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New Applications in the Internet of Things

Smart Homes

report energy 
consumption

aggregation + 
analytics

usage statistics and 
reports



The Power of the Cloud

BIG DATA

analytics
recommendations

personalization

lots of user 
information = big 

incentives

Question: provide 
service, preserve 

privacy



Secure Multiparty Computation (MPC)

Multiple parties want to compute a joint function on private 
inputs

private input: individual 
power consumption

at end of computation, 
each party learns the 

average power 
consumption

privacy guarantee: no party 
learns anything extra about 

other parties’ inputs



Two Party Computation (2PC)

• Simpler scenario: two-party computation (2PC)

• 2PC: Mostly “solved” problem: Yao’s circuits [Yao82]
• Express function as a Boolean circuit

garbled version of
circuit

oblivious transfer to obtain garbled inputs

output of garbled circuit

Party A Party B



Two-Party Computation (2PC)

• Yao’s circuits very efficient and heavily optimized [KSS09]
• Evaluating circuits with 1.29 billion gates in 18 minutes (1.2 

gates / µs) [ALSZ13]

• Yao’s circuit provides semi-honest security: malicious security 
via cut-and-choose, but not as efficient



Going Beyond 2PC

• General MPC also “solved” [GMW87]

secret share inputs with all parties

jointly evaluate circuit, gate-by-
gate



Secure Multiparty Computation

• General MPC suffices to evaluate arbitrary functions 
amongst many parties: should be viewed as a feasibility
result

• Limitations of general MPC
• many rounds of communication / interaction
• possibly large bandwidth
• hard to coordinate interactions with large number of parties

• Other considerations (not discussed): fairness, 
guaranteeing output delivery



This Talk: Homomorphic Encryption

Interaction

GMW Protocol and 
General MPC

Homomorphic 
Encryption

Custom Protocols

Many rounds of interaction
Boolean circuits (typically)

Few rounds of interaction
Arithmetic circuits

General methods for secure computation



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:

Enc
m

c

pk

c

Dec
m

sk

Must satisfy usual notion of semantic security



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:

Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval𝑓
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘



Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: 𝑓 𝑚0, 𝑚1 = 𝑚0𝑚1

• Paillier: 𝑓 𝑚0, 𝑚1 = 𝑚0 + 𝑚1

Fully homomorphic encryption: homomorphic with 
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions
• [Gen09]: first FHE construction from lattices



Privately Outsourcing Computation

encrypted data

encrypted results of 
computation

Leveraging 
computational power 

of the cloud



Machine Learning in the Cloud

report energy 
consumption

aggregation + 
analytics

1. Publish public key

2. Upload encrypted 
values

3. Compute model 
homomorphically

4. Decrypt to obtain model



Machine Learning in the Cloud

• Passive adversary sitting in the 
cloud does not see client data

• Power company only obtains 
resulting model, not individual 
data points (assuming no 
collusion)

• Parties only need to 
communicate with cloud (the 
power of public-key 
encryption)



Big Data, Limited Computation

•Homomorphic encryption is expensive, especially 
compared to symmetric primitives such as AES

•Can be unsuitable for encrypting large volumes of data



“Hybrid” Homomorphic Encryption

Enc𝑝𝑘 𝑘 , AES𝑘 𝑚
Homomorphically 
evaluate the AES 
decryption circuit

AES𝑘 𝑚 Enc𝑝𝑘 AES𝑘 𝑚

Enc𝑝𝑘 𝑘 Enc𝑝𝑘 𝑚

encrypt

evaluate AES 
decryption

Enc𝑝𝑘 𝑓 𝑚

homomorphic 
evaluation

Encrypt AES key using 
homomorphic encryption 

(expensive), encrypt data using 
AES  (cheap)

Current performance: ≈ 400 seconds to 
decrypt 120 AES-128 blocks (4 s/block) 

[GHS15]



Constructing FHE

• FHE: can homomorphically compute arbitrary number of 
operations

•Difficult to construct – start with something simpler:
somewhat homomorphic encryption scheme (SWHE)

• SWHE: can homomorphically evaluate a few operations 
(circuits of low depth)



Gentry’s Blueprint: SWHE to FHE

•Gentry described general bootstrapping method of 
achieving FHE from SWHE [Gen’09]

• Starting point: SWHE scheme that can evaluate its own 
decryption circuit



Gentry’s Blueprint: From SWHE to FHE

Homomorphism Remaining

many operations 
remaining

no operations 
remaining

𝑚𝑚

ciphertext

𝑠𝑘

encryption of 
secret key

encrypt the 
ciphertext

𝑚

homomorphically evaluate 
the decryption function

recrypt
functionality



Bootstrappable SWHE

• First bootstrappable construction by Gentry based on ideal 
lattices [Gen09]

• Tons of progress in constructions of FHE in the ensuing years 
[vDGHV10, SV10, BV11a, BV11b, Bra12, BGV12, GHS12, 
GSW13], and more!

• Have been simplified enough that the description can fit in a 
blog post [BB12]



Conceptually Simple FHE [GSW13]

• Ciphertexts are 𝑛 × 𝑛 matrices over ℤ𝑞

• Secret key is a vector 𝑣 ∈ ℤ𝑞
𝑛

𝐶 𝑣× = 𝑚 𝑣× 𝑒+

ciphertext secret key message noise

Encryption of 𝑚 satisfies above relation 

𝑣 is a “noisy” 
eigenvector of 𝐶



Conceptually Simple FHE [GSW13]

• Suppose that 𝑣 has a “large” component 𝑣𝑖

• Can decrypt as follows:

  
𝐶𝑖 , 𝑣

𝑣𝑖
=   

𝑚𝑣𝑖 + 𝑒𝑖

𝑣𝑖
= 𝑚

𝐶 𝑣× = 𝑚 𝑣× 𝑒+

ciphertext secret key message noise

𝐶𝑖 is 𝑖th row 
of 𝐶 Relation holds if 

𝑒𝑖

𝑣𝑖
<

1

2



Conceptually Simple FHE [GSW13]

Homomorphic addition

𝐶1 𝑣× = 𝑚1 𝑣× 𝑒1+ 𝐶2 𝑣× = 𝑚2 𝑣× 𝑒2+

𝐶1 + 𝐶2 𝑣× = 𝑚1 + 𝑚2 𝑣× 𝑒1+ 𝑒2+

homomorphic addition is 
matrix addition

noise terms also add



Conceptually Simple FHE [GSW13]

Homomorphic multiplication

𝐶1 𝑣× = 𝑚1 𝑣× 𝑒1+ 𝐶2 𝑣× = 𝑚2 𝑣× 𝑒2+

𝐶1𝐶2 𝑣 = 𝑚1𝑚2 𝑣 + 𝐶1𝑒2 + 𝑚2𝑒1

homomorphic multiplication 
is matrix multiplication noise could blow up if 

𝐶1 or 𝑚2 are not small



Conceptually Simple FHE [GSW13]

•Basic principles: ciphertexts are matrices, messages are 
approximate eigenvalues

•Homomorphic operations correspond to matrix addition 
and multiplication (and some tricks to constrain noise)

•Hardness based on learning with errors (LWE) [Reg05]



The Story so Far…

• Simple FHE schemes exist

• But… bootstrapping is expensive!
• At 76 bits of security: each bootstrapping operation requires 320 

seconds and 3.4 GB of memory [HS14]
• Other implementations exist, but generally less flexible / efficient

• SWHE (without bootstrapping) closer to practical: can evaluate 
shallow circuits



Application: Statistical Analysis

• Consider simple statistical 
models: computing the mean 
or covariance (for example, 
average power consumption)

• Problem: given 𝑛 vectors 
𝑥1, … , 𝑥𝑛, compute

• Mean: 𝜇 =
1

𝑛
 𝑖=1

𝑛 𝑥𝑖

• Covariance: Σ𝑋 =
1

𝑛2
(𝑛𝑋𝑇𝑋 −



Application: Statistical Analysis

• Can also perform linear 
regression: given design matrix 
𝑋 and response vector 𝑦, 
evaluate normal equations

𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

• Matrix inversion (over ℚ) using 
Cramer’s rule

• Depth 𝑛 for 𝑛-dimensional 
data



Batch Computation [SV11]

Algebraic structure of some schemes enable encryption + 
operations on vectors at no extra cost

Plaintext Space: ring 𝑅

𝑅𝔭1
𝑅𝔭2

⋯ 𝑅𝔭𝑘

Chinese Remainder Theorem: 𝑅 ≅⊗𝑖=1
𝑘 𝑅𝔭𝑖



Batch Computation [SV11]

Encrypt + process array of values at no extra cost:

1 2 3 4

7 5 3 1

+

8 7 6 5

In practice: ≥ 5000 slots

One homomorphic 
operation
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Based on implementation of 
Brakerski’s scheme [Bra12]
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Application: Private Information Retrieval

I want to see 
record 𝑖…

???

PIR protocol

client learns record 𝑖, server learns nothing

cloud database



PIR from Homomorphic Encryption [KO97]

𝑣11 𝑣12 𝑣13

𝑣21 𝑣22 𝑣23

𝑣31 𝑣32 𝑣33

1
0
0

represent database as 
matrix

query is an 
encrypted basis 

vector

×

𝑣11

𝑣21

𝑣31

=

server evaluates inner product

response

database components in the clear: additive homomorphism suffices

𝑂( 𝑛)
communication



PIR from Homomorphic Encryption

• 𝑂 𝑛 communication with additive homomorphism alone
• Naturally generalizes:

• 𝑂 3 𝑛 with one multiplication

• 𝑂 𝑘 𝑛 with degree 𝑘 − 1 -homomorphism

• Benefits tremendously from batching

database

𝑟1, … , 𝑟𝑁
𝑟1, … , 𝑟𝑁/3

𝑟1+𝑁/3, … , 𝑟2𝑁/3

𝑟1+2𝑁/3, … , 𝑟𝑁

split database into 
many small 

databases, query in 
parallel
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PIR from Homomorphic Encryption

• Outperforms trivial PIR for very large databases

• However, recursive KO-PIR with additive homomorphism is still 
state-of-the-art



Concluding Remarks
• Internet of Things brings many security challenges

• Many generic cryptographic tools: 2PC, MPC, FHE

• 2PC/MPC work well for small number of parties

• SWHE/FHE preferable with many parties (IoT scale)

• FHE still nascent technology – should be viewed as a “proof-of-
concept” rather than practical solution

• SWHE closer to practical, suitable for evaluating simple (low-
depth) functionalities

• Big open problem to develop more practical constructions!



Questions?


