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Functional Commitments
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Functional Commitments
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Q Commit “commitment”
) .0

Commit(crs, x) — (o, st)

Takes a common reference string and commits to a message

Outputs commitment o and commitment state st

Focus exclusively on non-interactive schemes




Functional Commitments

Open + Verity

0| TEE——)

Commit(crs, x) — (o, st)
Open(st, /) » m

Takes the commitment state and a function f and outputs an opening

Verify(crs,o, (f,v),m) - 0/1

Checks whether m is valid opening of g to value y with respect to [




Functional Commitments

o

Open + Verity

Binding: efficient adversary cannot open o to two different values
with respect to the same f

. £

o

T[O/ m Verify(crs, o, (f,y),mp) = 1

T4 Verify(crs, o, (f,y1),m1) =1



Functional Commitments

Open + Verity
0| IEEEEE——

Hiding: commitment o and opening  only reveal f(x)

Succinctness: commitments and openings should be short
* Short commitment: |o| = poly(4, log |x]|)
* Short opening: || = poly(4,log|x|, |f(x)])

Special cases: vector commitments, polynomial commitments



Special Cases of Functional Commitments

Vector commitments:

| ind; (xq, ..., X)) = Xx;

commit to a vector, open at an index

Polynomial commitments:

fo(ag, ..,ag) = ag + ayx + -+ ayzx?
——— [E5

commit to a polynomial, open to the evaluation at x




Functional Commitment Constructions

(not an exhaustive list!)

Scheme

Function Class

Assumption

[Mer87]

[LY10, CF13, LM19, GRWZ20]
[CF13, LM19, BBF19]
[PPS21]

vector commitment
vector commitment
vector commitment

vector commitment

collision-resistant hash functions
q-type pairing assumptions
groups of unknown order

short integer solutions (SIS)

[KZG10, Lee20]
[BFS19, BHRRS21, BF23]

polynomial commitment

polynomial commitment

g-type pairing assumptions

groups of unknown order

[LRY16]

Boolean circuits

collision-resistant hash functions + SNARKs
non-falsifiable, non-black box



Functional Commitment Constructions

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions
[CF13, LM19, BBF19] vector commitment groups of unknown order
[PPS21] vector commitment short integer solutions (SIS)
[KZG10, Lee20] polynomial commitment g-type pairing assumptions
[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order
[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[LRY16] linear functions q-type pairing assumptions
[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)
This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic



Functional Commitment Constructions

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[KZG10, Lee20] polynomial commitment g-type pairing assumptions

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[LRY16] linear functions q-type pairing assumptions
[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)
This work vector commitment short integer solutions (SIS)

This work Boolean circuits BASIS i uct assumption (falsifiable)

BASIS iruct assumption less structured than [ACLMT22] (no short preimages of powers)



Functional Commitment Constructions

(not an exhaustive list!)

Scheme

Function Class

Assumption

[Mer87]

[LY10, CF13, LM19, GRWZ20]

[CF13, LM19, BBF19]
[PPS21]

vector commitment
vector commitment
vector commitment

vector commitment

collision-resistant hash functions
q-type pairing assumptions
groups of unknown order

short integer solutions (SIS)

[KZG10, Lee20]
[BFS19, BHRRS21, BF23]

polynomial commitment

polynomial commitment

g-type pairing assumptions

groups of unknown order

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[LRY16] linear functions q-type pairing assumptions

[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)

This work vector commitment short integer solutions (SIS)

This work Boolean circuits BASIS¢uct assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits



Functional Commitment Constructions

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions
[CF13, LM19, BBF19] vector commitment groups of unknown order
[PPS21] vector commitment short integer solutions (SIS)
[KZG10, Lee20] polynomial commitment g-type pairing assumptions

groups of unknown order

[BCFL22]: short openings and supports fast verification with
preprocessing; based on (falsifiable) twin-k-M-ISIS collision-resistant hash functions + SNARKs
assumption q-type pairing assumptions

k-R-ISIS assumption (falsifiable)

[dCP23]: transparent setup from SIS, long openings,
selectively-secure (without complexity leveraging)

short integer solutions (SIS)
BASIS¢uct assumption (falsifiable)

Concurrent works [BCFL22, dCP23]: |attice-based constructions of functional commitments for Boolean circuits



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

short (i.e., low-norm) vector

satisfying A;u;; = t;



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

L

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j
Commitment to x € Z%: Opening to value y at index i:

short v; suchthatc =y -t; + A;v;
¢ = Z xj t] Honest opening: Correct as long as x is short
JE[{]
linear combination of target vectors Vi = 2 Xjlij e =Xt + Z Xjtj = Xty + Z XjAiug; = xit; + Av,
JE j#i J#1




Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

[PPS21]: A; « Zy™™ and t; « Zj are independent and uniform

suffices for vector commitments (from SIS)

[ACLMTZ].] Ai = WLA and ti = Wl-ul- where Wi «— ngn,A — ngm, Uu; < ZZ

(one candidate adaptation to the integer case)

generalizes to functional commitments for constant-degree polynomials (from k-R-ISIS)




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

—Al i _I’I’l- -1].1- __xltl-
v [T ,
_ A, —I,| | ¢ | T Xely

I, denotes the identity matrix




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

_ | o raq - _ _
Al : _G 1).1 —x1 t1
I . . _ ¢
P B R I
S A —X
i Af ! G- L C i tHt “powers of two matrix”

For security and functionality, it
will be useful to write ¢ = G¢




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t;

Vi € []

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

—G

v,

—X1t1

—Xolp

Common reference string:
matrices Ay, ..., Ay € Zg*™
target vectors t4, ..., ty € Z’C}

auxiliary data: cross-terms u;; « Ai_l(tj)



Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

_G_
J/

Y

B,

v,

it Common reference string:
X1t matrices 4 A, € Z1*m
. 1, nen ,g q
target vectors t4, ..., ty € Z’C}
—Xplp auxiliary data:

(random) trapdoor for B,

Trapdoor for B, can be used to sample short solutions

x to the linear system B,x = y (for arbitrary y)




Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

A =G| [V [t .
; 3 : Use trapdoor for B, to jointly
| Vol ) sample a solution vy, ..., vy, C
i Ay _G_ . C. __xftf_ ¢ = GC is the commitment and
- ~ / V4, ... Vp are the openings
B,

Supports commitments to arbitrary (i.e., large) values over Z,



Our Approach

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

_ | X ran - _ _
Al | _G vl —x1 t1
| 3 : Use trapdoor for B, to jointly
! Vol — . sample a solution vy, ..., vy, C
A,  —G A —Xplp P .
! t - 1 Lc. ! _ ¢ = G¢ is the commitment and
- ~ / V4, ... Vp are the openings
Bg Supports statistically private openings

(commitment + opening hides unopened positions)



Proving Security

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

our scheme for a short v;

Suppose adversary can break binding Goal: reduce to

short integer solutions (SIS)

outputs ¢, (v;, x;), (v{, xl,) such that given A « Zg"™, hard to find
short x # 0 suchthat Ax =0

c =Aw;+xt; | x#x ez,
_ ! ! be | !
= A;v, + x/t; can be large
v; — v} is a SIS solution for A;
given matrices 44, ..., 4, set A; « Zg*™ without the first row
target vectors t, ..., t, sett; =e; = [1,0,...,0]"

trapdoor for B,



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

our scheme for a short v;

Adversary that breaks binding can solve SIS with respect to A;

(technically A; without the first row — which is equivalent to SIS with dimensionn — 1)



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

our scheme for a short v;

Adversary that breaks binding can solve SIS with respect to A;

Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A;
given a random trapdoor (a random basis) for the matrix

A,  —G Can simulate CRS from BASIS challenge:
Lo
B, = - matrices Ay, ..., Ay « Zg<™
A, 1 -G trapdoor for B,




Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A; given a trapdoor (a basis) for the matrix
4, G
I
! Ayt -G
When Ay, ..., A, « Zz*™ are uniform and independent:
hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

A, , —G | Sketchfori = 1:
AZ : —G Sample with trapdoors
Bf — . : : Use trapdoors for and ( to trapdoor for B,
. .
A4, ' —G




Vector Commitments from SIS

Common reference string (for inputs of length £):
Can commit and open to

matrices Ay, ..., A, € Z*™
arbitrary 7, vectors

A, ¢
auxiliary data: trapdoor for B, = 1
4, 1 =G Commitments and openings
statistically hide unopened
To commit to a vector x € Z%: sample solution (vy, ..., vy, €) components
Al : —G Uy —X1€17
| 3 : Linearly homomorphic:
! Vol — ' c + ¢’ is a commitment to
i Ag ! —G_ i T Xp€yp ] x + x' with openings v; + v,

Commitmentis ¢ = G¢C Openings are v4, ..., Uy



Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [Gswi3, BGGHNSVV14, GVW15]

Let A € Zg™™ be an arbitrary matrix Cy is a function of Cy, ..., Cy, f
Vsisafunctionof V4, ...,V f,x
C,=AV, +x,G homomorphic
. evaluation
= BN A6
Cg — AV{ + XgG
[GVW15]: C; is a commitment Cr is a commitment to f(x)

to x; with (short) opening V; with (short) opening V¢



Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [Gswi3, BGGHNSVV14, GVW15]
Let A € Zg™™ be an arbitrary matrix

C,=AV, + x,G [GVW15]: long commitments (linear in |x])
. Cq .., C,areindependent

C,=AV, + x,G Our approach: compress Co, ..., C, into a single C

[GVW15]: C; is a commitment We will define C; = W;GC where W; € Ly~ ™ is
to x; with (short) opening V; part of the common reference string




Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

C,=AV, + x,G WilGC = AV, + x,G GC =W,AV, + x,W.G

=)

C, = AV, + x,G W,'GC = AV, + x,G GC = W,AV, + x,W,G
-Al : -G V:1 __x1W1G- Ai = WlA
| . . — .
I : * V — . . ]
A, ' —G Zf —x,W,G Target is now a matrix

Our approach: commitment is C and set C; = W; *GC




Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

As in the case of vector commitments, we can
publish a trapdoor for B, in the CRS

Bg (along with the matrices W, ..., W)
A
' N
A, 6] V1| [-aw.6
: : . V.g — : Ai — WLA
Ag ! —G_ ’C. _—XgWgG_

Our approach: commitment is C and set C; = W; *GC




Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

To commit to x € {0,1}*: To compute an opening with respect to f:
-Al : G [/1 _—xlle_ Vi,..,.Vpof » Vyasin [GVW15]
S V.g = 5 To check an opening V¢ to z with respect to f:
< Ae ! _GJ- c] L XeWel derive commitments C; « W;'GC
v compute Cy, ..., Cp, f = C; as in [GVW15]
B,

checka =AVf +z-G

Py

Use trapdoor for B, to sample V4, ...,V,,C



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix
4, G
Bg = : .
I
Ap

_G_
where Ai — WlA where Wi «— ZZ,XR and 4 « ZZ,X?TL

Falsifiable assumption but does not appear to reduce to standard SIS

£ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when £ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length £): Scheme supports functions
matrices Ay, ..., Ay € ZI*™ where 4; = WA computable by Boolean circuits
A, | _¢ of (bounded) depth d
auxiliary data: trapdoor for B, = : :
A; | —G! |crs| = €2 - poly(4,d, log ¢)
To commit to a vector x € {0,1}*: sample (V4, ..., V,, C) |C| = poly(4,d,log¥)
Ay —G Vil 1« W,G [Vs.rc0l = poly(4, d, log )
! . )
L V = : Verification time scales with |f]
A{ ' G 4 _xfwa (i.e., size of circuit computing f)
: ~
_ : i C | _ i

Commitment is C = GC Openings for function fis [V | ---| V] - Hg ¢,



Fast Verification with Preprocessing

C,=w;'cC =w;'cC

To verify opening V to (f, z), verifier computes the following:

e Homomorphic evaluation: El, ...,@,f > Ef .=
~ Computing C+ corresponds
e Verification relation: AV = Cf —7z-G P & f P

to homomorphic

Suppose f is a linear function: computation on C4, ..., C,
f(xg, e, x0) = Z X
eld] I’}(f W is a fixed matrix that
_ r N depends only on f and can be
Then we can write Cf = (Zie[i’] aiWi_l) C computed in the offline phase

For linear functions, if f is known in advance, verification runs in time poly(4,log )



Fast Verification with Preprocessing

C,=w;'cC =w;'cC

To verify opening V to (f, z), verifier computes the following:

e Homomorphic evaluation: El, ...,@,f - Ef Computing Ef corresponds

to homomorphic
Suppose f is a linear function: computation on C4, ..., C,

e \Verification relation: AV = Ef —7z-G

Captures polynomial commitments as a special case
(polynomial evaluation can be described by a linear function)

For linear functions, if f is known in advance, verification runs in time poly(4,log )



Comparison to Concurrent Work

Consider a bivariate function F(x, y)

commit to input x

open at y to the value F(x,y) F is computable by a circuit of depth d and width w

Fast Adaptive
Scheme |crs| |com| lopen| Assumption Verification  Transparent Security
[dCP23] lyl 1 |y] SIS X v X
[BCFL22] wb 1 1 twin-k-M-ISIS v X v
This work |x|? 1 1 BASISryct X X v

All comparisons ignoring poly(A, d) factors



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (c = A;v; + x;t;)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to A is hard given a trapdoor for a related matrix B
“Random” variant of BASIS assumption implies vector commitments and reduces to SIS
“Structured” variant of BASIS assumption implies functional commitments

* Yields linear and polynomial commitments with fast preprocessed verification
e Structure also enables aggregating openings [see paper for details]



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Analyze knowledge variants of the assumption

Reducing CRS size: can we obtain functional commitments with linear-size CRS?
Solved in [CLM23] for the case of constant-degree polynomials!

Direct construction of lattice-based subvector commitments
Construction in our paper does not satisfy consistency

Thank you!
https://eprint.iacr.org/2022/1515
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