
Succinct Vector, Polynomial, and
Functional Commitments from Lattices

Hoeteck Wee and David Wu

April 2023



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”



𝝈

Functional Commitments

Takes a common reference string and commits to a message

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values 
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋



Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Hiding: commitment 𝜎 and opening 𝜋 only reveal 𝑓 𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Special cases: vector commitments, polynomial commitments



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

(not an exhaustive list!)

non-falsifiable, non-black box



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

supports private openings, commitments to large values, linearly-homomorphic



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

BASISstruct assumption less structured than [ACLMT22]



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits



Functional Commitment Constructions

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

This work Boolean circuits 𝐁𝐀𝐒𝐈𝐒𝐬𝐭𝐫𝐮𝐜𝐭 assumption (falsifiable)

(not an exhaustive list!)

This work vector commitment short integer solutions (SIS)

Concurrent works [BCFL22, dCP23]: lattice-based constructions of functional commitments for Boolean circuits

[BCFL22]: short openings and supports fast verification with 
preprocessing; based on (falsifiable) twin-𝑘-𝑀-ISIS 
assumption

[dCP23]: transparent setup from SIS, long openings, 
selectively-secure (without complexity leveraging)



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: short preimages 𝒖𝑖𝑗 where 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗 for 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: short preimages 𝒖𝑖𝑗 where 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗 for 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 = ෍

𝑗∈ ℓ

𝑥𝑗𝒕𝑗

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑦 ⋅ 𝒕𝑖 + 𝑨𝑖𝒗𝑖

Honest opening:

𝒗𝑖 =෍

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

= 𝑥𝑖𝒕𝑖 + 𝑨𝑖𝒗𝑖= 𝑥𝑖𝒕𝑖 +෍

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗𝒄 = 𝑥𝑖𝒕𝑖 +෍

𝑗≠𝑖

𝑥𝑗𝒕𝑗



Framework for Lattice Commitments

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: short preimages 𝒖𝑖𝑗 where 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗 for 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 and 𝒕𝑖 are random

[ACLMT22]: 𝑨𝑖 and 𝒕𝑖 are structured

suffices for vector commitments (from SIS)

suffices for functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛
⋱ ⋮

𝑨ℓ −𝑰𝑛

⋅

𝒗1
⋮
𝒗ℓ
𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it 
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions 
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports commitments to arbitrary (i.e., large) values over ℤ𝑞

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … , 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Our Approach

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports statistically private openings
(commitment + opening hides unopened positions)

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and 
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1
⋮
𝒗ℓ
ො𝒄

=

−𝑥1𝒕1
⋮

−𝑥ℓ𝒕ℓ

𝑩ℓ



Computational Binding

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)

Our scheme

given 𝑨 ← ℤ𝑞
𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes previous lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Our scheme



Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Sketch for 𝒊 = 𝟏:𝑨1 −𝑮

𝑨𝟐 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

𝑩ℓ =
Sample 𝑨2, … , 𝑨ℓ with trapdoors

Use trapdoors for 𝑨2, … , 𝑨ℓ and 𝑮 to trapdoor for 𝑩ℓ



Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS

Implication: vector commitment that supports committing to large values 
and private openings based on SIS

Previously: could only commit to small values and without hiding



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let 𝑨 ∈ ℤ𝑞
𝑛×𝑚 be an arbitrary matrix

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

[GVW15]: 𝑪𝑖 is a commitment 
to 𝑥𝑖 with (short) opening 𝑽𝑖

homomorphic 
evaluation

𝑪𝑓 is a commitment to 𝑓(𝒙)

with (short) opening 𝑽𝑓



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Starting point: lattice-based homomorphic commitments [GSW13, BGGHNSVV14, GVW15]

Let 𝑨 ∈ ℤ𝑞
𝑛×𝑚 be an arbitrary matrix

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮

[GVW15]: 𝑪𝑖 is a commitment 
to 𝑥𝑖 with (short) opening 𝑽𝑖

[GVW15]: long commitments (linear in 𝒙 )
𝑪1, … , 𝑪ℓ are independent

Our approach: compress 𝑪1, … , 𝑪ℓ into a single ෡𝑪

We will define 𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪 where 𝑾𝑖 ∈ ℤ𝑞

𝑛×𝑛 is 

part of the common reference string



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮

Our approach: commitment is ෡𝑪 and set 𝑪𝑖 = 𝑾𝑖
−1𝑮෡𝑪

𝑾1
−1𝑮෡𝑪 = 𝑨𝑽1 + 𝑥1𝑮

⋮

𝑾ℓ
−1𝑮෡𝑪 = 𝑨𝑽ℓ + 𝑥ℓ𝑮

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

𝑮෡𝑪 = 𝑾1𝑨𝑽1 + 𝑥1𝑾1𝑮

⋮

𝑮෡𝑪 = 𝑾ℓ𝑨𝑽ℓ + 𝑥ℓ𝑾ℓ𝑮

𝑨𝑖 = 𝑾𝑖𝑨



Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Homomorphic computation + opening verification now proceed as in [GVW15]

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

𝑨𝑖 = 𝑾𝑖𝑨

𝑩ℓ

As in the case of vector commitments, we can 
publish a trapdoor for 𝑩ℓ in the CRS
(along with the matrices 𝑾1, … ,𝑾ℓ)



Functional Commitments from Lattices

Security follows from BASIS assumption with a structured matrix:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

where 𝑨𝑖 = 𝑾𝑖𝑨 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛 and 𝑨 ← ℤ𝑞

𝑛×𝑚

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS

Open problem: Understanding security or attacks when ℓ > 1



Extensions

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝑽1
⋮
𝑽ℓ
෡𝑪

=
−𝑥1𝑾1𝑮

⋮
−𝑥ℓ𝑾ℓ𝑮

Our functional commitment:

Fast verification: for linear functions (captures polynomial commitments), can 
preprocess and support fast verification

Aggregation: can aggregate openings to 𝑓1, … , 𝑓𝑇 into single opening

[see paper for details]



Summary

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on basis-augmented SIS assumptions:

SIS with respect to 𝑨 is hard given a trapdoor for a related matrix 𝑩

“Random” variant of BASIS assumption implies vector commitments and reduces to SIS

“Structured” variant of BASIS assumption implies functional commitments



Open Questions

Analyzing BASIS family of assumptions (new reductions to SIS or attacks)

Describe and analyze knowledge variants of the assumption or the constructions

Reducing CRS size: functional commitments with linear-size CRS?

Constructing lattice-based subvector commitments

Thank you!

https://eprint.iacr.org/2022/1515


	Slide 1: Succinct Vector, Polynomial, and Functional Commitments from Lattices
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Functional Commitment Constructions
	Slide 8: Functional Commitment Constructions
	Slide 9: Functional Commitment Constructions
	Slide 10: Functional Commitment Constructions
	Slide 11: Functional Commitment Constructions
	Slide 12: Framework for Lattice Commitments
	Slide 13: Framework for Lattice Commitments
	Slide 14: Framework for Lattice Commitments
	Slide 15: Our Approach
	Slide 16: Our Approach
	Slide 17: Our Approach
	Slide 18: Our Approach
	Slide 19: Our Approach
	Slide 20: Our Approach
	Slide 21: Computational Binding
	Slide 22: Basis-Augmented SIS (BASIS) Assumption
	Slide 23: Basis-Augmented SIS (BASIS) Assumption
	Slide 24: Basis-Augmented SIS (BASIS) Assumption
	Slide 25: Functional Commitments for Circuits
	Slide 26: Functional Commitments for Circuits
	Slide 27: Functional Commitments for Circuits
	Slide 28: Functional Commitments for Circuits
	Slide 29: Functional Commitments from Lattices
	Slide 30: Extensions
	Slide 31: Summary
	Slide 32: Open Questions

