
Computing on Encrypted Data

Secure Internet of Things Seminar

David Wu

January, 2015

New Applications in the Internet of Things

Smart Homes

report energy
consumption

aggregation +
analytics

usage statistics and
reports

The Power of the Cloud

BIG DATA

analytics
recommendations

personalization

lots of user
information = big

incentives

Question: provide
service, preserve

privacy

Secure Multiparty Computation (MPC)

Multiple parties want to compute a joint function on private
inputs

private input: individual
power consumption

at end of computation,
each party learns the

average power
consumption

privacy guarantee: no party
learns anything extra about

other parties’ inputs

Two Party Computation (2PC)

• Simpler scenario: two-party computation (2PC)

• 2PC: Mostly “solved” problem: Yao’s circuits [Yao82]
• Express function as a Boolean circuit

garbled version of
circuit

oblivious transfer to obtain garbled inputs

output of garbled circuit

Party A Party B

Two-Party Computation (2PC)

• Yao’s circuits very efficient and heavily optimized [KSS09]
• Evaluating circuits with 1.29 billion gates in 18 minutes (1.2

gates / µs) [ALSZ13]

• Yao’s circuit provides semi-honest security: malicious security
via cut-and-choose, but not as efficient

Going Beyond 2PC

• General MPC also “solved” [GMW87]

secret share inputs with all parties

jointly evaluate circuit, gate-by-
gate

Secure Multiparty Computation

• General MPC suffices to evaluate arbitrary functions
amongst many parties: should be viewed as a feasibility
result

• Limitations of general MPC
• many rounds of communication / interaction
• possibly large bandwidth
• hard to coordinate interactions with large number of parties

• Other considerations (not discussed): fairness,
guaranteeing output delivery

This Talk: Homomorphic Encryption

Interaction

GMW Protocol and
General MPC

Homomorphic
Encryption

Custom Protocols

Many rounds of interaction
Boolean circuits (typically)

Few rounds of interaction
Arithmetic circuits

General methods for secure computation

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

Enc
m

c

pk

c

Dec
m

sk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

Dec𝑠𝑘 Eva𝑙𝑓 𝑒𝑘, 𝑐1, 𝑐2 = 𝑓 𝑚1, 𝑚2

𝑐1 = Enc𝑝𝑘(𝑚1)

Eval𝑓
𝑐3

𝑐2 = Enc𝑝𝑘(𝑚2)

𝑒𝑘

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: 𝑓 𝑚0, 𝑚1 = 𝑚0𝑚1

• Paillier: 𝑓 𝑚0, 𝑚1 = 𝑚0 + 𝑚1

Fully homomorphic encryption: homomorphic with
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions
• [Gen09]: first FHE construction from lattices

Privately Outsourcing Computation

encrypted data

encrypted results of
computation

Leveraging
computational power

of the cloud

Machine Learning in the Cloud

report energy
consumption

aggregation +
analytics

1. Publish public key

2. Upload encrypted
values

3. Compute model
homomorphically

4. Decrypt to obtain model

Machine Learning in the Cloud

• Passive adversary sitting in the
cloud does not see client data

• Power company only obtains
resulting model, not individual
data points (assuming no
collusion)

• Parties only need to
communicate with cloud (the
power of public-key
encryption)

Big Data, Limited Computation

•Homomorphic encryption is expensive, especially
compared to symmetric primitives such as AES

•Can be unsuitable for encrypting large volumes of data

“Hybrid” Homomorphic Encryption

Enc𝑝𝑘 𝑘 , AES𝑘 𝑚
Homomorphically
evaluate the AES
decryption circuit

AES𝑘 𝑚 Enc𝑝𝑘 AES𝑘 𝑚

Enc𝑝𝑘 𝑘 Enc𝑝𝑘 𝑚

encrypt

evaluate AES
decryption

Enc𝑝𝑘 𝑓 𝑚

homomorphic
evaluation

Encrypt AES key using
homomorphic encryption

(expensive), encrypt data using
AES (cheap)

Current performance: ≈ 400 seconds to
decrypt 120 AES-128 blocks (4 s/block)

[GHS15]

Constructing FHE

• FHE: can homomorphically compute arbitrary number of
operations

•Difficult to construct – start with something simpler:
somewhat homomorphic encryption scheme (SWHE)

• SWHE: can homomorphically evaluate a few operations
(circuits of low depth)

Gentry’s Blueprint: SWHE to FHE

•Gentry described general bootstrapping method of
achieving FHE from SWHE [Gen’09]

• Starting point: SWHE scheme that can evaluate its own
decryption circuit

Gentry’s Blueprint: From SWHE to FHE

Homomorphism Remaining

many operations
remaining

no operations
remaining

𝑚𝑚

ciphertext

𝑠𝑘

encryption of
secret key

encrypt the
ciphertext

𝑚

homomorphically evaluate
the decryption function

recrypt
functionality

Bootstrappable SWHE

• First bootstrappable construction by Gentry based on ideal
lattices [Gen09]

• Tons of progress in constructions of FHE in the ensuing years
[vDGHV10, SV10, BV11a, BV11b, Bra12, BGV12, GHS12,
GSW13], and more!

• Have been simplified enough that the description can fit in a
blog post [BB12]

Conceptually Simple FHE [GSW13]

• Ciphertexts are 𝑛 × 𝑛 matrices over ℤ𝑞

• Secret key is a vector 𝑣 ∈ ℤ𝑞
𝑛

𝐶 𝑣× = 𝑚 𝑣× 𝑒+

ciphertext secret key message noise

Encryption of 𝑚 satisfies above relation

𝑣 is a “noisy”
eigenvector of 𝐶

Conceptually Simple FHE [GSW13]

• Suppose that 𝑣 has a “large” component 𝑣𝑖

• Can decrypt as follows:

𝐶𝑖 , 𝑣

𝑣𝑖
=

𝑚𝑣𝑖 + 𝑒𝑖

𝑣𝑖
= 𝑚

𝐶 𝑣× = 𝑚 𝑣× 𝑒+

ciphertext secret key message noise

𝐶𝑖 is 𝑖th row
of 𝐶 Relation holds if

𝑒𝑖

𝑣𝑖
<

1

2

Conceptually Simple FHE [GSW13]

Homomorphic addition

𝐶1 𝑣× = 𝑚1 𝑣× 𝑒1+ 𝐶2 𝑣× = 𝑚2 𝑣× 𝑒2+

𝐶1 + 𝐶2 𝑣× = 𝑚1 + 𝑚2 𝑣× 𝑒1+ 𝑒2+

homomorphic addition is
matrix addition

noise terms also add

Conceptually Simple FHE [GSW13]

Homomorphic multiplication

𝐶1 𝑣× = 𝑚1 𝑣× 𝑒1+ 𝐶2 𝑣× = 𝑚2 𝑣× 𝑒2+

𝐶1𝐶2 𝑣 = 𝑚1𝑚2 𝑣 + 𝐶1𝑒2 + 𝑚2𝑒1

homomorphic multiplication
is matrix multiplication noise could blow up if

𝐶1 or 𝑚2 are not small

Conceptually Simple FHE [GSW13]

•Basic principles: ciphertexts are matrices, messages are
approximate eigenvalues

•Homomorphic operations correspond to matrix addition
and multiplication (and some tricks to constrain noise)

•Hardness based on learning with errors (LWE) [Reg05]

The Story so Far…

• Simple FHE schemes exist

• But… bootstrapping is expensive!
• At 76 bits of security: each bootstrapping operation requires 320

seconds and 3.4 GB of memory [HS14]
• Other implementations exist, but generally less flexible / efficient

• SWHE (without bootstrapping) closer to practical: can evaluate
shallow circuits

Application: Statistical Analysis

• Consider simple statistical
models: computing the mean
or covariance (for example,
average power consumption)

• Problem: given 𝑛 vectors
𝑥1, … , 𝑥𝑛, compute

• Mean: 𝜇 =
1

𝑛
 𝑖=1

𝑛 𝑥𝑖

• Covariance: Σ𝑋 =
1

𝑛2
(𝑛𝑋𝑇𝑋 −

Application: Statistical Analysis

• Can also perform linear
regression: given design matrix
𝑋 and response vector 𝑦,
evaluate normal equations

𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦

• Matrix inversion (over ℚ) using
Cramer’s rule

• Depth 𝑛 for 𝑛-dimensional
data

Batch Computation [SV11]

Algebraic structure of some schemes enable encryption +
operations on vectors at no extra cost

Plaintext Space: ring 𝑅

𝑅𝔭1
𝑅𝔭2

⋯ 𝑅𝔭𝑘

Chinese Remainder Theorem: 𝑅 ≅⊗𝑖=1
𝑘 𝑅𝔭𝑖

Batch Computation [SV11]

Encrypt + process array of values at no extra cost:

1 2 3 4

7 5 3 1

+

8 7 6 5

In practice: ≥ 5000 slots

One homomorphic
operation

20
25
30
35
40
45
50
55
60
65
70

2,000 20,000 200,000 2,000,000

Ti
m

e
 (

m
in

u
te

s)

Number of Datapoints

Time to Compute Mean and Covariance over
Encrypted Data (Dimension 4)

Multiplications
dominate

Few ciphertexts
due to batching

Based on implementation of
Brakerski’s scheme [Bra12]

0

10

20

30

40

50

60

70

80

1000 10000 100000 1000000

Ti
m

e
 (

m
in

u
te

s)

Number of Datapoints

Time to Perform Linear Regression on Encrypted Data
(2 Dimensions)

Few ciphertexts
due to batching

Multiplications
dominate

Application: Private Information Retrieval

I want to see
record 𝑖…

???

PIR protocol

client learns record 𝑖, server learns nothing

cloud database

PIR from Homomorphic Encryption [KO97]

𝑣11 𝑣12 𝑣13

𝑣21 𝑣22 𝑣23

𝑣31 𝑣32 𝑣33

1
0
0

represent database as
matrix

query is an
encrypted basis

vector

×

𝑣11

𝑣21

𝑣31

=

server evaluates inner product

response

database components in the clear: additive homomorphism suffices

𝑂(𝑛)
communication

PIR from Homomorphic Encryption

• 𝑂 𝑛 communication with additive homomorphism alone
• Naturally generalizes:

• 𝑂 3 𝑛 with one multiplication

• 𝑂 𝑘 𝑛 with degree 𝑘 − 1 -homomorphism

• Benefits tremendously from batching

database

𝑟1, … , 𝑟𝑁
𝑟1, … , 𝑟𝑁/3

𝑟1+𝑁/3, … , 𝑟2𝑁/3

𝑟1+2𝑁/3, … , 𝑟𝑁

split database into
many small

databases, query in
parallel

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1000 10000

R
e

sp
o

n
se

 T
im

e
 (

s)

Number of Records (Millions)

FHE-PIR Timing Results (5 Mbps)

FHE-PIR (d = 2) FHE-PIR (d = 3) FHE-PIR (d = 4) Trivial PIR

PIR from Homomorphic Encryption

• Outperforms trivial PIR for very large databases

• However, recursive KO-PIR with additive homomorphism is still
state-of-the-art

Concluding Remarks
• Internet of Things brings many security challenges

• Many generic cryptographic tools: 2PC, MPC, FHE

• 2PC/MPC work well for small number of parties

• SWHE/FHE preferable with many parties (IoT scale)

• FHE still nascent technology – should be viewed as a “proof-of-
concept” rather than practical solution

• SWHE closer to practical, suitable for evaluating simple (low-
depth) functionalities

• Big open problem to develop more practical constructions!

Questions?

