
Multi-Theorem
Preprocessing NIZKs from Lattices

Sam Kim and David J. Wu

Stanford University



Proof Systems and Argument Systems

NP language ℒ ⊆ 0,1 ∗

prover verifier

𝑥 ∈ 0,1 ∗ accept if 
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept ≤ 𝜀
“No prover can convince honest verifier of false statement”



Proof Systems and Argument Systems

NP language ℒ ⊆ 0,1 ∗

prover

𝑥 ∈ 0,1 ∗ accept if 
𝑥 ∈ ℒ

[GMR85]

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept ≤ 𝜀
“No prover can convince honest verifier of false statement”

In an argument system, we relax soundness to 
only consider computationally-bounded (i.e., 

polynomial-time) provers 𝑃∗

verifier



Zero-Knowledge Proofs for NP

𝑃, 𝑉 𝑥

real distribution

𝒮(𝑥)

ideal distribution

Zero-Knowledge: for all efficient verifiers 𝑉∗, there exists an efficient simulator 
𝒮 such that:

∀𝑥 ∈ ℒ ∶ 𝑃, 𝑉∗ 𝑥 ≈𝑐 𝒮(𝑥)

≈𝑐

NP language ℒ ⊆ 0,1 ∗

[GMR85]



Non-Interactive Zero-Knowledge (NIZK) Proofs

𝜋

real distribution

𝒮(𝑥)

ideal distribution

≈𝑐

[BFM88]

In the standard model, this is only achievable for languages ℒ ∈ BPP

NP language ℒ ⊆ 0,1 ∗



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

𝜎𝜎

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

prover verifier
prover verifier



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

Several major classes of assumptions missing:
• Discrete-log based assumptions (e.g., CDH, DDH)
• Lattice-based assumptions (e.g., SIS, LWE)

prover verifier



Which Assumptions give NIZKs for NP?

Random Oracle Model 
[FS86, PS96]

𝜋

Common Reference String (CRS) Model
• Quadratic Residuosity [BFM88, DMP87, BDMP91]

• Trapdoor Permutations [FLS90, DDO+01, Gro10]

• Pairings [GOS06]

• Indistinguishability Obfuscation + OWFs [SW14]

Several major classes of assumptions missing:
• Discrete-log based assumptions (e.g., CDH, DDH)
• Lattice-based assumptions (e.g., SIS, LWE)

prover verifier



NIZKs in the Preprocessing Model

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉

(Trusted) setup algorithm generates both proving key 
𝑘𝑃 and a verification key 𝑘𝑉

[DMP88]

Verify(𝑘𝑉 , 𝑥, 𝜋)

Prover algorithm takes proving 
key 𝑘𝑃, NP statement 𝑥, and 

NP witness 𝑤

prover verifier



NIZKs in the Preprocessing Model
[DMP88]

Simpler model than CRS model:
• Soundness holds assuming 𝑘𝑉 is hidden
• Zero-knowledge holds assuming 𝑘𝑃 is hidden

If only 𝑘𝑉 is private (i.e., 𝑘𝑃 is 
public), then the NIZK is 

designated-verifier

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Simpler model than CRS model:
• Soundness holds assuming 𝑘𝑉 is hidden
• Zero-knowledge holds assuming 𝑘𝑃 is hidden

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

Existing constructions only provide bounded-theorem 
soundness or bounded-theorem zero-knowledge

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃 𝑘𝑉



NIZKs in the Preprocessing Model
[DMP88]

Preprocessing NIZKs
• One-Way Functions [DMP88, 

LS90, Dam92, IKOS09]

• Oblivious Transfer [KMO89]

Designated-Verifier NIZKs
• Additively-homomorphic 

encryption [CD04, DFN06, CG15]

Existing constructions only provide bounded-theorem 
soundness or bounded-theorem zero-knowledge

Bounded-theorem soundness: Soundness holds in a 
setting where prover can see verifier’s response on an 
a priori bounded number of queries – “verifier 
rejection problem”

Bounded-theorem zero-knowledge: Zero-knowledge 
holds in a setting where verifier can see proofs on an a 
priori bounded number of statements



Only known constructions of multi-theorem NIZKs in the 
preprocessing model are those in the CRS model

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

NIZKs in the Preprocessing Model
[DMP88]

Hope: Preprocessing NIZKs is a stepping stone towards NIZKs from 
standard lattice assumptions



Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

Our Results

• First multi-theorem preprocessing NIZK from LWE
(in fact, a “designated-prover” NIZK)

• Preprocessing step can be efficiently implemented using OT
• Several new MPC protocols from lattices:

• Succinct version of GMW compiler from lattices
• Two-round, succinct MPC from lattices in a “reusable preprocessing” 

model



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
sk

𝑥
𝜎𝑥

𝜎𝑥 is a signature on 𝑥
with respect to a 

verification key vk

𝑥
𝜎𝑥

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk

Homomorphic signatures enable computations on signed data

public operation



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
𝜎𝑥

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk

public operation

(One-Time) Unforgeability:

sk

𝜎𝑥 𝜎𝑥 ← Sign(sk, 𝑥)

𝑥

𝜎𝑓,𝑦𝑦
Adversary wins if 𝜎𝑓,𝑦 is a valid 

signature on 𝑦 with respect to 
function 𝑓, but 𝑦 ≠ 𝑓(𝑥)

Unforgeable if no efficient 
adversary can win

vk



Starting Point: Homomorphic Signatures
[BF11, GVW15, ABC+15]

]

𝑥
𝜎𝑥

public operation

Context-Hiding:

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝑥 𝜎𝑥

𝑓(𝑥)
෤𝜎𝑓,𝑓(𝑥)

sk
𝑓, 𝑓(𝑥)

real distribution ideal distribution

≈𝑐
𝜎𝑓,𝑓(𝑥) hides the original input 𝑥 (up 

to what is revealed by 𝑓, 𝑓(𝑥))

Looks like a zero-
knowledge property!

[Generalizes to multiple signatures]

𝑓(𝑥)
𝜎𝑓,𝑓(𝑥)

𝜎𝑓,𝑓(𝑥) is a signature on 𝑓(𝑥)

with respect to the function 𝑓
and the verification key vk



Homomorphic Signatures to Preprocessing NIZKs

prover 𝑥, 𝑤 verifier 𝑥

Goal: Convince verifier that there exists 𝑤 such that ℛ 𝑥,𝑤 = 1

𝑤
𝜎𝑤

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

prover 𝑥, 𝑤 verifier 𝑥

𝑤
𝜎𝑤

Suppose prover has a signature on 𝑤

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

Verifier checks that 𝜎ℛ𝑥,1 is a signature 

on 1 with respect to function ℛ𝑥



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Soundness: Follows from unforgeability; if verifier accepts, then 𝜎ℛ𝑥,1 is a signature 

on 1 with respect to function ℛ𝑥, but ℛ𝑥 𝑤 = 0

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Zero-Knowledge: Follows from context-hiding; signature 𝜎ℛ𝑥,1 can be simulated given 

sk, ℛ𝑥 and ℛ𝑥 𝑤 = 1

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑤
𝜎𝑤

Problem: Prover needs signature on 𝑤, which depends on the statement being proven 
(cannot be generated in preprocessing phase)

Suppose prover has a signature on 𝑤

Prover evaluates function ℛ𝑥 𝑤 = ℛ(𝑥, 𝑤)

ℛ𝑥(𝑤) 𝜎ℛ𝑥,1



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

Solution: Add one layer of indirection!

Prover is given signature on an encryption key
(unknown to the verifier)



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Solution: Add one layer of indirection!



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Verifier checks that 𝜎𝐶𝑥,ct,1 is a signature on 1 

with respect to function 𝐶𝑥,ct



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

Soundness: Follows from unforgeability; if verifier accepts, then 𝜎𝐶𝑥,ct,1 is a signature 

on 1 with respect to function 𝐶𝑥,ct, but 𝐶𝑥,ct 𝑘 = 0 for all 𝑘

Prover is given signature on an encryption key
(unknown to the verifier)𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]



Prover is given signature on an encryption key
(unknown to the verifier)

Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

ct ← Encrypt(𝑘, 𝑤)
[ct is an encryption of the witness 𝑤]

𝐶𝑥,ct 𝑘 = ℛ 𝑥, Decrypt 𝑘, ct

[Checks that ct encrypts a valid witness]

Zero-Knowledge: Follows from context-hiding and semantic security; signature 𝜎𝐶𝑥,ct,1
can be simulated given sk, 𝐶𝑥,ct and 𝐶𝑥,ct 𝑘 = 1 and so, ct hides 𝑤



Homomorphic Signatures to Preprocessing NIZKs

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃

Verify(vk, 𝑥, 𝜋)

𝑘
𝜎𝑘

Designated-prover NIZK from context-hiding homomorphic signatures

(also publishes vk)



Homomorphic Signatures to Preprocessing NIZKs

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃

Verify(vk, 𝑥, 𝜋)

𝑘
𝜎𝑘

Designated-prover NIZK from context-hiding homomorphic signatures

Can instantiate context-hiding homomorphic 
signatures with lattice-based scheme from [GVW15]

[Need some additional properties, but [GVW15] satisfies all properties with some modification]

(also publishes vk)



Homomorphic Signatures to Preprocessing NIZKs

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

Soundness: Follows from unforgeability; if verifier accepts, then 𝜎𝐶𝑥,ct,1 is a signature 

on 1 with respect to function 𝐶𝑥,ct, but 𝐶𝑥,ct 𝑘 = 0 for all 𝑘

Prover is given signature on an encryption key
(unknown to the verifier)

Homomorphic signatures: unforgeability against computationally-
bounded adversaries; yields NIZK argument

Homomorphic commitments: unforgeability holds against 
unbounded adversaries; yields NIZK proof

• Unclear how to implement preprocessing efficiently, so focus will be on 
homomorphic signature construction



Constructing Homomorphic Signatures 
[GVW15]

𝑥1 𝑥2 ⋯ 𝑥ℓ𝑥 Message space: will sign message bit-by-bit

Verification key:

𝑨 ∈ ℤ𝑞
𝑛×𝑚 𝑮 ∈ ℤ𝑞

𝑛×𝑚𝑩𝟏 ∈ ℤ𝑞
𝑛×𝑚 ⋯ 𝑩ℓ ∈ ℤ𝑞

𝑛×𝑚

“target matrix” for each bit of message:

Signing key:

𝑻𝑨 ∈ ℤ𝑞
𝑚×𝑚

Trapdoor 𝑻𝑨 allows sampling short 𝑹 ∈ ℤ𝑞
𝑚×𝑚

such that 𝑨𝑹 = 𝑩 for any 𝑩 ∈ ℤ𝑞
𝑛×𝑚

[𝑻𝑨 is an SIS trapdoor for 𝑨]

gadget matrix



Constructing Homomorphic Signatures 
[GVW15]

𝑥1 𝑥2 ⋯ 𝑥ℓ𝑥 Message space: will sign message bit-by-bit

Verification key: 𝑨,𝑩𝟏, … , 𝑩ℓ, 𝑮 ∈ ℤ𝑞
𝑛×𝑚

Signing key: 𝑻𝑨 ∈ ℤ𝑞
𝑚×𝑚

Sign message 𝒙 bit-by-bit:

𝑨

𝑹𝟏

𝑮𝑥1 𝑩𝟏

Signature on 𝑥1 is short 𝑹𝟏 that satisfy this relation 
(computed using trapdoor 𝑻𝑨)



Constructing Homomorphic Signatures 
[GVW15]

𝑥1 𝑥2 ⋯ 𝑥ℓ𝑥 Message space: will sign message bit-by-bit

Verification key: 𝑨,𝑩𝟏, … , 𝑩ℓ, 𝑮 ∈ ℤ𝑞
𝑛×𝑚

Signing key: 𝑻𝑨 ∈ ℤ𝑞
𝑚×𝑚

𝑨𝑹𝟏 + 𝒙𝟏 ⋅ 𝑮 = 𝑩𝟏

Sign message 𝒙 bit-by-bit:

𝑨𝑹𝟐 + 𝒙𝟐 ⋅ 𝑮 = 𝑩𝟐

𝑨𝑹ℓ + 𝒙ℓ ⋅ 𝑮 = 𝑩ℓ

⋮ ⋮

𝜎𝑥 = 𝑹𝟏, … , 𝑹ℓ

Verification consists of checking that 
𝑹𝟏, … , 𝑹ℓ satisfy these relations



Constructing Homomorphic Signatures 
[GVW15]

𝑥1 𝑥2 ⋯ 𝑥ℓ𝑥 Message space: will sign message bit-by-bit

Verification key: 𝑨,𝑩𝟏, … , 𝑩ℓ, 𝑮 ∈ ℤ𝑞
𝑛×𝑚

Signing key: 𝑻𝑨 ∈ ℤ𝑞
𝑚×𝑚

𝑨𝑹𝟏 + 𝒙𝟏 ⋅ 𝑮 = 𝑩𝟏

Sign message 𝒙 bit-by-bit:

𝑨𝑹𝟐 + 𝒙𝟐 ⋅ 𝑮 = 𝑩𝟐

𝑨𝑹ℓ + 𝒙ℓ ⋅ 𝑮 = 𝑩ℓ

⋮ ⋮
𝑨𝑹𝒇 + 𝒇(𝒙) ⋅ 𝑮 = 𝑩𝒇

GSW homomorphic 
operations

Function of 𝑓, 𝑹𝟏, … , 𝑹ℓ

and 𝑥1, … , 𝑥ℓ

Function of 𝑓, 𝑩𝟏, … , 𝑩ℓ

Additional techniques needed for context-hiding



Homomorphic Signatures to Preprocessing NIZKs

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

𝑘𝑃

Verify(vk, 𝑥, 𝜋)

𝑘
𝜎𝑘

Designated-prover NIZK from context-hiding homomorphic signatures

(also publishes vk)



Implementing the Preprocessing Phase

Can use generic MPC protocols, 
but can do this more efficiently 

using a specialized protocol

sk

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

𝑘 𝜎𝑘

𝜋 = Prove(𝑘𝑃, 𝑥, 𝑤)

Verify(vk, 𝑥, 𝜋)

(also publishes vk)



Implementing the Preprocessing Phase

sk

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

Desired notion is a
blind homomorphic signature



Blind Homomorphic Signatures

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

0

1

0

1

0

1

0

1

0

1

signatures on bits of 𝑘

sk

• Recall that signature on the encryption key 𝑘 consists of 
𝑘 signatures on the bits of 𝑘

• Prover can use oblivious transfer (OT) to obtain 
signatures on each bit of 𝑘



Blind Homomorphic Signatures

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

0

1

0

1

0

1

0

1

0

1

signatures on bits of 𝑘

sk

• Recall that signature on the encryption key 𝑘 consists of 
𝑘 signatures on the bits of 𝑘

• Prover can use oblivious transfer (OT) to obtain 
signatures on each bit of 𝑘

• Some additional work needed for malicious security
[See paper for details]

OT for signatures 
on bits of 𝑘



Blind Homomorphic Signatures

Verifier chooses 
signing key

Prover chooses 
encryption key

𝑘

Goal: prover obtains signature on 
𝑘 without revealing 𝑘 to verifier

0

1

0

1

0

1

0

1

0

1

signatures on bits of 𝑘

sk

• Recall that signature on the encryption key 𝑘 consists of 
𝑘 signatures on the bits of 𝑘

• Prover can then OT for the signatures on each bit of 𝑘
• Some additional work needed for malicious security

[See paper for details]

OT for signatures 
on bits of 𝑘

Takeaway: Preprocessing can be 
implemented using poly 𝜆 parallel OT 
invocations



Proof Size and Amortization

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

Recall: proof consists of an encryption of 
the witness and a signature

ct = 𝑤 + poly(𝜆)
𝜎 = poly 𝜆, 𝑑𝐶 , where 
𝑑𝐶 is the depth of 𝐶𝑥,ct

Length of NIZK is typically proportional to the size of the NP relation (rather than the 
depth), and moreover, the overhead is multiplicative in 𝜆 (rather than additive)



Proof Size and Amortization

𝑘
𝜎𝑘

𝐶𝑥,ct(𝑘) 𝜎𝐶𝑥,ct,1
𝑤

𝑘

Observation: If same witness used for 
multiple proofs, ciphertext only needs to 

be included once

Suppose same witness 𝑤 used to prove statements 𝑥1, … , 𝑥𝑛 (with respect to 𝐶1, … , 𝐶𝑛):

෍

𝑖∈[𝑛]

𝜋𝑖 = 𝑤 + ෍

𝑖∈[𝑛]

poly(𝜆, 𝑑𝑖)

Depth of 𝐶1, … , 𝐶𝑛



A Succinct GMW Compiler

MPC: multiple parties seek to compute 
a joint function of their private inputs

Classic GMW compiler (semi-honest to malicious compiler):
1. Each party broadcasts commitment to their local input 

and randomness
2. Parties run a coin-flipping protocol to determine 

parties’ randomness used for computation
3. Parties run semi-honest MPC protocol and attach a NIZK 

proof that each message is consistent with committed 
values and randomness

Key observation: NIZK proofs share common
witness (the committed inputs and randomness)



A Succinct GMW Compiler

MPC: multiple parties seek to compute 
a joint function of their private inputs

Classic GMW compiler (semi-honest to malicious compiler):
1. Each party broadcasts commitment to their local input 

and randomness
2. Parties run a coin-flipping protocol to determine 

parties’ randomness used for computation
3. Parties run semi-honest MPC protocol and attach a NIZK 

proof that each message is consistent with committed 
values and randomness

Key observation: NIZK proofs share common
witness (the committed inputs and randomness)

Communication overhead is
𝑛 ⋅ 𝑥 + poly 𝑛, 𝜆, 𝑑

where 𝑥 is length of parties’ input and 𝑑 is 
depth (rather than size) of the computation



Summary

Can we realize multi-theorem NIZKs in the preprocessing model
from standard lattice assumptions?

• New multi-theorem designated-prover (public-verifier) NIZKs from 

homomorphic signatures (based on LWE)

• New notion of blind homomorphic signatures (formalized in the UC 

model) for efficient implementation of preprocessing (from OT)

• New UC-secure NIZK in the preprocessing model from lattices
• Succinct MPC protocol and succinct GMW compiler [See paper for details]



Open Problems

NIZKs from lattices in the CRS model
• Publishing prover state in our preprocessing NIZK compromises zero-knowledge 

(reveals secret key prover uses to encrypt witnesses)

Multi-theorem preprocessing NIZKs from discrete log assumptions (e.g., 
CDH, DDH)
• Weaker primitive of homomorphic MAC suffices (will also require secret key to 

verify proofs)

Thank you!
https://eprint.iacr.org/2018/272


