
Post-Quantum Designated-Verifier
zkSNARKs from Lattices

David Wu

October 2021

Argument Systems

prover verifier

𝑥 ∈ 0,1 𝑛 𝜆
accept if
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ𝐶 ∶ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ𝐶 , ∀ efficient 𝑃
∗ ∶ Pr 𝑃∗ 1𝜆, 𝑥 , 𝑉 𝑥 = accept = negl 𝜆

“Efficient prover cannot convince honest verifier of false
statement”

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

𝐶 = 𝐶𝜆 𝜆∈ℕ: family of Boolean
circuits of size 𝑠 𝜆

Argument Systems

prover verifier

𝑥 ∈ 0,1 𝑛 𝜆
accept if
𝑥 ∈ ℒ

[GMR85]

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥,𝑤 = 1 for some 𝑤

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶𝜆
• Running time of 𝑉 is poly 𝜆 + 𝑥 + log 𝐶𝜆

Both must be smaller
than classic NP

verification

Succinct Non-Interactive Arguments (SNARGs)

Additional properties of interest:
• Proof of knowledge: succinct non-interactive argument of knowledge (SNARK):

“There exists an efficient extractor that can recover
a witness from any prover that convinces an honest verifier”

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Argument consists of a
single message

Succinct Non-Interactive Arguments (SNARGs)

Additional properties of interest:
• Zero-knowledge: “Proof does not leak information about the prover’s witness”

• zkSNARK: zero-knowledge succinct non-interactive argument of knowledge

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Argument consists of a
single message

Succinct Non-Interactive Arguments (SNARGs)

For general NP languages, SNARGs are
unlikely to exist in standard model [BP04, Wee05]

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in the
random oracle model [Mic94]

[Kil92, Mic00, GW11]

accept if 𝑉ℛ𝒪(𝑥, 𝜋) = 1

𝜋 = 𝑃ℛ𝒪(𝑥, 𝑤)

𝑥

prover verifier

Argument consists of a
single message

random oracle ℛ𝒪

(𝑥, 𝑤)

Succinct Non-Interactive Arguments (SNARGs)

common reference
string (CRS)

verification
state

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Setup 1𝜆

Succinct Non-Interactive Arguments (SNARGs)

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

Argument consists of a
single message(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Very active area of research (encompassing both theory and practice):
PHGR13, BCI+13, BCC+16, Gro16, ZGK+17, AHIV17, WTS+18, GMNO18, BBB+18, BBHR19, BCR+19, XZZ+19, LM19,
CHM+20, BFS20, SL20, Set20, COS20, CY21, GNS21, GMN21, GLS+21, and many, many more…

This talk: post-quantum constructions (specifically, from lattice-based assumptions)

zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption

Focus is on constructions with a succinct verifier

Prover
Complexity Asymptotic Concrete

𝑁: size of NP relation being verified (𝑁 ≈ 220 for concrete values)

Asymptotic metrics are given up to poly 𝜆 factors (for a security parameter 𝜆)

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-QuantumLattices[GMNO18]† 𝑁 log𝑁 1 640 KB

*for a structured computation

†designated-verifier

zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption
Prover

Complexity Asymptotic Concrete

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-QuantumLattices[GMNO18]† 𝑁 log𝑁 1 640 KB

1000× gap between size of pre-quantum zkSNARKs and post-quantum ones

This talk: constructing shorter post-quantum zkSNARKs (via lattice-based assumptions)

zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption
Prover

Complexity Asymptotic Concrete

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-Quantum

Lattices[GMNO18]† 𝑁 log𝑁 1 640 KB

LatticesThis work 𝑵 𝐥𝐨𝐠𝑵 𝟏 16 KB

• ≈10× shorter proofs compared to previous post-quantum zkSNARKs for general NP relations
• Prover and verifier are concretely faster compared to most succinct pre-quantum construction [Gro16]

• Construction is designated-verifier (need secret key to check proofs) and has long CRS

Construction Overview

Follows the classic approach of combining an information-theoretic
proof system (for NP) with a cryptographic compiler

PCP (or IOP)

zkSNARK

hash function (or
polynomial commitment)

Examples:

linear IP linear-only encryption

[Mic00, BCS16]

[BCIOP13, GGPR13]

linear PCP

Construction Overview

Follows the classic approach of combining an information-theoretic
proof system (for NP) with a cryptographic compiler

Starting point: the [BCIOP13] compiler from linear PCPs to zkSNARKs
• Yields the most succinct pre-quantum zkSNARKs [GGPR13, Gro16]

• Basis of several lattice-based zkSNARKs [BISW17, GMNO18]

zkSNARK

linear IP linear-only encryption
[BCIOP13, GGPR13]

linear PCP

(𝑥, 𝑤) 𝝅 ∈ 𝔽𝑚

linear PCP

𝝅 ∈ 𝔽𝑚

𝒒 ∈ 𝔽𝑚

𝒒T𝝅 ∈ 𝔽

verifier

• Verifier given oracle access to a linear
function 𝜋 ∈ 𝔽𝑚

• Several instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂(𝐶 2) [ALMSS92]

• 4-query LPCP based on quadratic
arithmetic programs: 𝑚 = 𝑂(𝐶) [GGPR13]

Linear Probabilistically-Checkable Proofs (LPCPs)
[IKO07]

“encoding” of statement/witness

accept/reject

(𝑥, 𝑤) 𝝅 ∈ 𝔽𝑚

𝝅 ∈ 𝔽𝑚

𝒒 ∈ 𝔽𝑚

𝒒T𝝅 ∈ 𝔽

verifier

Linear Probabilistically-Checkable Proofs (LPCPs)

Oftentimes, verifier is oblivious:
the queries 𝑞 do not depend on

the statement 𝑥

[IKO07]

linear PCP
“encoding” of statement/witness

accept/reject

𝝅 ∈ 𝔽𝑚

verifier

Linear Probabilistically-Checkable Proofs (LPCPs)
[IKO07]

𝑸 = ∈ 𝔽𝑚×𝑘

pack all queries into
single matrix

Equivalent view (if verifier is oblivious):

𝑸 ∈ 𝔽𝑚×𝑘

𝑸T𝝅 ∈ 𝔽𝑘

𝒒1 𝒒2𝒒3 𝒒𝑘⋯

accept/reject

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

Two problems:
• Malicious prover can choose 𝝅 based

on queries
• Malicious prover can apply different 𝝅

to the different columns of 𝑸

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯ Step 1: Encrypt elements of 𝑸 using
additively homomorphic encryption scheme

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

part of the CRS

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof

homomorphic
evaluation

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof

Verifier decrypts to learn
𝑸T𝝅 and runs linear PCP

decision procedure

Designated-verifier SNARK:
decryption key needed to verify

If LPCP verification can be performed
directly on ciphertexts (e.g., with
pairing-based instantiations), then
SNARK is publicly-verifiable

homomorphic
evaluation

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

Two problems:
• Malicious prover can choose 𝝅 based

on queries
• Malicious prover can apply different 𝝅

to the different columns of 𝑸

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

[BCIOP13] approach:
• Add a linear consistency check and view

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only”

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

[BCIOP13] approach:
• Add a linear consistency check and view

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only”

encryption scheme

Intuitively: an encryption scheme that
only supports additive homomorphism

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

Linear-Only Encryption
[BCIOP13]

𝑥1 ∈ 𝔽

𝑥2 ∈ 𝔽

𝑥𝑛 ∈ 𝔽

⋮

ct

adversary

𝛼1, … , 𝛼𝑚 ∈ 𝔽

extractor

Requirement: If Decypt sk, ct ≠ ⊥, then Decrypt sk, ct = σ𝑖∈ 𝑛 𝛼𝑖𝑥𝑖

Intuition: adversary’s strategy can be “explained” by a linear function

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

[BCIOP13] approach:
• Add a linear consistency check and view

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only”

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

All adversarial strategies can be explained by
a linear function of the encrypted query

components ⇒ soundness can now be based
on the soundness of the linear PCP

From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

[BCIOP13] approach:
• Add a linear consistency check and view

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only”

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

All adversarial strategies can be explained by
a linear function of the encrypted query

components ⇒ soundness can now be based
on the soundness of the linear PCP

For zero-knowledge, require that LPCP is
(honest-verifier) ZK and encryption scheme
is circuit private (hides linear combination)

Rest of this talk: will not focus on ZK

Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Correct as long as 𝑒 ≤
𝑞

2𝑝

Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝
Additive homomorphism:
• ct1 = (𝒂1, 𝒔

T𝒂𝟏 + 𝑝𝑒1 + 𝜇1)
• ct2 = (𝒂2, 𝒔

T𝒂𝟐 + 𝑝𝑒2 + 𝜇2)
Then:

ct1 + ct2 = (𝒂1 + 𝒂2, 𝒔
T 𝒂1 + 𝒂2 + 𝑝 𝑒1 + 𝑒2 + (𝜇1 + 𝜇2)

Homomorphic operations increase noise growth

Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

While Regev encryption can be extended to obtain FHE, existing constructions
require additional components or different message embedding

Can we get more homomorphism from vanilla Regev?

Concrete Efficiency of Basic Instantiation

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

homomorphic
evaluation

linear combinations
of length 𝑚 over 𝔽𝑝

Using quadratic arithmetic programs (for
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Amount of homomorphism
determines scheme parameters

Concrete Efficiency of Basic Instantiation

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

homomorphic
evaluation

linear combinations
of length 𝑚 over 𝔽𝑝

Using quadratic arithmetic programs (for
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Need to choose encryption modulus 𝑞 to
support this amount of homomorphism:

Τ𝑞 2𝑝 > 𝑝 ⋅ 𝑚 ⋅ 𝐵
where 𝐵 is the initial noise term

Amount of homomorphism
determines scheme parameters

Concrete Efficiency of Basic Instantiation

For a circuit with 𝑚 = 220 gates and requiring 128 bits of soundness, we require:
• 𝑝 > 2148, so 𝑞 > 2300

• At 128 bits of security, lattice dimension 𝑛 > 104, so a single Regev ciphertext is
over 350 KB (longer than other post-quantum constructions based on IOPs)

• Proof contains 𝑘 ciphertexts, so proof is even longer

Alternatively: Use a small plaintext field 𝔽𝑝 and amplify soundness via parallel repetition

• 𝑝 ≈ 220 and 𝑞 ≈ 2100: single ciphertext is 45 KB
• Need many copies in this case (≈ 128 copies), so proof is again very long

[GMNO18]: use an instantiation where 𝑝 = 232 without soundness amplification
• Proofs are already 640 KB (and provide ≈ 15 bits of provable soundness for

verifying computations of size 216)

New techniques needed to reduce proof size

Revisiting the Bitansky et al. Compiler
[BISW17]

Oblivious verifier can “commit”
to its queries ahead of time Honest prover takes

(𝑥, 𝑤) and constructs
linear PCP 𝝅 ∈ 𝔽𝑚 and

computes 𝑸T𝝅

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

Key idea: Instead of encrypting
each component of 𝑸 individually,

encrypt rows instead
ct𝑚

ct1

ct2

Linear-Only Vector Encryption
[BISW17]

𝒗𝑚 ∈ 𝔽𝑘

𝒗1 ∈ 𝔽𝑘

𝒗2 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

Linear-Only Vector Encryption
[BISW17]

𝒗𝑚 ∈ 𝔽𝑘

𝒗1 ∈ 𝔽𝑘

𝒗2 ∈ 𝔽𝑘

⋮
෍

𝑖∈[𝑚]

𝛼𝑖𝒗𝑖 ∈ 𝔽𝑘

supports homomorphic
vector addition

Linear-only: scheme only supports linear homomorphism

From Linear PCPs to Preprocessing SNARGs
[BCIOP13, BISW17]

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

𝑸T𝝅

SNARK proof

Verifier decrypts to learn
𝑸T𝝅 and runs linear PCP

decision procedure

homomorphic
evaluation

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

ct𝑚

ct1

ct2

From Linear PCPs to Preprocessing SNARGs
[BCIOP13, BISW17]

Honest prover takes
(𝑥, 𝑤) and constructs

linear PCP 𝝅 ∈ 𝔽𝑚 and
computes 𝑸T𝝅

𝑸T𝝅

SNARK proof

Verifier decrypts to learn
𝑸T𝝅 and runs linear PCP

decision procedure

homomorphic
evaluation

common reference string

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

• Proof is a single vector encryption ciphertext
• Allows direct compilation from linear PCPs to

SNARKs (without extra linearity check from
[BCIOP13])

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Key observation: the same vector 𝑎 ∈ ℤ𝑞
𝑛 can be reused with many different secret keys

Amortized/vectorized variant of Regev encryption [PVW08]

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Decrypt 𝑺, ct : Write ct = (𝒂, 𝒗) and output

𝒗 − 𝑺T𝒂 mod 𝑞 mod 𝑝

ct = 𝑛 + 𝑘 log 𝑞
Ciphertext size is additive in the vector dimension

Would be 𝑘(𝑛 + 1) log 𝑞 using vanilla Regev

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)

Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Decrypt 𝑺, ct : Write ct = (𝒂, 𝒗) and output

𝒗 − 𝑺T𝒂 mod q mod 𝑝

ct = 𝑛 + 𝑘 log 𝑞
Ciphertext size is additive in the vector dimension

Can use modulus switching [BV11, BGV12] to reduce ciphertext size
after homomorphic evaluation: 𝑛 + 𝑘 log 𝑞 → 𝑛 + 𝑘 log 𝑞′

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

Lattice-Based zkSNARKs using Vector Encryption

SNARK proof

Using quadratic arithmetic programs (for
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

[BISW17, ISW21]

𝑸T𝝅

common reference string

homomorphic
evaluation

linear combinations
of length 𝑚 over 𝔽𝑝

Using quadratic arithmetic programs (for
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Setting 𝑝 ≈ 228, proof size is
29 KB (with a CRS of size 2.7 GB)

for verifying circuit of size 220

Lattice-Based zkSNARKs using Vector Encryption

SNARK proof

[BISW17, ISW21]

Previously techniques to achieve small soundness:
1. Use large 𝑝 (to ensure LPCP soundness); or
2. Use small 𝑝 and parallel repetition to amplify soundness

Our approach: parallel repetition of LPCP to amplify
soundness:
• Define LPCP to be 𝑡 independent sets of queries
• Accept only if all 𝑡 sets accept

• Requires 𝑘𝑡 LPCP queries and provides soundness
𝐶

2𝑝

𝑡

With vanilla [BCIOP13], same proof size as parallel
repetition

With vector encryption, proof is always a single vector
encryption ciphertext and ct is additive in vector
dimension (not multiplicative)

𝑸T𝝅

Further Compression via Extensions Fields
[ISW21]

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

SNARK proof

𝑸T𝝅

homomorphic
evaluation

linear combinations
of length 𝑚 over 𝔽𝑝

Recall: Noise growth in ciphertexts scales with
• Length 𝑚 of linear combination
• Magnitude of coefficients in linear combination 𝑝

Can we further reduce 𝑝?

Soundness of linear PCP:
2 𝐶

𝔽
Idea: use an extension field of small characteristic

Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

Suppose 𝔽 = 𝔽𝑝𝑘 where 𝑘 > 1

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:
• Compile LPCP over 𝔽𝑝𝑘 to a LPCP over 𝔽𝑝, apply linear-only vector encryption over 𝔽𝑝

• Apply linear-only vector encryption over 𝔽𝑝𝑘

Recall that 𝔽𝑝𝑘 ≅ 𝔽𝑝
𝑘; field operations in 𝔽𝑝𝑘 are linear transformations over 𝔽𝑝

𝑘

Transformation increases number of queries and query dimension by 𝑘

Work over a polynomial ring 𝑅 = ℤ 𝑥 /Φ𝑚 𝑥 where 𝑚 is chosen so that Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝𝑘

Consider Regev encryption over 𝑅 (using module lattices)

Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

Suppose 𝔽 = 𝔽𝑝𝑘 where 𝑘 > 1

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:
• Compile LPCP over 𝔽𝑝𝑘 to a LPCP over 𝔽𝑝, apply linear-only vector encryption over 𝔽𝑝

• Apply linear-only vector encryption over 𝔽𝑝𝑘

Recall that 𝔽𝑝𝑘 ≅ 𝔽𝑝
𝑘; field operations in 𝔽𝑝𝑘 are linear transformations over 𝔽𝑝

𝑘

Transformation increases number of queries and query dimension by 𝑘

Work over a polynomial ring 𝑅 = ℤ 𝑥 /Φ𝑚 𝑥 where 𝑚 is chosen so that Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝𝑘

Consider Regev encryption over 𝑅 (using module lattices)

In both settings: coefficients of
prover’s linear combination have

magnitude ≈ 𝑝 while field has size 𝑝𝑘

Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

This work: consider quadratic extension fields
• 𝑅 = ℤ 𝑥 /(𝑥2 + 1) and set 𝑝 = 3 mod 4 so 𝑅𝑝 = Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝2

• Choose ciphertext modulus 𝑞 to be a power of 2
• All arithmetic operations can be implemented using 128-bit arithmetic
• Low degree means polynomial arithmetic only slightly more expensive

Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

This work: consider quadratic extension fields
• 𝑅 = ℤ 𝑥 /(𝑥2 + 1) and set 𝑝 = 3 mod 4 so 𝑅𝑝 = Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝2

• Choose ciphertext modulus 𝑞 to be a power of 2
• All arithmetic operations can be implemented using 128-bit arithmetic
• Low degree means polynomial arithmetic only slightly more expensive

• Choose 𝑝 = 2𝑡 ± 1 so 𝔽𝑝2 has 2𝑡+1-th roots of unity (for efficient implementation

of LPCP prover)

Higher-degree extension makes polynomial
arithmetic more costly (or need non-power-of-

two modulus to exploit FFTs)

Further Compression via Extensions Fields
[ISW21]

𝑝 ≈ 228 (no extension field)

𝑝 ≈ 213 (quadratic extension)

𝑝 ≈ 219 (quadratic extension)

1.4 × shorter

1.7 × shorter

Working over extension field reduces
noise accumulation ⇒ smaller lattice

parameters ⇒ concretely shorter proofs

Further Compression via Extensions Fields
[ISW21]

𝑝 ≈ 228 (no extension field)

𝑝 ≈ 213 (quadratic extension)

𝑝 ≈ 219 (quadratic extension)

Schemes have comparable prover costs

• Slightly more expensive homomorphic operations over
extension field, but smaller lattice parameters

• Smaller field ⇒ more LPCP queries for soundness
amplification ⇒ higher prover cost

Effect of Field Size
[ISW21]

quadratic extension

base field

Dashed/open entries
denote settings requiring

a modulus 𝑞 > 2128

Using the extension field increases CRS size but decreases proof size
• CRS consists of “compressed” ciphertexts where random component is derived from a PRF

(i.e., ct = (𝒂, 𝒗) where 𝒂 is random and 𝑣 = 𝑺T𝒂 + 𝑝𝒆 + 𝝁)
• Proof consists of full ciphertexts

[see paper for more microbenchmarks]

Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction
Time

Assumption
Size

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Over 10.3× shorter than other post-quantum SNARKs

Still over 131× longer than pairing-based SNARKs

Over 42× shorter than previous lattice-based SNARKs
[GMNO18] (based on reported numbers for verifying
circuit of size 216)

TimeSize

Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Prover cost is essentially cost
of LPCP prover and computing
a linear combination

1.2× faster than pairing-based
SNARKs

Slower than schemes like
Ligero based on MPC-in-the-
head (which does not have
succinct verification)

If we consider
restricted

computations, can
have much faster

provers (e.g.,
ethSTARK [BBHR19])

TimeSize

Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Lattice-based SNARKs have very
lightweight verification: computing a
matrix-vector product (≈ 200,000
integer multiplications) and rounding

Well-suited for lightweight or energy-
constrained devices

TimeSize

Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Limitations of lattice-based SNARKs:
• Resulting construction is designated-

verifier (other schemes are publicly-
verifiable)

• Require expensive trusted setup (need to
encrypt large number of vectors)

• Resulting CRS is large (lattice ciphertexts
still large, even with compression)

TimeSize

Summary

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

SNARK proof

𝑸T𝝅

homomorphic
evaluation

linear combinations
of length 𝑚 over 𝔽𝑝

Directly compile linear PCPs to SNARKs using linear-only vector encryption

Instantiate linear-only vector encryption from vectorized Regev encryption

Work over extension fields for
better concrete efficiency

[see paper for further optimizations]

Open Problems

Concretely-efficient publicly-verifiable SNARKs from lattices

Concretely-efficient designated-verifier SNARKs with reusable
soundness from lattices

Constructions with short proofs but expensive verifiers are known from lattices
[BBC+18, BLNS20]

Thank you!

https://eprint.iacr.org/2021/977

https://github.com/lattice-based-zkSNARKs/lattice-zksnark

