A Somewhat Informal
Introduction to FHE

David Wu
August, 2014

Basic Definitions

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

m C
C m
::[Enc J—» ::[Dec }—»
sk

pk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

¢; = Ency,(my)

C3

Evalf J—P
¢, = Encyy (m;)
ekT

DeCSk (Evalf(ekJ C1, CZ)) — f(ml) mZ)

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
* ElIGamal: f(my, my) = mymy
* Paillier: f(my, m{) = my + my
* Goldwasser-Micali: f(mgy, m;) = my @ my

Fully homomorphic encryption: homomorphic with respect
to two operations: addition and multiplication

e Can evaluate Boolean and arithmetic circuits
* [BGNO5]: one multiplication, many additions
e [Gen09]: first FHE construction from lattices

Fully Homomorphic Encryption

lC(f)
¢; = Encyi(my)

::[Eval Ji» C(f): circuit for some function f

¢, = Ency,(m;)
ekT

Correctness: Decy, (Evalf(ek, C1, cz)) = f(my,m,)

Circuit Privacy: Encpk((,’(ml,mz)) ~ Eval¢(ek, ¢y, c3)

Compactness: Decryption circuit has size at most poly(4)

Lattices and LWE

Lattices

All known FHE constructions based on lattice problems

Lattices are discrete additive subgroups

equivalent definition: the set of integer

combination of basis vectors

/....

: discrete subgroup: no other lattice point contained
basis vectors

in ball of radius € > 0 around each lattice point

Hard Lattice Problems

Finding a short vector in a lattice (SVP)

o o o ® ® o o o o o

o o o ® ® o o ® o o

® ® ® ® ® ® ® [/ o o

o o ® ® ® ® ® ® o o
“Good” basis: easy “Bad” basis: not so easy

Exact SVP is NP-hard. Approximation algorithms try to find a

“good” basis using lattice-reduction techniques

Learning with Errors (LWE) [RegO5]

Distribution 1

)

$ $
A < Zg"" b <L

$
A< L7

Distribution 2

)

$
s <17

LWE Assumption: distributions 1 and 2 are computationally

indistinguishable

Learning with Errors (LWE)

A gold mine of applications!

PKC: [Reg05], [KTX07],
FHE: [BV11], [BGV12],

[Pei09]
Bral2], [GSW13]

IBE: [GPVO08], [CHKP10
ABE: [GVW13], [BCG+1
FE: [AFV11]

... and many more!

, [ABB10]
4

Public Key Encryption from LWE [Reg05]

1
o B Xt + e B
)
b n $
L Zg B<—ZZALX" e—y™m
secret key s public key A

secret key is LWE secret,
public key consists of
LWE samples

Regev Encryption

random subset sum of

rows in public key, with
Bt +e message embedded in

. q leading component
: n[d
/

x| B |+ [0

$
r«{0,1}™ public key m € {0,1}

Regev Decryption

rT(Bt+e)+m-E‘ e
/ — T T q T
[rTB]X = 7r'Bt+r e+m-{—‘—r Bt
¢ 2
=m- E‘ +7rle
ciphertext secret key

multiplying by% recovers the

message if 1 e is small

PKC from LWE: Regev Encryption [Reg05]

$
Private key: choose t < Zg and set s « (1, —t)

$
Public key: Choose B « Zg'*™, e « x™ and compute

mx(n+1)

A< (Bs+eB)€EL,

$
Encrypt: Choose random 0/1 vector r < {0,1}™ and compute
A+ (m-|5],0n) e zg*

Decrypt: To decrypt ciphertext ¢, compute E (c, 5)}

PKC from LWE: Regev Encryption [Reg05]

Correctness: if error sufficiently small (< %), then

rounding yields the underlying message.

Security: random subset sum of (a;, b;) is statistically
close to uniform (argument based on leftover hash

lemma). Security follows by LWE assumption.

PKC from LWE: Regev Encryption [Reg05]

Key intuition: hide message by adding some noise;

everything works if noise is sufficiently small

Basic observation underlying many FHE

constructions

SWHE Construction from LWE

From SWHE to FHE

Somewhat homomorphic encryption: encryption scheme that
supports a limited number of operations

All known constructions based on lattices:

 Hide messages by adding noise

* Homomorphic operations increase noise

Gentry’s blueprint [Gen09]: bootstrapping SWHE to FHE

* Homomorphically evaluate the decryption circuit

* Provides a way to “refresh” a ciphertext

A Simple SWHE Scheme [GSW13]

Ciphertext are matrices

Secret key is a vector v € Zg

A ciphertext C encrypts a message m if the following holds:
Cv=mv+e

where e is a small error term

Intuition: the message is an approximate eigenvalue of the

ciphertext

The GSW Scheme

* Aciphertext C encrypts a message m if the following holds:
Cv=mv+e
where e is a small error term

* Candecryptif v has a “big” coefficient v; by rounding:

(C;, v) mv; + e/

Ui Vi

where C; denotes the i*" row of C

The GSW Scheme

Homomorphic operations very natural — suppose C; encrypts

mq and C, encrypts m,

Homomorphic addition: C; + C, (almost) encrypts m; + m,:
(Cl + Cz)v — (m1 + mz)v +|81 + 82|

Homomorphic multiplication: C; C, (almost) encrypts m;m,:

C1C,v = (mymy)v +myeq + Ciey|

Everything works if noise is small enough

Constraining Noise Growth

* Recall Regev decryption:

, _
m <« |[—{c, s)
q

* Key operation is inner product

 Want transformation that preserves inner product while

reducing “size” (norm) of vectors

Bit Decomposition

Let £ = |log, q] + 1 and suppose z € Zg

BitDecomp(z) = (21,0, «-+s Z1¢—15 =+ » Zn,0» - » Zn,p—1) Where z; ; is the

jth bit of the binary decomposition of z;
BitDecomp~1(z") = (Zle ZjZ{,j oy f:l 2jZ7’1,j)

PowersOfTwo(z) = (zq, 224, ...,

Bit Decomposition

» BitDecomp(z) = (219, .++)Z1,0—1) +» Zp.0s +++» Zn p—1)

e PowersOfTwo(z) = (zl, 271, 0,2 2,02, 22, 0, 2870 Zn)

(BitDecomp(x), PowersOfTwo(y)) = (x, y)

Flattening a Vector

* Flatten(z) = BitDecomp(BitDecomp_l(Z))

* Flatten(z) is a 0/1 vector even though z need not be a 0/1 vector

)
=

n
(x, PowersOfTwo(y)) = z X j
0

i=1j

n £—1
Preserves inner /
=) Vi) 2
2

product with .
= (BitDecomp™*(x), y)

PowersOfTwo(+) = (Flatten(x), PowersOfTwo(y))

GSW Key Generation Regev-like, but where we apply
PowersOfTwo to the secret

1 p— —
PowersOfTwo | |, B Xt + e B
)
$ $ $
t <Ly _B(_Zznxn e—ym B
secret key public key A
PowersOfTwo(s)

Note: As = Bt+e—Bt=c¢e¢

GSW Encryption

* Recall Regev decryption:

, _
m < |—{c, s)
q

* So far, replaced s with PowersOfTwo(s), so to preserve inner

product, we apply BitDecomp to the ciphertext ¢

GSW Encryption

Bt + e
Flatten | BitDecomp R X B + m - Iy
T
$
R «{0,1}Vxm public key m € {0,1}
\

Constrains norm of ciphertext, but preserves
inner product (¢, PowersOfTwo(s))

Approximate Eigenvalues

* Secret key is
v < PowersOfTwo(s)
* Encryption of a message m € {0,1} given by
C « Flatten(m - Iy + BitDecomp(R -A))

e (Qbserve:

Cv=mv+RAs=mv+

Small since R is 0/1
matrix

Revisiting Homomorphic Operations

Homomorphic operations very natural — suppose C; encrypts

mq and C, encrypts m,

Homomorphic addition: C; + C, encrypts my + m,:
(Cl + Cz)v — (m1 + mz)v -|-|81 + 82|

If e; and e, are small, then is e; + e, is small

Revisiting Homomorphic Operations

Homomorphic operations very natural — suppose C; encrypts

mq and C, encrypts m,

Homomorphic multiplication: C;C, (almost) encrypts mym,:

C]_sz — (mlmz)v +‘m281 + C182 ‘

Noise increases based on
* |m,|: OKsince m, € {0,1}
* ||C;]|: OK since C; is 0/1 matrix

Revisiting Homomorphic Operations

But homomorphic operations might produce matrix that is
not 0/1

Can use the Flatten operation again!

Homomorphic addition: Flatten(C; + C,)

Homomorphic multiplication: Flatten(C;C5)

Ciphertext always consist of 0/1 matrices

Brief Note on Security [High-Level]

* Public key components are simply LWE samples

* Ciphertext components are very similar to Regev encryptions
(omitting a few small details, but a very similar proof carries

through), and hardness derives from LWE

Questions?

