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Argument Systems

prover verifier

𝑥 ∈ 0,1 𝑛 𝜆
accept if 
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ𝐶 ∶ Pr 𝑃 𝑥,𝑤 , 𝑉 𝑥 = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ𝐶 , ∀ efficient 𝑃
∗ ∶ Pr 𝑃∗ 1𝜆, 𝑥 , 𝑉 𝑥 = accept = negl 𝜆

“Efficient prover cannot convince honest verifier of false 
statement”

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

𝐶 = 𝐶𝜆 𝜆∈ℕ: family of Boolean 
circuits of size 𝑠 𝜆



Argument Systems

prover verifier

𝑥 ∈ 0,1 𝑛 𝜆
accept if 
𝑥 ∈ ℒ

[GMR85]

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥,𝑤 = 1 for some 𝑤

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶𝜆
• Running time of 𝑉 is poly 𝜆 + 𝑥 + log 𝐶𝜆

Both must be smaller 
than classic NP 

verification



Succinct Non-Interactive Arguments (SNARGs)

Additional properties of interest:
• Proof of knowledge: succinct non-interactive argument of knowledge (SNARK):

“There exists an efficient extractor that can recover
a witness from any prover that convinces an honest verifier”

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Argument consists of a 
single message



Succinct Non-Interactive Arguments (SNARGs)

Additional properties of interest:
• Zero-knowledge: “Proof does not leak information about the prover’s witness”

• zkSNARK: zero-knowledge succinct non-interactive argument of knowledge

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Argument consists of a 
single message



Succinct Non-Interactive Arguments (SNARGs)

For general NP languages, SNARGs are
unlikely to exist in standard model [BP04, Wee05]

ℒ𝐶 = 𝑥 ∶ 𝐶𝜆 𝑥, 𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤



Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in the 
random oracle model [Mic94]

[Kil92, Mic00, GW11]

accept if 𝑉ℛ𝒪(𝑥, 𝜋) = 1

𝜋 = 𝑃ℛ𝒪(𝑥, 𝑤)

𝑥

prover verifier

Argument consists of a 
single message

random oracle ℛ𝒪

(𝑥, 𝑤)



Succinct Non-Interactive Arguments (SNARGs)

common reference 
string (CRS)

verification 
state

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs: 
allow “expensive” setup

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Setup 1𝜆



Succinct Non-Interactive Arguments (SNARGs)

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

Argument consists of a 
single message(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Very active area of research (encompassing both theory and practice):
PHGR13, BCI+13, BCC+16, Gro16, ZGK+17, AHIV17, WTS+18, GMNO18, BBB+18, BBHR19, BCR+19, XZZ+19, LM19, 
CHM+20, BFS20, SL20, Set20, COS20, CY21, GNS21, GMN21, GLS+21, and many, many more…

This talk: post-quantum constructions (specifically, from lattice-based assumptions)



zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption

Focus is on constructions with a succinct verifier

Prover
Complexity Asymptotic Concrete

𝑁: size of NP relation being verified (𝑁 ≈ 220 for concrete values)

Asymptotic metrics are given up to poly 𝜆 factors (for a security parameter 𝜆)

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-QuantumLattices[GMNO18]† 𝑁 log𝑁 1 640 KB

*for a structured computation

†designated-verifier



zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption
Prover

Complexity Asymptotic Concrete

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-QuantumLattices[GMNO18]† 𝑁 log𝑁 1 640 KB

1000× gap between size of pre-quantum zkSNARKs and post-quantum ones

This talk: constructing shorter post-quantum zkSNARKs (via lattice-based assumptions)



zkSNARK Constructions (with Implementation)

Construction
Proof Size

Assumption
Prover

Complexity Asymptotic Concrete

[Gro16] Pairings𝑁 log𝑁 1 128 bytes

Random OracleFractal [COS20] 𝑁 log𝑁 log2𝑁 215 KB

Marlin [CHM+20] 𝑁 log𝑁 1 704 bytes Pairings

Xiphos [SL20] 𝑁 log𝑁 61 KB Pairings

STARK [BBHR19] 𝑁polylog𝑁 log2𝑁 127 KB* Random Oracle

Pre-Quantum

Post-Quantum

Lattices[GMNO18]† 𝑁 log𝑁 1 640 KB

LatticesThis work 𝑵 𝐥𝐨𝐠𝑵 𝟏 16 KB

• ≈10× shorter proofs compared to previous post-quantum zkSNARKs for general NP relations
• Prover and verifier are concretely faster compared to most succinct pre-quantum construction [Gro16]

• Construction is designated-verifier (need secret key to check proofs) and has long CRS



Construction Overview

Follows the classic approach of combining an information-theoretic
proof system (for NP) with a cryptographic compiler

PCP (or IOP)

zkSNARK

hash function (or 
polynomial commitment)

Examples:

linear IP linear-only encryption

[Mic00, BCS16]

[BCIOP13, GGPR13]

linear PCP



Construction Overview

Follows the classic approach of combining an information-theoretic
proof system (for NP) with a cryptographic compiler

Starting point: the [BCIOP13] compiler from linear PCPs to zkSNARKs
• Yields the most succinct pre-quantum zkSNARKs [GGPR13, Gro16]

• Basis of several lattice-based zkSNARKs [BISW17, GMNO18]

zkSNARK

linear IP linear-only encryption
[BCIOP13, GGPR13]

linear PCP



(𝑥, 𝑤) 𝝅 ∈ 𝔽𝑚

linear PCP

𝝅 ∈ 𝔽𝑚

𝒒 ∈ 𝔽𝑚

𝒒T𝝅 ∈ 𝔽

verifier

• Verifier given oracle access to a linear 
function 𝜋 ∈ 𝔽𝑚

• Several instantiations:
• 3-query LPCP based on the Walsh-

Hadamard code: 𝑚 = 𝑂( 𝐶 2) [ALMSS92]

• 4-query LPCP based on quadratic 
arithmetic programs: 𝑚 = 𝑂( 𝐶 ) [GGPR13]

Linear Probabilistically-Checkable Proofs (LPCPs)
[IKO07]

“encoding” of statement/witness

accept/reject



(𝑥, 𝑤) 𝝅 ∈ 𝔽𝑚

𝝅 ∈ 𝔽𝑚

𝒒 ∈ 𝔽𝑚

𝒒T𝝅 ∈ 𝔽

verifier

Linear Probabilistically-Checkable Proofs (LPCPs)

Oftentimes, verifier is oblivious: 
the queries 𝑞 do not depend on 

the statement 𝑥

[IKO07]

linear PCP
“encoding” of statement/witness

accept/reject



𝝅 ∈ 𝔽𝑚

verifier

Linear Probabilistically-Checkable Proofs (LPCPs)
[IKO07]

𝑸 = ∈ 𝔽𝑚×𝑘

pack all queries into 
single matrix

Equivalent view (if verifier is oblivious):

𝑸 ∈ 𝔽𝑚×𝑘

𝑸T𝝅 ∈ 𝔽𝑘

𝒒1 𝒒2𝒒3 𝒒𝑘⋯

accept/reject



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time

part of the CRS

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

Two problems:
• Malicious prover can choose 𝝅 based 

on queries
• Malicious prover can apply different 𝝅

to the different columns of 𝑸

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time

part of the CRS

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯ Step 1: Encrypt elements of 𝑸 using 
additively homomorphic encryption scheme



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time

part of the CRS

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof

homomorphic 
evaluation



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof

Verifier decrypts to learn 
𝑸T𝝅 and runs linear PCP 

decision procedure

Designated-verifier SNARK:
decryption key needed to verify

If LPCP verification can be performed 
directly on ciphertexts (e.g., with 
pairing-based instantiations), then 
SNARK is publicly-verifiable

homomorphic 
evaluation



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

Two problems:
• Malicious prover can choose 𝝅 based 

on queries
• Malicious prover can apply different 𝝅

to the different columns of 𝑸

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

[BCIOP13] approach: 
• Add a linear consistency check and view 

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only” 

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

[BCIOP13] approach: 
• Add a linear consistency check and view 

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only” 

encryption scheme

Intuitively: an encryption scheme that 
only supports additive homomorphism

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯



Linear-Only Encryption
[BCIOP13]

𝑥1 ∈ 𝔽

𝑥2 ∈ 𝔽

𝑥𝑛 ∈ 𝔽

⋮

ct

adversary

𝛼1, … , 𝛼𝑚 ∈ 𝔽

extractor

Requirement: If Decypt sk, ct ≠ ⊥, then Decrypt sk, ct = σ𝑖∈ 𝑛 𝛼𝑖𝑥𝑖

Intuition: adversary’s strategy can be “explained” by a linear function



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

[BCIOP13] approach: 
• Add a linear consistency check and view 

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only” 

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

All adversarial strategies can be explained by 
a linear function of the encrypted query 

components ⇒ soundness can now be based 
on the soundness of the linear PCP



From Linear PCPs to Preprocessing SNARGs
[BCIOP13]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

[BCIOP13] approach: 
• Add a linear consistency check and view 

construction as a linear IP (LIP)
• Encrypt the LIP queries using a “linear-only” 

encryption scheme

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

All adversarial strategies can be explained by 
a linear function of the encrypted query 

components ⇒ soundness can now be based 
on the soundness of the linear PCP

For zero-knowledge, require that LPCP is 
(honest-verifier) ZK and encryption scheme 
is circuit private (hides linear combination)

Rest of this talk: will not focus on ZK



Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Correct as long as 𝑒 ≤
𝑞

2𝑝



Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝
Additive homomorphism:
• ct1 = (𝒂1, 𝒔

T𝒂𝟏 + 𝑝𝑒1 + 𝜇1)
• ct2 = (𝒂2, 𝒔

T𝒂𝟐 + 𝑝𝑒2 + 𝜇2)
Then:

ct1 + ct2 = (𝒂1 + 𝒂2, 𝒔
T 𝒂1 + 𝒂2 + 𝑝 𝑒1 + 𝑒2 + (𝜇1 + 𝜇2)

Homomorphic operations increase noise growth



Candidate Linear-Only Encryption from Lattices
[BISW17, GMNO18]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

While Regev encryption can be extended to obtain FHE, existing constructions 
require additional components or different message embedding

Can we get more homomorphism from vanilla Regev?



Concrete Efficiency of Basic Instantiation

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

homomorphic 
evaluation

linear combinations 
of length 𝑚 over 𝔽𝑝

Using quadratic arithmetic programs (for 
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Amount of homomorphism 
determines scheme parameters



Concrete Efficiency of Basic Instantiation

𝒒1
T𝝅 𝒒𝑘

T𝝅⋯

SNARK proof𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

homomorphic 
evaluation

linear combinations 
of length 𝑚 over 𝔽𝑝

Using quadratic arithmetic programs (for 
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Need to choose encryption modulus 𝑞 to 
support this amount of homomorphism:

Τ𝑞 2𝑝 > 𝑝 ⋅ 𝑚 ⋅ 𝐵
where 𝐵 is the initial noise term

Amount of homomorphism 
determines scheme parameters



Concrete Efficiency of Basic Instantiation

For a circuit with 𝑚 = 220 gates and requiring 128 bits of soundness, we require:
• 𝑝 > 2148, so 𝑞 > 2300

• At 128 bits of security, lattice dimension 𝑛 > 104, so a single Regev ciphertext is 
over 350 KB (longer than other post-quantum constructions based on IOPs)

• Proof contains 𝑘 ciphertexts, so proof is even longer

Alternatively: Use a small plaintext field 𝔽𝑝 and amplify soundness via parallel repetition

• 𝑝 ≈ 220 and 𝑞 ≈ 2100: single ciphertext is 45 KB
• Need many copies in this case (≈ 128 copies), so proof is again very long

[GMNO18]: use an instantiation where 𝑝 = 232 without soundness amplification
• Proofs are already 640 KB (and provide ≈ 15 bits of provable soundness for 

verifying computations of size 216)

New techniques needed to reduce proof size



Revisiting the Bitansky et al. Compiler
[BISW17]

Oblivious verifier can “commit” 
to its queries ahead of time Honest prover takes 

(𝑥, 𝑤) and constructs 
linear PCP 𝝅 ∈ 𝔽𝑚 and 

computes 𝑸T𝝅

part of the CRS

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

Key idea: Instead of encrypting 
each component of 𝑸 individually, 

encrypt rows instead
ct𝑚

ct1

ct2



Linear-Only Vector Encryption
[BISW17]

𝒗𝑚 ∈ 𝔽𝑘

𝒗1 ∈ 𝔽𝑘

𝒗2 ∈ 𝔽𝑘

⋮

plaintext space is a 
vector space



Linear-Only Vector Encryption
[BISW17]

𝒗𝑚 ∈ 𝔽𝑘

𝒗1 ∈ 𝔽𝑘

𝒗2 ∈ 𝔽𝑘

⋮
෍

𝑖∈[𝑚]

𝛼𝑖𝒗𝑖 ∈ 𝔽𝑘

supports homomorphic 
vector addition

Linear-only: scheme only supports linear homomorphism



From Linear PCPs to Preprocessing SNARGs
[BCIOP13, BISW17]

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

𝑸T𝝅

SNARK proof

Verifier decrypts to learn 
𝑸T𝝅 and runs linear PCP 

decision procedure

homomorphic 
evaluation

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

common reference string

ct𝑚

ct1

ct2



From Linear PCPs to Preprocessing SNARGs
[BCIOP13, BISW17]

Honest prover takes 
(𝑥, 𝑤) and constructs 

linear PCP 𝝅 ∈ 𝔽𝑚 and 
computes 𝑸T𝝅

𝑸T𝝅

SNARK proof

Verifier decrypts to learn 
𝑸T𝝅 and runs linear PCP 

decision procedure

homomorphic 
evaluation

common reference string

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

• Proof is a single vector encryption ciphertext
• Allows direct compilation from linear PCPs to 

SNARKs (without extra linearity check from 
[BCIOP13])



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Regev encryption is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Key observation: the same vector 𝑎 ∈ ℤ𝑞
𝑛 can be reused with many different secret keys

Amortized/vectorized variant of Regev encryption [PVW08]



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝒔 ∈ ℤ𝑞
𝑛

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Encrypt 𝒔, 𝜇 ∈ ℤ𝑝 : Sample random 𝒂 ← ℤ𝑞
𝑛, error 𝑒 ← 𝜒 and output

ct = (𝒂, 𝒔T𝒂 + 𝑝𝑒 + 𝜇)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)

Decrypt 𝒔, ct : Write ct = (𝒂, 𝑏) and output

𝑏 − 𝒔T𝒂 mod 𝑞 mod 𝑝



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Decrypt 𝑺, ct : Write ct = (𝒂, 𝒗) and output

𝒗 − 𝑺T𝒂 mod 𝑞 mod 𝑝

ct = 𝑛 + 𝑘 log 𝑞
Ciphertext size is additive in the vector dimension

Would be 𝑘(𝑛 + 1) log 𝑞 using vanilla Regev

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)



Candidate Linear-Only Vector Encryption
[BISW17]

Conjecture: Vectorized Regev encryption [PVW08] is linear-only

KeyGen 1𝜆 : Outputs a secret key 𝑺 ∈ ℤ𝑞
𝑛×𝑘

Decrypt 𝑺, ct : Write ct = (𝒂, 𝒗) and output

𝒗 − 𝑺T𝒂 mod q mod 𝑝

ct = 𝑛 + 𝑘 log 𝑞
Ciphertext size is additive in the vector dimension

Can use modulus switching [BV11, BGV12] to reduce ciphertext size 
after homomorphic evaluation: 𝑛 + 𝑘 log 𝑞 → 𝑛 + 𝑘 log 𝑞′

Encrypt 𝑺, 𝝁 ∈ ℤ𝒑
𝒌 : Sample random 𝒂 ← ℤ𝑞

𝑛, error 𝒆 ← 𝜒𝑘 and output

ct = (𝒂, 𝑺T𝒂 + 𝑝𝒆 + 𝝁)



𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

Lattice-Based zkSNARKs using Vector Encryption

SNARK proof

Using quadratic arithmetic programs (for 
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

[BISW17, ISW21]

𝑸T𝝅

common reference string

homomorphic 
evaluation

linear combinations 
of length 𝑚 over 𝔽𝑝



Using quadratic arithmetic programs (for 
verifying circuit 𝐶):

• 𝑘 = 4
• 𝑚 = 𝑂 𝐶

• soundness ≈
2 𝐶

𝔽𝑝
=

2 𝐶

𝑝

Setting 𝑝 ≈ 228, proof size is
29 KB (with a CRS of size 2.7 GB) 

for verifying circuit of size 220

Lattice-Based zkSNARKs using Vector Encryption

SNARK proof

[BISW17, ISW21]

Previously techniques to achieve small soundness:
1. Use large 𝑝 (to ensure LPCP soundness); or
2. Use small 𝑝 and parallel repetition to amplify soundness

Our approach: parallel repetition of LPCP to amplify 
soundness:
• Define LPCP to be 𝑡 independent sets of queries
• Accept only if all 𝑡 sets accept

• Requires 𝑘𝑡 LPCP queries and provides soundness 
𝐶

2𝑝

𝑡

With vanilla [BCIOP13], same proof size as parallel 
repetition

With vector encryption, proof is always a single vector 
encryption ciphertext and ct is additive in vector 
dimension (not multiplicative)

𝑸T𝝅



Further Compression via Extensions Fields
[ISW21]

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

SNARK proof

𝑸T𝝅

homomorphic 
evaluation

linear combinations 
of length 𝑚 over 𝔽𝑝

Recall: Noise growth in ciphertexts scales with
• Length 𝑚 of linear combination
• Magnitude of coefficients in linear combination 𝑝

Can we further reduce 𝑝?

Soundness of linear PCP: 
2 𝐶

𝔽
Idea: use an extension field of small characteristic



Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

Suppose 𝔽 = 𝔽𝑝𝑘 where 𝑘 > 1

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:
• Compile LPCP over 𝔽𝑝𝑘 to a LPCP over 𝔽𝑝, apply linear-only vector encryption over 𝔽𝑝

• Apply linear-only vector encryption over 𝔽𝑝𝑘

Recall  that 𝔽𝑝𝑘 ≅ 𝔽𝑝
𝑘; field operations in 𝔽𝑝𝑘 are linear transformations over 𝔽𝑝

𝑘

Transformation increases number of queries and query dimension by 𝑘

Work over a polynomial ring 𝑅 = ℤ 𝑥 /Φ𝑚 𝑥 where 𝑚 is chosen so that Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝𝑘

Consider Regev encryption over 𝑅 (using module lattices)



Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

Suppose 𝔽 = 𝔽𝑝𝑘 where 𝑘 > 1

Can still instantiate using quadratic arithmetic programs

Two approaches to compile to a SNARK:
• Compile LPCP over 𝔽𝑝𝑘 to a LPCP over 𝔽𝑝, apply linear-only vector encryption over 𝔽𝑝

• Apply linear-only vector encryption over 𝔽𝑝𝑘

Recall  that 𝔽𝑝𝑘 ≅ 𝔽𝑝
𝑘; field operations in 𝔽𝑝𝑘 are linear transformations over 𝔽𝑝

𝑘

Transformation increases number of queries and query dimension by 𝑘

Work over a polynomial ring 𝑅 = ℤ 𝑥 /Φ𝑚 𝑥 where 𝑚 is chosen so that Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝𝑘

Consider Regev encryption over 𝑅 (using module lattices)

In both settings: coefficients of 
prover’s linear combination have 

magnitude ≈ 𝑝 while field has size 𝑝𝑘



Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

This work: consider quadratic extension fields
• 𝑅 = ℤ 𝑥 /(𝑥2 + 1) and set 𝑝 = 3 mod 4 so 𝑅𝑝 = Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝2

• Choose ciphertext modulus 𝑞 to be a power of 2
• All arithmetic operations can be implemented using 128-bit arithmetic
• Low degree means polynomial arithmetic only slightly more expensive



Further Compression via Extensions Fields
[ISW21]

(𝑥, 𝑤) 𝜋 ∈ 𝔽𝑚

linear PCP

This work: consider quadratic extension fields
• 𝑅 = ℤ 𝑥 /(𝑥2 + 1) and set 𝑝 = 3 mod 4 so 𝑅𝑝 = Τ𝑅 𝑝𝑅 ≅ 𝔽𝑝2

• Choose ciphertext modulus 𝑞 to be a power of 2
• All arithmetic operations can be implemented using 128-bit arithmetic
• Low degree means polynomial arithmetic only slightly more expensive

• Choose 𝑝 = 2𝑡 ± 1 so 𝔽𝑝2 has 2𝑡+1-th roots of unity (for efficient implementation 

of LPCP prover)

Higher-degree extension makes polynomial 
arithmetic more costly (or need non-power-of-

two modulus to exploit FFTs)



Further Compression via Extensions Fields
[ISW21]

𝑝 ≈ 228 (no extension field)

𝑝 ≈ 213 (quadratic extension)

𝑝 ≈ 219 (quadratic extension)

1.4 × shorter

1.7 × shorter

Working over extension field reduces 
noise accumulation ⇒ smaller lattice 

parameters ⇒ concretely shorter proofs



Further Compression via Extensions Fields
[ISW21]

𝑝 ≈ 228 (no extension field)

𝑝 ≈ 213 (quadratic extension)

𝑝 ≈ 219 (quadratic extension)

Schemes have comparable prover costs

• Slightly more expensive homomorphic operations over 
extension field, but smaller lattice parameters

• Smaller field ⇒ more LPCP queries for soundness 
amplification ⇒ higher prover cost



Effect of Field Size
[ISW21]

quadratic extension

base field

Dashed/open entries 
denote settings requiring 

a modulus 𝑞 > 2128

Using the extension field increases CRS size but decreases proof size
• CRS consists of “compressed” ciphertexts where random component is derived from a PRF 

(i.e., ct = (𝒂, 𝒗) where 𝒂 is random and 𝑣 = 𝑺T𝒂 + 𝑝𝒆 + 𝝁)
• Proof consists of full ciphertexts

[see paper for more microbenchmarks]



Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction
Time

Assumption
Size

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220



Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Over 10.3× shorter than other post-quantum SNARKs

Still over 131× longer than pairing-based SNARKs

Over 42× shorter than previous lattice-based SNARKs 
[GMNO18] (based on reported numbers for verifying 
circuit of size 216)

TimeSize



Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Prover cost is essentially cost 
of LPCP prover and computing 
a linear combination

1.2× faster than pairing-based 
SNARKs

Slower than schemes like 
Ligero based on MPC-in-the-
head (which does not have 
succinct verification)

If we consider 
restricted 

computations, can 
have much faster 

provers (e.g., 
ethSTARK [BBHR19])

TimeSize



Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Lattice-based SNARKs have very 
lightweight verification: computing a 
matrix-vector product (≈ 200,000
integer multiplications) and rounding

Well-suited for lightweight or energy-
constrained devices

TimeSize



Post-Quantum

Pre-Quantum

Concrete Comparison with zkSNARKs
[ISW21]

Construction Assumption

[Gro16] Pairings199 MB 72 s 79 s128 bytes 3.4 ms

CRS Proof Setup Prover Verifier

Fractal [COS20] Random Oracle11 GB 116 s 184 s215 KB 9.5 ms

This work Lattices5.3 GB 2240 s 68 s16.4 KB 1.2 ms

This work Lattices1.9 GB 877 s 56 s20.8 KB 0.4 ms

Ligero [AHIV17] Random Oracle– 38 s14 MB 22 s–

Aurora [BCR+19] Random Oracle– 304 s169 KB 6.3 s–

All benchmarks collected on same hardware for verifying NP relation of size 220

Limitations of lattice-based SNARKs:
• Resulting construction is designated-

verifier (other schemes are publicly-
verifiable)

• Require expensive trusted setup (need to 
encrypt large number of vectors)

• Resulting CRS is large (lattice ciphertexts 
still large, even with compression)

TimeSize



Summary

𝑸 = 𝒒1 𝒒2𝒒3 𝒒𝑘⋯

ct𝑚

ct1

ct2

SNARK proof

𝑸T𝝅

homomorphic 
evaluation

linear combinations 
of length 𝑚 over 𝔽𝑝

Directly compile linear PCPs to SNARKs using linear-only vector encryption

Instantiate linear-only vector encryption from vectorized Regev encryption

Work over extension fields for 
better concrete efficiency

[see paper for further optimizations]



Open Problems

Concretely-efficient publicly-verifiable SNARKs from lattices

Concretely-efficient designated-verifier SNARKs with reusable 
soundness from lattices 

Constructions with short proofs but expensive verifiers are known from lattices 
[BBC+18, BLNS20]

Thank you!

https://eprint.iacr.org/2021/977

https://github.com/lattice-based-zkSNARKs/lattice-zksnark


