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Navigation: A Solved Problem?

directions to the

Catamaran Resort W
—

G ) waze

Issue: cloud learns where you are
and where you are going!
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“Trivial” Solution

Give me the entire
map!
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“Trivial” Solution

g Give me the entire map!

Cons:
* routing information
constantly changing
Pros: lots of privacy (for the client) * map provider doesn’t
want to give away map
for “free”




Private Shortest Paths

San Diego Airport
to Catamaran
Resort

A

protocol
() waze
—
Client Privacy: server does not Server Privacy: client only learns

learn source or destination route from source to destination



Private Shortest Paths

Model: assume client knows topology of the network (e.g., road
network from OpenStreetMap)

Weights on edges (e.g., travel times) are hidden

Client Privacy: Server does not learn client’s source s or
destination ¢t

Server Privacy: Client only learns s — t shortest path and nothing
about weights of other edges not in shortest path



Straw Man Solution

Suppose road network has n nodes

Construct n X n database:

11 T2 1n
21 T22 2n
'r' 1 1" 2 ceoe 'r'
record 7;: shortest path " " - Shortest Path Protocol:
from node s tonode ¢t privately retrieve record

(e.g., s 2 vy 21V, o t) Ts¢ from database



Symmetric Private Information Retrieval (SPIR)

—
SPIR
protocol
—
cloud database
Client Privacy: server does Server Privacy: client only

not learn i learns record i



Finding Structure

Straw man solution requires SPIR on databases with n? records —
qguadratic in number of nodes in the graph — rather impractical!
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Finding Structure

Typically, an intersection has up to four neighbors (for the four
cardinal directions)

For each node in the

Lk W A network, associate each
— ¢ west‘

N\

src

neighbor with a direction
(unique index)

south
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Finding Structure

Next-hop routing matrix for graph with n nodes:

Ts¢: index of neighbor to take on
first hop on shortest path from
node s to node t

shortest path protocol:
iteratively retrieve the next hop

in shortest path



Finding Structure
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Finding Structure
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Observation 2: Road

TR
. | networks have geometric

structure

»—4— Nodes above hyperplane:
first hop is north or east
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\ south
O L 4 é) \ . 4 JJ o 1,
ﬁ({__\% = Q 9_\3; \ﬁq 3 _’___%___’_ { —’g’-‘.“s—.._ '.
'y iy iy =i
< O ¢ ¥ 3 ¢ O €
Lg first hop:lmove south.

o W first hop is south or west



Finding Structure
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A Compressible Structure

Let M(NE) gnd MANW) pe next-hop matrices along NE and NW axis
(entries in M(NE) and MANW) gre bits)

Objective: for i € {NE, NW}, find matrices A®D, B® such that
M® = sign (A(i> . (B(i>)T)



A Compressible Structure

Objective: for i € {NE, NW}, find matrices A, B® such that
M® = sign (A(i) . (Ba))T)

B,: t™ row of

“destination matrix” BT Computing next-hop
reduces to computing inner

products
\ M...: direction Index of row in A only
st )
fromsons — t depend on source, index of
A - st row of shortest path row in B only depend on
X destination

“source matrix”

M



A Compressible Structure
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An Iterative Shortest-Path Protocol

To learn next-hop on s — t shortest path:
1. Use SPIR to obtain s™ row of ANNE) gnd A(NW)

2. Use SPIR to obtain t™ row of BINE) gpnd B(NW)
3. Compute

MS(tNE) = sign <A§NE), Bt(NE)> and MS(FW) = sign <A§NW), Bt(NW)>

Problem: rows and columns
of A, B reveal more
information than desired

SPIR queries on databases
with n records



Affine Encodings and Arithmetic Circuits

Goal: Reveal inner product without revealing vectors

Idea: Use a “garbled” arithmetic circuit (affine encodings) [AIK14]

* Encodings reveal output of computation (inner product) and
nothing more

Solution: SPIR on arithmetic circuit encodings



An Iterative Shortest-Path Protocol

To learn next-hop on s — t shortest path:
1. Use SPIR to obtain st row of ANE) gnd A(NW)

2. Use SPIR to obtain t™ row of BINE) gpnd B(NW)

3. Evaluate inner products <A§NE), Bt(NE)> and <A§NW): Bt(NW)>

4. Compute MS(,I:\IE) and MS(,I:\IW) (signs of inner products)

Affine encodings hide source and
destination matrices, but inner
products reveal too much information



Thresholding via Garbled Circuits

Goal: Reveal only the sign of the inner product

Solution: Blind inner product and evaluate the sign function using
a garbled circuit [Yao86, BHR12]
* Instead of (x, y), compute a(x, y) + p for random a, § € I,

* Use garbled circuit to unblind and computing the sign



An Iterative Shortest-Path Protocol

To learn next-hop on s — t shortest path:

1. Use SPIR to obtain st row of AINE) gpnd A(NW)
2. Use SPIR to obtain t™ row of BINE) gpnd B(NW)
3. Evaluate to obtain inner products z(NE)and z(NW)
4. Use to compute MS(,I;IE) and Mbg,l:\]w)

See paper for protection

Semi-honest secure! . . .
against malicious parties



Benchmarks
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Online Benchmarks

. Number of . .
Time per Round (s) |Bandwidth (KB)

San Francisco 1830 1.44 + 0.16 88.24
Washington D.C. 2490 1.64 + 0.13 90.00
Dallas 4993 2.91 +0.19 95.02

Los Angeles 7010 4.75 + 0.22 100.54

Timing and bandwidth for each round of the online protocol
(with protection against malicious clients)




End-to-End Benchmarks

Number of | Total Online

Online
Bandwidth

City
San Francisco 97 140.39
Washington D.C. 120 197.48
Dallas 126 371.44
Los Angeles 165 784.34

(MB)
8.38
10.57
11.72
16.23

End-to-end performance of private shortest paths protocol (after padding
number of rounds to maximum length of shortest path for each network)



Conclusions

Problem: privacy-preserving navigation

Routing information for road networks are compressible!

* Optimization-based compression technique achieves over 10x
compression of next-hop matrices

Compressed routing matrix lends itself to iterative shortest-path protocol

 Computing the shortest path reduces to computing sign of inner
product

* Leverage combination of arithmetic circuits + Boolean circuits



Questions?



