
Lattice-Based Non-Interactive
Arugment Systems

David Wu
Stanford University

Based on joint works with Dan Boneh, Yuval Ishai, Sam Kim, and Amit Sahai

Proof Systems and Argument Systems

Language ℒ ⊆ 0,1 ∗

prover verifier

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

[GMR85]

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 (𝑥) = accept = 0
“No prover can convince honest verifier of false statement”

Proof Systems and Argument Systems

Language ℒ ⊆ 0,1 ∗

prover

𝑥 ∈ 0,1 ∗ accept if
𝑥 ∈ ℒ

[GMR85]

Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = accept = 1
“Honest prover convinces honest verifier of true statements”

Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 𝑥 = accept = 0
“No prover can convince honest verifier of false statement”

In an argument system, we relax soundness to
only consider computationally-bounded (i.e.,

polynomial-time) provers 𝑃∗

verifier

The Complexity Class NP

NP – the class of languages that are efficiently verifiable

a language ℒ is in NP if there exists a
polynomial-time verifier 𝑅 such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 poly 𝑥 𝑅 𝑥, 𝑤 = 1

Statement Witness

The Complexity Class NP

NP – the class of languages that are efficiently verifiable

a language ℒ is in NP if there exists a
polynomial-time verifier 𝑅 such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 poly 𝑥 𝑅 𝑥, 𝑤 = 1

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

In this talk, will focus on language of Boolean circuit satisfiability:

Boolean circuit

Non-Interactive Proof Systems for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝐶 𝑥,𝑤 = 1

𝑤

NP languages have non-interactive proof systems

But what if we want other properties?

(𝑥, 𝑤) 𝑥

prover verifier

Non-Interactive Proof Systems for NP

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝐶 𝑥,𝑤 = 1

𝑤

NP languages have non-interactive proof systems

But what if we want other properties?

(𝑥, 𝑤) 𝑥

prover verifier

Zero-Knowledge: The proof reveals
nothing more about the statement 𝑥

other than 𝑥 ∈ ℒ𝐶 [GMR85]

• Fundamental primitive to modern
cryptography

• Important building block in many protocols
(e.g., identification schemes, digital
signatures, multiparty computation)

Succinctness: The proof is
significantly shorter than 𝐶 (and

correspondingly, 𝑤) [Kil92, Mic00, GW11]

• Natural complexity-theoretic question:
what is the minimal communication
complexity for proofs of NP statements?

• Numerous applications to delegating and
verifying computations as well as privacy-
preserving cryptocurrencies

The Landscape of Modern Cryptography

[Slide inspired by Amit Sahai]

RSA

Factoring

Discrete Log

Number Theory

PKE
MPC

Signatures

BDDH DLIN

Bilinear Maps

IBE

Short Signatures

SNARKs

Lattices

SIS LWE

FHE

ABE

PE

Multilinear Maps

FE
Obfuscation

Cryptography is the study of hardness

Late 1970s 2001 2005 2013

The Landscape of Modern Cryptography

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?

The Landscape of Modern Cryptography

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?

This Work

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Multilinear MapsLattices

SIS LWE

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?
* In a weaker preprocessing model

This Work

Which assumptions imply non-interactive zero-knowledge?

Non-interactive zero-knowledge arguments from standard lattice assumptions in a
preprocessing model [Kim-W; CRYPTO 2018]

Which assumptions imply succinct non-interactive arguments?

Succinct non-interactive arguments (SNARGs) from lattice-based assumptions
[Boneh-Ishai-Sahai-W; EUROCRYPT 2017]

First construction of a quasi-optimal SNARG from lattice-based assumptions
[Boneh-Ishai-Sahai-W; EUROCRYPT 2018]

Focus of this talk

(Conjectured) post-quantum resilience

Why Lattices?

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Diversifying cryptographic assumptions

Enable new properties (e.g., quasi-optimality)

Succinct Non-Interactive Arguments

Succinct Non-Interactive Arguments (SNARGs)

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

Completeness: “Honest prover convinces honest verifier of true statements”

Succinct Non-Interactive Arguments (SNARGs)

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

Completeness: 𝐶 𝑥,𝑤 = 1 ⇒ Pr 𝑉 𝑥, 𝑃 𝑥, 𝑤 = 1 = 1

Soundness: “No efficient prover can convince honest verifier of false statement”

Succinct Non-Interactive Arguments (SNARGs)

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

Completeness: 𝐶 𝑥,𝑤 = 1 ⇒ Pr 𝑉 𝑥, 𝑃 𝑥, 𝑤 = 1 = 1

Soundness: for all provers 𝑃∗ of size 2𝜆 (𝜆 is a security parameter),

𝑥 ∉ ℒ𝐶 ⇒ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

Succinct Non-Interactive Arguments (SNARGs)

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

Verifier complexity significantly
smaller than classic NP verifier

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

𝜋 = 𝑃 𝑥,𝑤

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

Succinct Non-Interactive Arguments (SNARGs)

Argument system is succinct if:
• Prover communication is poly 𝜆 + log 𝐶
• 𝑉 can be implemented by a circuit of size poly 𝜆 + 𝑥 + log 𝐶

For general NP languages, succinct non-interactive arguments are unlikely to
exist in the standard model [BP04, Wee05]

ℒ𝐶 = 𝑥 ∶ 𝐶 𝑥,𝑤 = 1 for some 𝑤

accept if 𝑉 𝑥, 𝜋 = 1

(𝑥, 𝑤) 𝑥

prover verifier

[Kil92, Mic00, GW11]

𝜋 = 𝑃 𝑥,𝑤

Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in
the random oracle model

[Mic94]

[Kil92, Mic00, GW11]

accept if 𝑉ℛ𝒪(𝑥, 𝜋) = 1

𝜋 = 𝑃ℛ𝒪(𝑥, 𝑤)

𝑥

prover verifier

Argument consists of a
single message

random oracle ℛ𝒪

(𝑥, 𝑤)

Succinct Non-Interactive Arguments (SNARGs)

common reference
string (CRS)

verification
state

𝜎 𝜏

Can consider publicly-
verifiable and secretly-

verifiable SNARGs

Preprocessing SNARGs:
allow “expensive” setup

accept if 𝑉 𝜏, 𝑥, 𝜋 = 1

𝜋 = 𝑃(𝜎, 𝑥, 𝑤)

prover verifier

Argument consists of a
single message(𝑥, 𝑤) 𝑥

[Kil92, Mic00, GW11]

Setup 1𝜆

Complexity Metrics for SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

How short can the proofs be?

𝜋 = Ω 𝜆

How much work is needed to generate the proof?

𝑃 = Ω 𝐶

Even in the designated-
verifier setting

Quasi-Optimal SNARGs

Soundness: for all provers 𝑃⋆ of size 2𝜆:

𝑥 ∉ ℒ𝐶 ⟹ Pr 𝑉 𝑥, 𝑃∗ 𝑥 = 1 ≤ 2−𝜆

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it
satisfies the following properties:

• Quasi-optimal succinctness:
𝜋 = 𝜆 ⋅ polylog 𝜆, 𝐶 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity:
𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

This work
(over integer lattices)

This work
(over ideal lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIOP13]):

Step 1 (information-theoretic):
• Identify useful information-theoretic building block (linear

PCPs and linear MIPs)
Step 2 (cryptographic):

• Use cryptographic primitives to compile information-theoretic
building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates

Linear PCPs

𝜋 ∈ 𝔽𝑚

𝑞 ∈ 𝔽𝑚

𝑞, 𝜋 ∈ 𝔽 Several possible instantiations: based on
the Walsh-Hadamard code [ALMSS92] or
quadratic span programs [GGPR13]verifier

𝑥, 𝑤PCP where the proof
oracle implements a

linear function 𝜋 ∈ 𝔽𝑚

In these instantiations,
verifier is oblivious (queries
independent of statement)

[IKO07]

accept/reject

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

[BCIOP13]

Oblivious verifier can “commit”
to its queries ahead of time

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
• Prover homomorphically computes 𝑄𝑇𝜋
• Verifier decrypts encrypted response

vector and applies linear PCP verification

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

[BCIOP13]

Step 1: Verifier encrypts its queries using an
additively homomorphic encryption scheme
• Prover homomorphically computes 𝑄𝑇𝜋
• Verifier decrypts encrypted response

vector and applies linear PCP verification

Two issues:
• Malicious prover can choose

𝜋 based on the queries
• Malicious prover can apply

different 𝜋 to each query

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

• Differs from [BCIOP13] compiler which
relies on additional consistency checks to
build a preprocessing SNARG

• Using linear-only vector encryption
allows for efficient instantiation from
lattices (resulting SNARG satisfies quasi-
optimal succinctness)

From Linear PCPs to SNARGs

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

part of the CRS

𝑄 =

Oblivious verifier can “commit”
to its queries ahead of time

Step 2: Conjecture that the encryption
scheme only supports a limited subset of
homomorphic operations (linear-only vector
encryption)

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

plaintext space is a
vector space

෍
𝑖∈[𝑛]

𝛼𝑖𝑣𝑖 ∈ 𝔽𝑘

encryption scheme is
semantically-secure and
additively homomorphic

Linear-Only Vector Encryption

𝑣1 ∈ 𝔽𝑘

𝑣2 ∈ 𝔽𝑘

𝑣𝑚 ∈ 𝔽𝑘

⋮

ct

𝛼1, … , 𝛼𝑚 ∈ 𝔽, 𝑏 ∈ 𝔽𝑘

adversary

extractor

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients 𝛼1, … , 𝛼𝑚 ∈ 𝔽𝑚

and 𝑏 ∈ 𝔽𝑘 such that Decrypt sk, ct = σ𝑖∈[𝑛]𝛼𝑖𝑣𝑖 + 𝑏

[Weaker property also suffices]

From Linear PCPs to SNARGs

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Linear-only vector encryption
ensures that all prover

strategies can be explained by
a linear function ⇒ can appeal

to soundness of underlying
linear PCP to argue soundness

Instantiating Linear-Only Vector Encryption

Conjecture: Regev encryption (specifically, variant of the [PVW08]
scheme) based on lattices is a linear-only vector encryption scheme.

Linear PCPs for
Boolean circuit

satisfiability
Preprocessing SNARG

Linear-Only Vector
Encryption

Complexity of the Construction

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Evaluating inner product requires
Ω 𝐶 homomorphic operations;

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a single
ciphertext: total length 𝑂(𝜆) bits

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

This work
(over integer lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

Towards Quasi-Optimality

part of the CRS

𝑄 =

𝑥, 𝑤

𝜋 ∈ 𝔽𝑚

Prover constructs linear
PCP 𝜋 from (𝑥, 𝑤)

⟨𝜋, 𝑞1⟩ ⟨𝜋, 𝑞2⟩ ⋯ ⟨𝜋, 𝑞𝑘⟩

Prover computes responses
to linear PCP queries

SNARG proof

Oblivious verifier can “commit”
to its queries ahead of time

𝑞1 𝑞2 𝑞3 𝑞𝑘⋯

encrypt
row by row

Evaluating inner product requires
Ω 𝐶 homomorphic operations;

prover complexity:
Ω 𝜆 ⋅ Ω 𝐶 = Ω 𝜆 𝐶

Proof consists of a constant
number of ciphertexts: total length

𝑂(𝜆) bits

We pay Ω(𝜆) for each
homomorphic

operation. Can we
reduce this?

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Linear-Only Encryption over Rings

Consider encryption scheme over a polynomial ring 𝑅𝑝 = Τℤ𝑝 𝑥 Φℓ 𝑥 ≅ 𝔽𝑝
ℓ

𝑥1

𝑥2

𝑥3

⋮

𝑥ℓ

Plaintext space can be viewed
as a vector of field elements

𝑥1
′

𝑥2
′

𝑥3
′

⋮

𝑥ℓ
′

𝑥1 + 𝑥1′

𝑥2 + 𝑥2
′

𝑥3 + 𝑥3
′

⋮

𝑥ℓ + 𝑥ℓ
′

Homomorphic operations
correspond to component-wise

additions and scalar multiplications

Using RLWE-based encryption schemes, can
encrypt ℓ = ෨𝑂(𝜆) field elements (𝑝 = poly 𝜆)

with ciphertexts of size ෨𝑂(𝜆)

Amortized cost of homomorphic
operation on a single field

element is polylog(𝜆)

Linear-Only Encryption over Rings

𝑞1 ∈ 𝔽𝑝
𝑚

𝑞2 ∈ 𝔽𝑝
𝑚

𝑞3 ∈ 𝔽𝑝
𝑚

⋮

𝑞ℓ ∈ 𝔽𝑝
𝑚

⟨𝜋1, 𝑞1⟩

⟨𝜋2, 𝑞2⟩

⟨𝜋3, 𝑞3⟩

⋮

⟨𝜋ℓ, 𝑞ℓ⟩

Given encrypted set of query vectors, prover can
homomorphically apply independent linear functions to each slot

Key idea: Check multiple independent proofs in parallel

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Verifier has oracle access to
multiple linear proof oracles

[Proofs may be correlated]

Can convert linear MIP to
preprocessing SNARG using linear-
only (vector) encryption over rings

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Suppose
• Number of provers ℓ = ෨𝑂 𝜆
• Proofs 𝜋1, … , 𝜋ℓ ∈ 𝔽𝑝

𝑚 where 𝑚 = Τ𝐶 ℓ

• Number of queries to each 𝜋𝑖 is polylog(𝜆)

Then, linear MIP is quasi-optimal

Linear Multi-Prover Interactive Proofs (MIPs)

𝑥,𝑤

𝜋1 𝜋2 ⋯ 𝜋ℓ

Prover complexity:
෨𝑂 ℓ𝑚 = ෨𝑂 𝐶

Linear MIP size:

𝑂 ℓ ⋅ polylog 𝜆 = ෨𝑂(𝜆)

Quasi-Optimal Linear MIPs

This work: Construction of a quasi-optimal linear MIP for Boolean circuit
satisfiability

Robust
Decomposition

Consistency
Check

Quasi-Optimal
Linear MIP

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Only depends on 𝑥

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Only depends on 𝑥

Decompose 𝐶 into constraint
functions 𝑓1, … , 𝑓ℓ, where each
constraint can be computed by

a circuit of size 𝑠/ℓ

Each constraint only needs to
read a subset of the input bits

Robust Decomposition

(𝑥, 𝑤) Encode 𝑥1
′ 𝑥2

′ 𝑥3
′ ⋯ 𝑥𝑛

′ 𝑤1
′ 𝑤2

′ 𝑤3
′ ⋯ 𝑤ℎ

′

𝑓1 𝑓2 ⋯

Boolean circuit 𝐶 of size 𝑠

𝑓ℓ

Statement-
witness for 𝐶

Statement-witness
for 𝑓1, … , 𝑓ℓ

Completeness: If 𝐶 𝑥,𝑤 = 1,
then 𝑓𝑖 𝑥

′, 𝑤′ = 1 for all 𝑖

Robustness: If 𝑥 ∉ ℒ, then for all
𝑤′, at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

Efficiency: (𝑥′, 𝑤′) can be
computed by a circuit of size ෨𝑂(𝑠)

Only depends on 𝑥

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Using linear PCP based on QSPs
[GGPR13], 𝜋𝑖 = 𝑂(Τ𝐶 ℓ) and
provides soundness 1/poly 𝜆

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Verifier invokes linear PCP verifier
for each instance

(𝑥, 𝑤)
Statement-witness

for 𝐶
Statement-witness

for 𝑓1, … , 𝑓ℓ

Encode (𝑥′, 𝑤′)

Robust Decomposition

Boolean
circuit 𝐶 of

size 𝑠

𝑓1

𝑓2

⋮

𝑓ℓ

𝜋1

𝜋2

⋮

𝜋ℓ

𝜋𝑖: linear PCP that 𝑓𝑖(𝑥
′,⋅) is satisfiable

(instantiated over 𝔽𝑝 where 𝑝 = poly(𝜆))

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robust Decomposition

Completeness: Follows by
completeness of decomposition and
linear PCPs

Soundness: Each linear PCP provides
Τ1 poly 𝜆 soundness and for false

statement, at least 1/3 of the
statements are false, so if ℓ = Ω(𝜆),
verifier accepts with probability

2−Ω 𝜆

Robustness: If 𝑥 ∉ ℒ, then for all 𝑤′,
at most 2/3 of 𝑓𝑖 𝑥

′, 𝑤′ = 1

For false 𝑥, no single 𝑤′ can
simultaneously satisfy 𝑓𝑖 𝑥

′,⋅ ;
however, all of the 𝑓𝑖(𝑥

′,⋅) could
individually be satisfiable

Problematic however if prover
uses different 𝑥′, 𝑤′ to

construct proofs for different 𝑓𝑖’s

Consistency Checking

Require that linear PCPs are systematic: linear PCP 𝜋 contains a copy of the witness:

𝜋1

𝜋2

𝜋3

𝑤1
′ 𝑤3

′

𝑤1
′ 𝑤2

′

𝑤2
′ 𝑤3

′

other components

other components

other components

First few components of proof
correspond to witness associated

with the statement

Goal: check that assignments
to 𝑤′ are consistent via

linear queries to 𝜋𝑖

Each proof induces an
assignment to a few bits of

the common witness 𝑤′

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Quasi-Optimal Linear MIP

Robust decomposition can be instantiated by
combining “MPC-in-the-head” paradigm
[IKOS07] with a robust MPC protocol with
polylogarithmic overhead [DIK10]

Robust Decomposition

𝐶

𝑓1 𝑓2 ⋯ 𝑓ℓ

• Checking satisfiability of 𝐶
corresponds to checking
satisfiability of 𝑓1, … , 𝑓ℓ (each
of which can be checked by a
circuit of size Τ𝐶 ℓ)

• For a false statement, no
single witness can
simultaneously satisfy more
than a constant fraction of 𝑓𝑖

Consistency Check

• Check that consistent witness is
used to prove satisfiability of
each 𝑓𝑖

• Relies on pairwise consistency
checks and permuting the
entries to obtain a “nice”
replication structure

Quasi-Optimal Linear MIP

Asymptotic Comparisons

Construction
Prover

Complexity
Proof
Size Assumption

CS Proofs [Mic94] ෨𝑂(𝐶) ෨𝑂(𝜆2) Random Oracle

Groth [Gro10]

GGPR [GGPR12]

෨𝑂(𝜆 𝐶 2 + 𝐶 𝜆2)

෨𝑂(𝜆 𝐶)

෨𝑂(𝜆)

෨𝑂(𝜆)

Knowledge of
Exponent

BCIOP (Pairing) [BCIOP13] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Linear-Only Encryption

෨𝑂(𝜆 𝐶) ෨𝑂(𝜆)
Linear-Only

Vector Encryption

Groth [Gro16] ෨𝑂(𝜆 𝐶) ෨𝑂(𝜆) Generic Group

෨𝑂 𝐶 ෨𝑂(𝜆) Linear-Only
Vector Encryption

This work
(over integer lattices)

This work
(over ideal lattices)

For simplicity, we ignore low order terms poly 𝜆, log 𝐶 in the prover complexity

Conclusions

A SNARG is quasi-optimal if it satisfies the following properties:

• Quasi-optimal succinctness: 𝜋 = ෨𝑂(𝜆)

• Quasi-optimal prover complexity: 𝑃 = ෨𝑂 𝐶 + poly(𝜆, log 𝐶)

New framework for building SNARGs by combining linear PCPs (and linear MIPs)
with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP
with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust
decomposition and consistency check

Summary

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Lattices

SIS LWE

Multilinear Maps

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?

Summary

RSA

Factoring

Discrete Log

Number Theory

BDDH DLIN

Bilinear Maps Multilinear MapsLattices

SIS LWE

Which assumptions imply succinct non-interactive arguments?

Which assumptions imply non-interactive zero-knowledge?
* In a weaker preprocessing model

Acknowledgments

Special thanks to
all of my amazing collaborators!

