓ𝑮 = 𝑨 𝑽1 ⋯ 𝑽ℓ

= 𝑨෩𝑽

Define opening to be 𝑽𝑓,𝑓 𝑥 = ෩𝑽𝑯෩𝑪,𝑓,𝒙

Verification relation (for opening 𝑪 to 𝑓, 𝑧 ):

𝑨𝑽𝑓,𝑧 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

Then
𝑨෩𝑽𝑯෩𝑪,𝑓,𝒙 = ෩𝑪𝑓 − 𝑓 𝒙 ⋅ 𝑮

function only of the commitment 𝑪 = 𝑮෡𝑪



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

where 𝑨𝑖 = 𝑾𝑖𝑨 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛 and 𝑨 ← ℤ𝑞

𝑛×𝑚

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when ℓ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 where 𝑨𝑖 = 𝑾𝑖𝑨

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ 0,1 ℓ: sample (𝑽1, … , 𝑽ℓ, ෡𝑪)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Commitment is 𝑪 = 𝑮෡𝑪 Openings for function 𝑓 is 𝑽1 ⋯ 𝑽ℓ ⋅ 𝑯෩𝑪,𝑓,𝒙

crs = ℓ2 ⋅ poly 𝜆, 𝑑, log ℓ

Scheme supports functions 
computable by Boolean circuits 

of (bounded) depth 𝑑

𝑪 = poly 𝜆, 𝑑, log ℓ

𝑽𝑓,𝑓 𝒙 = poly 𝜆, 𝑑, log ℓ

Verification time scales with 𝑓
(i.e., size of circuit computing 𝑓)



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = ෍

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖෩𝑪𝑖

Can be precomputed

= σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1𝑪 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖

−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ



Fast Verification with Preprocessing

To verify opening 𝑽 to (𝑓, 𝑧), verifier computes the following:
• Homomorphic evaluation: ෩𝑪1, … , ෩𝑪ℓ, 𝑓 ↦ ෩𝑪𝑓
• Verification relation: 𝑨𝑽 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

෩𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪 = 𝑾𝑖

−1𝑪

Computing ෩𝑪𝑓 corresponds 

to homomorphic 
computation on ෩𝑪1, … , ෩𝑪ℓSuppose 𝑓 is a linear function:

𝑓 𝑥1, … , 𝑥ℓ = ෍

𝑖∈ ℓ

𝛼𝑖𝑥𝑖

Then ෩𝑪𝑓 = σ𝑖∈ ℓ 𝛼𝑖෩𝑪𝑖

Can be precomputed

= σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖
−1𝑪 = σ𝑖∈ ℓ 𝛼𝑖𝑾𝑖

−1 𝑪

For linear functions, if 𝑓 is known in advance, verification runs in time poly 𝜆, log ℓ

Captures polynomial commitments as a special case
(polynomial evaluation can be described by a linear function)



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to 𝐴 is hard given a trapdoor for a related matrix 𝐵

“Random” variant of BASIS assumption implies vector commitments and reduces to SIS

“Structured” variant of BASIS assumption implies functional commitments
• Yields linear and polynomial commitments with fast preprocessed verification
• Structure also enables aggregating openings [see paper for details]



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Functional commitments for circuits that supports fast preprocessed verification
• [ACLMT22]: fast preprocessed verification for constant-degree polynomials

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: can we obtain functional commitments with linear-size CRS?

Thank you!

https://eprint.iacr.org/2022/1515


	Slide 1: Succinct Vector, Polynomial, and Functional Commitments from Lattices
	Slide 2: Commitment Schemes
	Slide 3: Commitment Schemes
	Slide 4: Commitment Schemes
	Slide 5: Commitment Schemes
	Slide 6: Commitment Schemes
	Slide 7: Commitment Schemes
	Slide 8: Commitment Schemes
	Slide 9: This Talk: Succinct Functional Commitments
	Slide 10: This Talk: Succinct Functional Commitments
	Slide 11: This Talk: Succinct Functional Commitments
	Slide 12: This Talk: Succinct Functional Commitments
	Slide 13: Special Cases of Functional Commitments
	Slide 14: Connection to Succinct Arguments
	Slide 15: Succinct Functional Commitments
	Slide 16: Succinct Functional Commitments
	Slide 17: Framework for Lattice Commitments
	Slide 18: Framework for Lattice Commitments
	Slide 19: Framework for Lattice Commitments
	Slide 20: Our Approach
	Slide 21: Our Approach
	Slide 22: Our Approach
	Slide 23: Our Approach
	Slide 24: Our Approach
	Slide 25: Our Approach
	Slide 26: Proving Security
	Slide 27: Basis-Augmented SIS (BASIS) Assumption
	Slide 28: Basis-Augmented SIS (BASIS) Assumption
	Slide 29: Basis-Augmented SIS (BASIS) Assumption
	Slide 30: Vector Commitments from SIS
	Slide 31: Functional Commitments for Circuits
	Slide 32: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 33: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 34: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 35: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 36: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 37: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 38: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 39: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 40: Functional Commitments using Structured bold italic cap A. sub bold italic i. 
	Slide 41: Functional Commitments from Lattices
	Slide 42: Functional Commitments from Lattices
	Slide 43: Fast Verification with Preprocessing
	Slide 44: Fast Verification with Preprocessing
	Slide 45: Summary
	Slide 46: Open Questions

