Multi-Theorem Preprocessing NIZKs from Lattices

Sam Kim and <u>David J. Wu</u> Stanford University

Proof Systems and Argument Systems

Completeness: $\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \text{accept}] = 1$

"Honest prover convinces honest verifier of true statements"

Soundness: $\forall x \notin \mathcal{L}, \ \forall P^* : \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \varepsilon$

"No prover can convince honest verifier of false statement"

Proof Systems and Argument Systems

NP language $\mathcal{L} \subseteq \{0,1\}^*$

accept if $x \in \mathcal{L}$ verifier

prover

In an <u>argument</u> system, we relax soundness to only consider computationally-bounded (i.e., polynomial-time) provers P^*

Completeness:

"Honest, winces honest verifier of true statements"

Soundness:

 $\forall x \notin \mathcal{L}, \ \forall P^* : \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \varepsilon$ "No prover can convince honest verifier of false statement"

Zero-Knowledge Proofs for NP

NP language
$$\mathcal{L} \subseteq \{0,1\}^*$$

real distribution

ideal distribution

Zero-Knowledge: for all efficient verifiers V^* , there exists an efficient simulator S such that:

$$\forall x \in \mathcal{L} : \langle P, V^* \rangle(x) \approx_{c} \mathcal{S}(x)$$

Non-Interactive Zero-Knowledge (NIZK) Proofs

NP language $\mathcal{L} \subseteq \{0,1\}^*$

real distribution

ideal distribution

In the standard model, this is only achievable for languages $\mathcal{L} \in BPP$

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96]

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96]

Several major classes of assumptions missing:

- Discrete-log based assumptions (e.g., CDH, DDH)
- Lattice-based assumptions (e.g., SIS, LWE)

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

Which Assumptions give NIZKs for NP?

Random Oracle Model [FS86, PS96]

Several major classes of assumptions missing:

- Discrete-log based assumptions (e.g., CDH, DDH)
- Lattice-based assumptions (e.g., SIS, LWE)

Common Reference String (CRS) Model

- Quadratic Residuosity [BFM88, DMP87, BDMP91]
- Trapdoor Permutations [FLS90, DDO+01, Gro10]
- Pairings [GOS06]
- Indistinguishability Obfuscation + OWFs [SW14]

(Trusted) setup algorithm generates both proving key k_P and a verification key k_V

Simpler model than CRS model:

- Soundness holds assuming k_V is hidden
- Zero-knowledge holds assuming k_P is hidden

If only k_V is private (i.e., k_P is public), then the NIZK is designated-verifier

Simpler model than CRS model:

- Soundness holds assuming k_V is <u>hidden</u>
- Zero-knowledge holds assuming k_P is hidden

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [кмо89]

Designated-Verifier NIZKs

 Additively-homomorphic encryption [CD04, DFN06, CG15]

[DMP88]

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [KMO89]

Designated-Verifier NIZKs

 Additively-homomorphic encryption [CD04, DFN06, CG15]

Existing constructions only provide bounded-theorem soundness or bounded-theorem zero-knowledge

Bounded-theorem soundness: Soundness holds in a setting where prover can see verifier's response on an *a priori* bounded number of queries — "verifier rejection problem"

Bounded-theorem zero-knowledge: Zero-knowledge holds in a setting where verifier can see proofs on an *a* priori bounded number of statements

Existing constructions only provide bounded-theorem soundness or bounded-theorem zero-knowledge

Preprocessing NIZKs

- One-Way Functions [DMP88, LS90, Dam92, IKOS09]
- Oblivious Transfer [KMO89]

Designated-Verifier NIZKs

 Additively-homomorphic encryption [CD04, DFN06, CG15]

Only known constructions of <u>multi-theorem</u> NIZKs in the preprocessing model are those in the CRS model

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

Hope: Preprocessing NIZKs is a stepping stone towards NIZKs from standard lattice assumptions

Our Results

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

- First <u>multi-theorem</u> preprocessing NIZK from LWE (in fact, a "designated-prover" NIZK)
- Preprocessing step can be efficiently implemented using OT
- Several new MPC protocols from lattices:
 - Succinct version of GMW compiler from lattices
 - Two-round, succinct MPC from lattices in a "reusable preprocessing" model

Starting Point: Homomorphic Signatures

[BF11, GVW15, ABC+15]

 σ_x is a signature on x with respect to a verification key vk

 $\sigma_{f,f(x)}$ is a signature on f(x) with respect to the function f and the verification key vk

Homomorphic signatures enable computations on signed data

Starting Point: Homomorphic Signatures

[BF11, GVW15, ABC+15]

 $\sigma_{f,f(x)}$ is a signature on f(x) with respect to the function f and the verification key vk

(One-Time) Unforgeability:

Adversary wins if $\sigma_{f,y}$ is a valid signature on y with respect to function f, but $y \neq f(x)$

Unforgeable if no efficient adversary can win

Starting Point: Homomorphic Signatures

[BF11, GVW15, ABC+15]

 $\sigma_{f,f(x)}$ is a signature on f(x) with respect to the function f and the verification key vk

Context-Hiding:

real distribution

ideal distribution

Looks like a zero-knowledge property!

 $\sigma_{f,f(x)}$ hides the original input x (up to what is revealed by f, f(x))

[Generalizes to multiple signatures]

Goal: Convince verifier that there exists w such that $\mathcal{R}(x, w) = 1$

Verifier checks that $\sigma_{\mathcal{R}_{\chi},1}$ is a signature on 1 with respect to function \mathcal{R}_{χ}

Soundness: Follows from <u>unforgeability</u>; if verifier accepts, then $\sigma_{\mathcal{R}_{\chi},1}$ is a signature on 1 with respect to function \mathcal{R}_{χ} , but $\mathcal{R}_{\chi}(w) = 0$

Zero-Knowledge: Follows from context-hiding; signature $\sigma_{\mathcal{R}_{\chi},1}$ can be simulated given

sk, \mathcal{R}_{x} and $\mathcal{R}_{x}(w)=1$

Problem: Prover needs signature on w, which depends on the <u>statement</u> being proven (cannot be generated in preprocessing phase)

Prover is given signature on an <u>encryption key</u> (unknown to the verifier)

Solution: Add one layer of indirection!

Solution: Add one layer of indirection!

Verifier checks that $\sigma_{C_{x,ct},1}$ is a signature on 1 with respect to function $C_{x,ct}$

Soundness: Follows from <u>unforgeability</u>; if verifier accepts, then $\sigma_{C_{x,ct},1}$ is a signature on 1 with respect to function $C_{x,ct}$, but $C_{x,ct}(k) = 0$ for all k

Zero-Knowledge: Follows from context-hiding and semantic security; signature $\sigma_{C_{x,ct},1}$ can be simulated given sk, $C_{x,ct}$ and $C_{x,ct}(k) = 1$ and so, ct hides w

Verify(vk, x, π)

<u>Designated-prover</u> NIZK from context-hiding homomorphic signatures

Can instantiate context-hiding homomorphic signatures with <u>lattice-based</u> scheme from [GVW15]

[Need some additional properties, but [GVW15] satisfies all properties with some modification]

v Clily (vix, n, 10

Prover is given signature on an <u>encryption key</u> (unknown to the verifier)

Homomorphic signatures: unforgeability against computationally-bounded adversaries; yields <u>NIZK argument</u>

Homomorphic commitments: unforgeability holds against unbounded adversaries; yields NIZK proof

 Unclear how to implement preprocessing efficiently, so focus will be on homomorphic signature construction

Soundness: Follows from <u>unforgeability</u>; if verifier accepts, then $\sigma_{C_{x,ct},1}$ is a signature on 1 with respect to function $C_{x,ct}$, but $C_{x,ct}(k) = 0$ for all k

[GVW15]

Message space: will sign message bit-by-bit

Verification key:

$$A \in \mathbb{Z}_q^{n \times m}$$

"target matrix" for each bit of message:

$$B_1 \in \mathbb{Z}_q^{n \times m}$$

 $oldsymbol{B}_{\ell} \in \mathbb{Z}_{q}^{n imes m}$

$$G \in \mathbb{Z}_a^{n \times m}$$

gadget matrix

Signing key:

$$T_A \in \mathbb{Z}_q^{m \times m}$$

Trapdoor T_A allows sampling short $R \in \mathbb{Z}_q^{m \times m}$ such that AR = B for any $B \in \mathbb{Z}_q^{n \times m}$

 $[T_A \text{ is an SIS trapdoor for } A]$

[GVW15]

Verification key: A, B_1 , ..., B_ℓ , $G \in \mathbb{Z}_q^{n \times m}$

Signing key: $T_A \in \mathbb{Z}_q^{m \times m}$

Sign message *x* bit-by-bit:

A Signature on x_1 is short R_1 that satisfy this relation (computed using trapdoor T_A)

 $x_1 \quad x_2 \quad \cdots \quad x_\ell$

Message space: will sign message bit-by-bit

Verification key: $A, B_1, ..., B_\ell, G \in \mathbb{Z}_q^{n \times m}$

Signing key: $T_A \in \mathbb{Z}_q^{m \times m}$

Sign message *x* bit-by-bit:

$$AR_1 + x_1 \cdot G = B_1$$
 $AR_2 + x_2 \cdot G = B_2$
 \vdots
 $AR_{\ell} + x_{\ell} \cdot G = B_{\ell}$

$$\sigma_{x} = (R_{1}, \dots, R_{\ell})$$

Verification consists of checking that R_1, \dots, R_ℓ satisfy these relations

[GVW15]

 $x_1 \quad x_2 \quad \cdots \quad x_\ell$

Message space: will sign message bit-by-bit

Verification key: A, B_1 , ..., B_ℓ , $G \in \mathbb{Z}_q^{n \times m}$

Signing key: $T_A \in \mathbb{Z}_q^{m \times m}$

Sign message *x* bit-by-bit:

Function of $f, R_1, ..., R_\ell$ and $x_1, ..., x_\ell$ Function of $f, B_1, ..., B_\ell$ GSW homomorphic operations $AR_f + f(x) \cdot G = B_f$

Additional techniques needed for context-hiding

Verify(vk, x, π)

<u>Designated-prover</u> NIZK from context-hiding homomorphic signatures

Implementing the Preprocessing Phase

Can use generic MPC protocols, but can do this more efficiently using a specialized protocol

Prover chooses encryption key

skOTT

Verifier chooses signing key

Implementing the Preprocessing Phase

Desired notion is a **blind homomorphic signature**

k

Prover chooses encryption key

Goal: prover obtains signature on k without revealing k to verifier

Verifier chooses signing key

Blind Homomorphic Signatures

- Recall that signature on the encryption key k consists of |k| signatures on the bits of k
- Prover can use oblivious transfer (OT) to obtain signatures on each bit of \boldsymbol{k}

 $oxed{k}$

Prover chooses encryption key

Verifier chooses signing key

Blind Homomorphic Signatures

- Recall that signature on the encryption key k consists of |k| signatures on the bits of k
- Prover can use oblivious transfer (OT) to obtain signatures on each bit of \boldsymbol{k}
- Some additional work needed for *malicious* security [See paper for details]

signatures on bits of k

Verifier chooses signing key

Prover chooses encryption key

k

Blind Homomorphic Signatures

Takeaway: Preprocessing can be implemented using $poly(\lambda)$ parallel OT invocations

signatures on bits of k $0 \ge 0 \ge 0 \ge 0$ $1 \ge 1 \ge 1 \ge 1$

k

Prover chooses encryption key

Verifier chooses signing key

Proof Size and Amortization

Length of NIZK is typically proportional to the <u>size</u> of the NP relation (rather than the depth), and moreover, the overhead is <u>multiplicative</u> in λ (rather than additive)

Proof Size and Amortization

Suppose <u>same</u> witness w used to prove statements $x_1, ..., x_n$ (with respect to $C_1, ..., C_n$):

$$\sum_{i \in [n]} |\pi_i| = |w| + \sum_{i \in [n]} \operatorname{poly}(\lambda, d_i)$$
 Depth of $\mathcal{C}_1, \dots, \mathcal{C}_n$

A Succinct GMW Compiler

MPC: multiple parties seek to compute a joint function of their private inputs

Classic GMW compiler (semi-honest to malicious compiler):

- 1. Each party broadcasts commitment to their local input and randomness
- 2. Parties run a coin-flipping protocol to determine parties' randomness used for computation
- 3. Parties run semi-honest MPC protocol and attach a NIZK proof that each message is consistent with committed values and randomness

Key observation: NIZK proofs share <u>common</u> witness (the committed inputs and randomness)

A Succinct GMW Compiler

MPC: multiple parties seek to compute a joint function of their private inputs

Communication overhead is $n\cdot |x| + \operatorname{poly}(n,\lambda,d)$ where |x| is length of parties' input and d is $\underline{\operatorname{depth}}$ (rather than $\underline{\operatorname{size}}$) of the computation

Key observation: NIZK proofs share <u>common</u> witness (the committed inputs and randomness)

Summary

Can we realize multi-theorem NIZKs in the preprocessing model from standard lattice assumptions?

- New multi-theorem designated-prover (public-verifier) NIZKs from homomorphic signatures (based on LWE)
- New notion of blind homomorphic signatures (formalized in the UC model) for efficient implementation of preprocessing (from OT)
- New UC-secure NIZK in the preprocessing model from lattices
 - Succinct MPC protocol and succinct GMW compiler

[See paper for details]

Open Problems

NIZKs from lattices in the CRS model

 Publishing prover state in our preprocessing NIZK compromises zero-knowledge (reveals secret key prover uses to encrypt witnesses)

Multi-theorem preprocessing NIZKs from discrete log assumptions (e.g., CDH, DDH)

 Weaker primitive of homomorphic MAC suffices (will also require secret key to verify proofs)

Thank you!

https://eprint.iacr.org/2018/272