Watermarking Cryptographic Functionalities
from Standard Lattice Assumptions

Sam Kim and David J. Wu
Stanford University

Digital Watermarking

CRYPTO

g ©

CRYPTO CRYPTO

Often used to identify owner of content and prevent
unauthorized distribution

Digital Watermarking

CRYPTO .

LT

g ©
f = , ']"

CRYPTO - - i e CRYPTO

 Content is (mostly) viewable

Digital Watermarking

: J .
¥ s e
f 2ot
X

T L ke
b == ~,]"

i
T ‘
"
- ’ — - N . '_.“"
: ¥ ac o ‘

 Content is (mostly) viewable
 Watermark difficult to remove (without destroying the image)

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl{portServ ports)

1
int sockServl, sockServ?, sockClient;
struct sockaddr_in monAddr, addrClient, addrServ2;
socklen t lepAddrClient;

if ((sockServl = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror{'Erreur socket"});

exit(1);

t

if ((sockServ? = socket(AF _INET, SOCK STREAM, 0)) == -1) {
perror{"Erreur socket");

exit(1); -

' @ CRYPTO

Embed a “mark” within a
program

Three algorithmes:

P h ek g M PR
ol X . T LY 0 T SR U N 4

e e *‘4"-'9.. _)* Py el Pl oy ,,5,.;_ B v %

.s,,'g‘..“‘.:,; 4 o wl‘k st b

Te fewip, Bws e, A # *;::_? PN p
M .

e

2

2§ fiwntk i - Mg e e 4. o 3
Ead T

‘

If mark is removed, then
program is corrupted

. Setup(l’l) — wsk: Samples the watermarking secret key wsk
« Mark(wsk, C) — C': Takes a circuit C and outputs a marked circuit C'
« Verify(wsk, C') — {0,1}: Tests whether a circuit C’ is marked or not

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

i

)
void serveurliportServ ports) t T2en wheh g A% WK

int sockServl, sockServ?, sockClient; ? PR VI LRI SIE YR R TSRV SEOWOR S £ YL
struct sockaddr_in monAddr, addrClient, addrServ2; AR W Y W ,(«,ju:«-,r P R, - S SE 8
socklen_t lenAddrClient; P DL PR LWL SRR s T

- Extends to setting where watermark can be an (arbitrary) string:

e Mark(wsk, C,m) — C': Takes a circuit C and a message m
and outputs a marked circuit C'

E Verify(wsk, C') — m: Takes a circuit C’ and outputs a

message m (or L if the circuit is unmarked)

Three [See paper for full details]

. Setup(l’l) gR. Samples the watermarking secret key wsk
« Mark(wsk, C) — C': Takes a circuit C and outputs a marked circuit C'
« Verify(wsk, C') — {0,1}: Tests whether a circuit C’ is marked or not

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl{portServ ports) void serveurl{portServ ports)
{ {
int sockServl, sockServ?, sockClient; int sockServl, sockServ?, sockClient;:
struct sockaddr_in monAddr, addrClient, addrServ2; struct sockaddr_in monAddr, addrClient, addrServ2;
socklen t lepAddrClient; ar socklen t lepAddrClient;
if ((sockServl = socket(AF_INET, SOCK_STREAM, B)) == «1) { if ((sockServl = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror{'Erreur socket"}); perror{ Erreur socket");
exit(1); exit(1});
} }
if ((sockServ? = socket(AF _INET, SOCK STREAM, 0)) == -1) { if ((sockServ? = socket(AF _INET, SOCK STREAM, 8)) == -1) {
perror{"Erreur socket"); perror{"Erreur socket");
exit(1); exit(l1);
} } @ CrRyPTO

Functionality-preserving: On input a program (modeled as a Boolean
circuit C), the Mark algorithm outputs a circuit C' where

C(x) =C'(x)
on all but a negligible fraction of inputs x

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl{portServ ports) void serveurl(portServ ports)
i i

int sockServl, sockServ?, sockClient;
struct sockaddr_in monAddr, addrClient, addrServ2;
socklen_t lenAddrClient;

Perfect functionality-preserving o HCtsennt = et T, s00X SR, 01 = 1 4

perror{ Erreur socket");
exit(l);

impossible assuming program D s = soketta T, S oL) = 1 4

perror{"Erreur socket");
exit(1);

} @ CRYPTO

obfuscation (seirsvy12]

Functionality-preserving: On input a program (modeled as a Boolean
circuit C), the Mark algorithm outputs a circuit C’ where

C(x) =C'(x)
on all but a negligible fraction of inputs x

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl(portServ ports) s g N % ny
i
int sockServl, sockServ?, sockClient; P T O PO S e
struct sockaddr_in monAddr, addrClient, addrServ2; AR W N W aeEar I e A e
socklen_t lenAddrClient; PR RO R P e
if ((sockServl = socket(AF_INET, SOCK_STREAM, B)) == «1) { Yo Lo e B T 3
perror{'Erreur socket"}); FO i b
exit(l); w
} 3
if ((sockServ? = socket(AF _INET, SOCK _STREAM, 0)) == -1) { sF Ll Tl o ol kT LR, M Nl el b4 wy -1. @
perror{"Erreur socket"); FoA e o4 :
exit(l); A %
} @ crYPTO

Unremovability: Given a marked circuit C*, no efficient adversary can
construct a circuit C' where

* (C'(x) = C*(x) on all but a negligible fraction of inputs x

« Verify(wsk,C') =0

Watermarking Secu rlty Game [CHNVW16, BLW/17]

C
wsk « Setup(l’l) Mark(wsk, C) < [
C* < C >
1 ﬁf Mark(wsk, C*)
—
fﬂﬂ C

Mark(wsk, C) <)

Unremovability: Given a marked circuit C*, no efficient adversary can
construct a circuit C' where

* (C'(x) = C*(x) on all but a negligible fraction of inputs x

« Verify(wsk,C') =0

Watermarking Security Game icivwis, sz

(C)

wsk(—Setup(l’l) ’ Mark(wsk, C) < [
..

C*<C o y,
= [ﬁf Mark(wsk, C*)

a4 r C)
Mark(wsk, C) <)
. ,

 Adversary has access to marking oracle (sees marked programs of its choosing)

e Challenge circuit C* sampled from the circuit family

« Adversary has complete flexibility in crafting C’ (it just outputs a description of a
circuit)

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl(portServ ports) s g N % ny
i
int sockServl, sockServ?, sockClient; PR AP LRI QR U X UL SERSORT S
struct sockaddr_in monAddr, addrClient, addrServ2; BT W N W pe e PR T2 TR 8
socklen t lenAddrClient; - PR RO R P e
if ((sockServl = socket(AF_INET, SOCK_STREAM, 0)) == -1} { (R L N T N T ey 3
perror{'Erreur socket"}); i by o
exit(1); *‘V
! 3
if ((sockServ? = socket(AF _INET, SOCK STREAM, 0)) == -1) { o5 Ll e o ook LT, MG Wle e, by, wy -l g
perror{"Erreur socket"); T I N B .
exit(1}); bk G A 2
} @ CRYPTO

Unforgeability: Given marked programs C4, ..., Cp, no efficient adversary
can construct a circuit C' where
* Foralli € [#], C'(x) # C;(x) on a noticeable fraction of inputs x
« Verify(wsk,C') =1

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

void serveurl{portServ ports) R S b W ¥
i
int sockServl, sockServ?, sockClient; PR AP LRI QR U X UL SERSORT S
struct sockaddr_in monAddr, addrClient, addrServ2; AT W N W pe B -y [P X
socklen t lenAddrClient; P RN G e R T
if ((sockServl = socket(AF_INET, SOCK_STREAM, 0)) == -1} { R R R e VA S T y
perror{'Erreur socket"}); i A e
exit(l): oyt
! 3
if ((sockServ? = socket(AF _INET, SOCK STREAM, 0)) == -1) { iF tiendk B2 Ak LTS SR Tl Sl L
perror{"Erreur socket"); FoA e o4 :
exit(1}); EEGAEAS
} @ crYPTO

* Notion only achievable for functions that are not learnable
* Focus has been on cryptographic functions

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

PRF(k,") PRF(k,")
| /} Mark | /}
(-j pseudorandom _ (”“j pseudorandom
function function

@ CRYPTO

* Focus of this work: watermarking PRFs [cinvwis, Buwi7)

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BL\W17]

Py (x): o Mark Py (x):

On input x, output PRF(k, x) _ On input x, output PRF(k, x)

@ CrYPTO

* Focus of this work: watermarking PRFs [cinvwis, Buwi7)
* Enables watermarking of symmetric primitives built from
PRFs (e.g., encryption, MACs, etc.)

Main Result

awr

Pk(.X'):
On input x, output PRF(k, x)

Mark

)

Pk(.X'):

On input x, output PRF(k, x)

@ CrYPTO

This work: Under standard lattice assumptions, there exists a

secretly-verifiable watermarkable family of PRFs

Blueprint for Watermarking PRFS icinvwis, suwa

M key

domain range

Step 1: Evaluate PRF on test points x¢, X5, X3 (part of the watermarking
secret key)

Blueprint for Watermarking PRFS icinvwis, suwa

M key

domain range

Step 2: Derive a pair (x*, y*) from y1, y5, V3

Blueprint for Watermarking PRFS icinvwis, suwa

M key

PRF(k, x*)

domain range

Step 3: “Marked key” is a circuit that implements the PRF at all points,
except at x*, the output is changed to y”*

Blueprint for Watermarking PRFS icinvwis, s,

Defer
implementation
details for now...

PRF(k, x*)

domain range

Step 3: “Marked key” is a circuit that implements the PRF at all points,
except at x*, the output is changed to y”*

Blueprint for Watermarking PRFS icinvwis, s,

Defer
marked key implementation
details for now...

PRF(k, x*)

domain range

Verification: Evaluate function at x4, x,, x3, derive (x*, y*) and check if
the value at x™ matches y”*

Blueprint for Watermarking PRFS icinvwis, s,

Defer
implementation
details for now...

Need different x* for different

programs — otherwise easy to
remove if adversary sees
domain watermarked keys of its choosing

Verification: Evaluate function at x4, x,, x3, derive (x*, y*) and check if
the value at x™ matches y”*

Blueprint for Watermarking PRFS icinvwis, s,

Defer
marked key implementation
details for now...

MFUnctionality-preserving: function differs at a single point

Blueprint for Watermarking PRFS icinvwis, s,

Defer
implementation
details for now...

MFUnctionality-preserving: function differs at a single point

|Z[Unremovab|e: as long as adversary cannot tell that (x*, y*) is “special”

Blueprint for Watermarking PRFS icinvwis, s,

Prior solutions: use obfuscation
to hide (x*, y*)

How to implement this functionality?

B|ueprint fOr Watermarking PRFs [CHNVW16, BLW/17]

Obfuscated program: Prior solutions: use obfuscation
to hide (x*, y*
(P(x*,y*) (x):) (x*,y™)
¢ ify = x* fout v* Obfuscated program has PRF key
ITx = x,outputy embedded inside and outputs
* else, output PRF(k, x) PRF(k, x) on all inputs x # x*
_ ~/ andy* whenx = x~

How to implement this functionality?

Blueprint for Watermarking PRFS iciwwis, suinn

Obfuscated program: Prior solutions: use obfuscation
to hide (x*, y*
/P(x*,y*) (x):) (x*,¥%)
S on = ot fout v* Obfuscated program has PRF key
ITx = x,outputy embedded inside and outputs
° else, output PRF(k, x) PRF(k, x) on all inputs x # x*
_ and y* when x = x~*

Essentially relies on

secretly re-programming
the value at x” functionality?

B|ueprint fOr Watermarking PRFs [CHNVW16, BLW/17]

Obfuscated program: Prior solutions: use obfuscation
éa \ to hide (x*,y*)
P (x*) (X):
Obfuscated program has PRF key
embedded inside and outputs
* else, output PRF(k, x) PRF(k, x) on all inputs x # x*
_ ~/ andy* whenx = x~

Key technical challenge: How to hide (x™, y*) within the
watermarked key (without obfuscation)?

Blueprint for Watermarking PRFS iciwwis, suinn

Obfuscated program: Prior solutions: use obfuscation
4 to hide (x*, y™*)
P (e y%) (%) ‘
- % *
cifx = x ’ OUtpUt y Has an obfuscation flavor: need &

o e|5e, output PRF(k’ bd to embed a secret inside a piece B
_ of code that cannot be removed

Key technical challenge: How to hide (x*, y*) within the
watermarked key (without obfuscation)?

B|ueprint fOr Watermarking PRFs [CHNVW16, BLW/17]

Obfuscated program: Prior solutions: use obfuscation
éa \ to hide (x*,y*)
P (x*) (X):
Obfuscated program has PRF key
embedded inside and outputs
* else, output PRF(k, x) PRF(k, x) on all inputs x # x*
_ ~/ andy* whenx = x~

This work: Under standard lattice assumptions, there exists a
secretly-verifiable watermarkable family of PRFs

Starting Point: Private Puncturable PRFS iz, smaz, cern

 Watermarked PRF implements
PRF at all but a single point

e Structurally very similar to a
puncturable PRF [Bw13, BGI13, kPTz13]

Puncturable PRF:

PRF key punctured key

Starting Point: Private Puncturable PRFS iz, smaz, cern

 Watermarked PRF implements
PRF at all but a single point

Can be used to evaluate the

PRF on all points x # x~
Puncturable PRF:

PRF key punctured key

Starting Point: Private Puncturable PRFS iz, smaz, cern

PRF key punctured key

Recall general approach for watermarking:
1. Derive (x*, y*) from input/output behavior of PRF

2. Give out a key that agrees with PRF everywhere, except has value

However, punctured key does not
necessarily hide x*, which allows
adversary to remove watermark

y atx =x PRF key

punctured at x~

Starting Point: Private Puncturable PRFs w17, sz, cen

punctured key

Punctured keys typically do not provide
flexibility in programming value at

punctured point: difficult to test if a
or of PRF

'ywhere, except has value

However, punctured key does not
necessarily hide x*, which allows
adversary to remove watermark

punctured at x~

Starting Point: Private Puncturable PRFS iz, smaz, cern

o R = &

PRF key punctured key

Problem 1: Punctured keys do not hide the punctured point x*
* Use private puncturable PRFs
Problem 2: Difficult to test whether a value is the result of using a
punctured key to evaluate at the punctured point

Starting Point: Private Puncturable PRFS iz, smaz, cern

punctured key

In existing lattice-based private puncturable PRF

constructions [skm17, cc17}, value of punctured key

e a Rk at punctured point is a deterministic function of
« Use pr the PRF key

Problem 2: Difficult to test whether a value is the result of using a
punctured key to evaluate at the punctured point

Starting Point: Private Puncturable PRFS iz, smaz, cern

punctured key

Problem 1: Punctured keys do not hide the punctured point x*
 Use privately puncturable PRFs
Problem 2: Difficult to test whether a value is the result of using a
punctured key to evaluate at the punctured point
* Relax programmability requirement

Private Translucent PRFs

M key

PRF(k, x*)

Private puncturable PRF family with the property that output of any
punctured key on a punctured point lies in a sparse, hidden subspace

Private Translucent PRFs

r\\\\\ punctured key

Private puncturable PRF family with the property that output of any
punctured key on a punctured point lies in a sparse, hidden subspace

Private Translucent PRFs

r\\\\ punctured key

Secret testing key associated with
the PRF family can be used to test for

Private puncturable PRF family membership in the hidden subspace

punctured key on a punctured point lies in a sparse, hidden subspace

Private Translucent PRFs

(\\\ punctured key

e Values in special set looks indistinguishable from a
random value (without secret testing key)

* Indistinguishable even though it is easy to sample
translucent [coNo97] values from the set

Sets satisfying such
properties are called

Watermarking from Private Translucent PRFs

f\\\\\ PRF key

PRF(k, x*)

Watermarking secret key (wsk): test points x4, ..., x4
and testing key for private translucent PRF

Watermarking from Private Translucent PRFs

To mark a PRF key k, derive special point x* and puncture
k at x*; watermarked key is a program that evaluates using
the punctured key

Watermarking from Private Translucent PRFs

Q\\\ marked key

To test whether a program C’ is watermarked, derive test point x*
and check whether C'(x™) is in the translucent set (using the testing
key for the private translucent PRF)

Constructing Private Translucent PRFs

Blueprint

Private

-attice PRES Translucent PRF

Private

Puncttj[gv?sl?le PRE Puncturable PRF

[BKM17, CC17, BTVW17]

Learning with Errors (LWE) (regos)

(4,sTA+eT) =, (A uT)

R nxm R n R m R m
ALy s Ly, ey, u1Ly,

Learning with Rounding (LWR) gera2)

Replace random errors with deterministic rounding:

(A, [STA]p) ~, (A, [uT]p)

R __ . R R
A—Zg"™, s <Ly, u« Ly

Hardness reducible to LWE (for suitable parameter settings)

More suitable starting point for constructing lattice PRFs

Lattice PRFS [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]

(A, [sT/ﬂp) ~, (A, [uﬂp)

Intuition: set s to be the secret

key for the PRF and derive A as
a function of the input

Lattice PRFs [BPR12, BLMR13, BP14, BV15, BFPPS15, BKM17, BTVW17]
(4, [sT/ﬂp) ~ (4 {uT}p)

Fix (public) random matrices Ay, ..., A, € Zg™™
Secret key: LWE secret vector s € Z

PRF evaluation: on input x € {0,1}¢, derive A, from 44, ... A, and output
PRF(s, x) = [s"Ay|

Question: how to derive 4, from 44, ..., 4,7

Homomorphic Matrix Embeddings seeinswia

A way to encode x € {0,1}* as a collection of LWE samples
take LWE matrices 44, ..., A, € ngm and a secret s € Zg:

ST(Al + x1 * G) + 61
encoding of x; with respect to 4,

Homomorphic Matrix Embeddings esnswia

LWE matrix
associated with each
input bit

tion of LWE samples

Sl G € ngm is a fixed
M and a secret s € Z’C}:

gl “gadget” matrix

ST(Al + x1 * G) + el
encoding of x; with respect to A,

ST(Ag + Xp - G) + ey

Homomorphic Matrix Embeddings seeinswia

A way to encode x € {0,1}* as a collection of LWE samples
take LWE matrices 44, ..., A, € ZZX’" and a secret s € Zg:

Function of f and

ST(Al + X1 ° G) + €1 Al' ...,Ag only

» sT(As + f(x) - G) + noise

Encodings support homomorphic
operations

ST(Ag + Xp - G) + ey

Encoding of x = Encoding of f(x)

Puncturable PRFs from LWE s

PRF evaluation: on input x € {0,1}*, derive 4, from A4, ... A, and output
PRF(s, x) = [sTA,Jp

Question: how to derive 4, from A4, ..., A,?

Let A, ..., A, be matrices associated with bits of x € {0,1}*

Define PRF evaluation with respect to equality function

N 1, x=x"

Let A, be matrix associated with evaluating eq,, on 44, ..., 4,

Puncturable PRFs from LWE v

PRF(s, x) = |s" Aeq, |,

To puncture the key s at a point x*, give out encodings of x™:

‘ sT(Aeq, + €4, (x*) - G) + noise

s (A, + x; - G) + e, PRF evaluation (at x)
using punctured key

ST(A]_ + XI * G) + el

Puncturable PRFs from LWE v

PRF(s, x) = |s" Aeq, |,

To puncture the key s at a point x*, give out encodings of x™:

‘ sT(Aeq, + €4, (x*) - G) + noise

s (A, + x; - G) + e, PRF evaluation (at x)
using punctured key

ST(A]_ + XI * G) + el

If x # x*, eq,(x*) =0, so
T : _ | T _
[s Agq, + nmse}p = [s Aeqxwp = PRF(s, x)

Puncturable PRFs from LWE v

PRF(s, x) = |s" Aeq, |,

To puncture the key s at a point x*, give out encodings of x™:

‘ sT(Aeq, + €4, (x*) - G) + noise

s (A, + x; - G) + e, PRF evaluation (at x)
using punctured key

ST(A]_ + XI * G) + el

If x = x*, eq,(x*) =1, so

{ST(Aeqx* + G) + noise}p + {STAeqx*L = PRF(s, x*)

Puncturable PRFs from LWE v

PRF(s, x) = |s" Aeq, |,

To puncture the key s at a point x*, give out encodings of x™:

‘ sT(Aeq, + €4, (x*) - G) + noise

s (A, + x; - G) + e, PRF evaluation (at x)
using punctured key

ST(A]_ + XI * G) + el

This construction gives a puncturable PRF from LWE

Private Puncturable PRFs [BKM17, BTVW17]

PRF(s, x) = [STAeqx]p

ST(A]_ + x; * G) + 61

ST(Ag + X; ¥ G) + ey

Evaluating PRF using punctured
key requires knowledge of x*

Key idea in [BKM17]: encrypt the
punctured point using an FHE

scheme and homomorphically
evaluate the equality function

Private Puncturable PRFs [BKM17, BTVW17]

A . N S SN S N SN BN N S S

FHE decryption + homomorphic evaluation of eq,

ST(Al + Ctl * G) + 61

Punctured key consists of :
encodings of encrypted sT(AZ +ct,-G)+ e,
point (for homomorphic

evaluation) and FHF secret ST(31 + sk, - G) + e,
key (for decryption))

sk is the FHE
secret key

ctis an FHE
encryption of x*

sT(B; +sk, - G)+e,

Private Puncturable PRFs w17, srvwin

PRF(s, x) = {STADGCI‘YPUEValeqx}p

ST(Al + Ctl * G) + 61
: Evaluating Decrypt o Evale, on encodings
s'(A,+ct, - G) + e, essentially yields:

ST(31 + sk, - G) + e, st (ADecryptOEvaleqx + eq, (x*) - G) + noise

sT(B, +sk,-G) +e,

Private Puncturable PRFs [BKM17, BTVW17]

PRF(S, x) = {STADeCryptoEvaleqx}p

Some technicalities due to

FHE noise (will ignore here for

ST(A]_ + Ctl ‘ G) + €, S|mpI|C|ty)
: Eval 5 Decrypt o Evalgg on encodings
sT(A,+ct,-G) +e, essentially yields:

s (B; +sk{-G) + e, st (ADecryptOEvaleqx + eq, (x*) - G) + noise

ST (Br + sk, - G) +e, Evaluation only requires knowledge of ct and not sk

Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF(s, x) := {STADecryptoEvalqu
p

Punctured PRF evaluation: {ST (ADecryptoEvaleqx +eq, (x7) - G)‘p

Difficulty: no control over

value at punctured point

Private Translucent PRFs

Goal: detect whether a punctured key is used to evaluate at a punctured
point (this is essential for embedding the watermark)

Real PRF evaluation: PRF(s, x) := {STADecryptOEValeq }
*1p

Punctured PRF evaluation: {ST (ADecryptoEvaleqx +eqy(x™) - G)L,

Idea: define PRF with respect to scaled equality circuit:

w x =x"
eq,(x*,w) ="

Private Translucent PRFs

PRF(s, x) = {STADGCFYPWEvalqup

Evaluating the punctured key at the punctured point x™* yields:

T .
S (ADecryptoEvaleq L twe G) + noise

X

Scaling factor w is chosen when key is

punctured and can be chosen to adjust
the value at the punctured point

Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
ST(ADecryptoEvaleqx* Twe G) + noise

Can now consider many instances of this PRF with many different w;’s:
T .
S (ADecrypt°Eva1eqx*1 + wy - Gl) + noise

T .
S (ADecryptoEvaleqx*N T+ wy - GN) + noise

Different gadget matrices G4, ..., Gy

[See paper for construction]

Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:

T .
S (ADecryptoEvaleq L twe G) + noise

X

Can now consider many instances of this PRF with many different w;’s:
s’ (ADecryptOEvaleq Ctwy Gl) + noise

x,1

T .
S (ADecryptoEvaleqx*N + wy - GN) + noise

At puncturing time, choose w4, ..., wy such that

W= z ADecryptoEvaleqx*i + z w; - @;

iE[N] LE[N]

Private Translucent PRFs

Evaluating the punctured key at the punctured point yields:
ST(ADecryptoEvaleqx* Twe G) + noise

Can now consider many instances of this PRF with many different w;’s:
T

ADecryptoEvaleqx*1 +wy - Gl) + noise

W is a fixed public matrix 1 : +wy - Gy + noise
. o . va e *
included in the public LN)

parameters of the PRF family ' such that

W= 2 ADecryptoEvaleqx*i + z w; - @;

{€[N] {(€[N]

Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

— T
PRF(s,x) == |s z ADecryptoEvaleqxi

When evaluating at punctured point x*:

(2 ADecryptoEvalec1 . + z Wi - Gi) =s'w

IE[N]

Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

SNICEIRSAREE Output at punctured point is an LWE

i sample with respect to W (fixed public

matrix) — critical for implementing a
translucent set

When evaluating at punctured point

(Z ADecryptoEvaleq . + Z Wi -) s'W

IE[N]

Private Translucent PRFs

Define real PRF evaluation to be sum of each independent evaluation:

Testing key is a short vector z where Wz = 0:

(Is"W] ,2) ~ |s"wz] =

(Z ADecryptoEvaleq "y + Z w;-G; | = s'W

IE[N]

[See paper for details and security analysis]

Conclusions

private puncturable PRFs watermarking
[BKM17, CC17, BTVW17] [CHNVW16, BLW17]

O O
lattice-based indistinguishability

assumptions obfuscation

Conclusions

private puncturable PRFs watermarking (via private
[BKM17, CC17, BTVW17] translucent PRFs)
O O
Qis WOV
lattice-based indistinguishability

assumptions obfuscation

Open Problems

Publicly-verifiable watermarking without obfuscation?
 Current best construction relies on iO [cHnvwie)

Additional applications of private translucent PRFs?

Thank you!
http://eprint.iacr.org/2017/380

