
Somewhat Homomorphic 

Encryption

David Wu

(joint work with Dan Boneh)

Practical



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:

Enc

m
c

pk

c

Dec
m

sk

Must satisfy usual notion of semantic security



Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that 
allows computation on ciphertexts

Comprises of three functions:

Dec�� Eva�� ��, ��, �� = � ��,��

�� = Enc��(��)

Eval�
��

�� = Enc��(��)

��



Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: � ��,�� = ����

• Paillier: � ��,�� = �� +��

• Goldwasser-Micali: � ��,�� = �� ⊕��

Fully homomorphic encryption: homomorphic with respect 
to two operations: addition and multiplication

• Can evaluate Boolean and arithmetic circuits

• [BGN05]: one multiplication, many additions

• [Gen09]: first FHE construction from lattices



Fully Homomorphic Encryption

�� = Enc��(��)

Eval 
��

�� = Enc��(��)

��

�(�)

� � : circuit for some function �

Correctness: Dec�� Eva�� ��, ��, �� = � ��,��

Circuit Privacy: Enc�� � ��,�� ≈ Eval�(��, ��, ��)

Compactness: Decryption circuit has size at most poly(�)



In Theory: Secure Computation using FHE

Google

Enc(pk,"cat")

Enc(pk, Search("cat"))

Represent “Search” function as a circuit and evaluate 
homomorphically



In Practice: Secure Computation using FHE

Google

Enc(pk,"cat")

Request timed out

FHE schemes have tremendous overhead



Somewhat Homomorphic Encryption (SWHE)

FHE supports arbitrary number of operations

Compromise: Support a limited number of 
operations (e.g., evaluate circuits of a certain 
depth)

• Somewhat/leveled homomorphic encryption



Brakerski’s SWHE [Bra12]

Operates over a polynomial ring: � = ℤ � /Φ�(�)

Plaintext and ciphertext are vectors of ring elements

Homomorphic multiplication much more expensive 
than homomorphic addition

• Can evaluate low degree polynomials over encrypted data



Application: Statistical Analysis

Cloud

Medical researcher 

investigating a 

disease outbreak

Local hospitals 
submit encrypted 

patient data

Cloud aggregates 
and summarizes 

patient data

Local hospitals

Model



Security Model

Cloud

Cloud does not 
learn patient data 

or model

Researcher does not 
learn individual patient 
data other than what is 

explicitly leaked by 
model

(Semantic Security)

(Circuit Privacy)



Application: Statistical Analysis

Given � vectors ��, … , �� (e.g., patient profiles), define 
� to be the matrix with rows ��, … , ��

• Mean: � =
�

�
∑ ��
�
���

• Covariance: Σ� =
�

��
���� − �� �� �

Division difficult to support, so represent as rationals

Depth 0 circuit for mean, depth 1 for covariance



Application: Statistical Analysis

Can also perform linear regression on encrypted data

Given design matrix � and response vector �, evaluate 
normal equations:

� = ��� �����

Invert over ℚ using Cramer’s rule

Depth � for � dimensional data



Batch Computation [SV11]

Encrypt + process array of values at no extra cost

Main intuition: Chinese Remainder Theorem

Plaintext Space: �� = ℤ� � /Φ�(�)

�	�
�	� ⋯ �	�

Choose � such that �� splits into smaller rings: �� ≅⊗���
� �	�



Batch Computation

Encrypt + process array of values at no extra cost:

1 2 3 4

7 5 3 1

+

8 7 6 5

In practice: ≥ 5000 slots



Batch Computation

Can also permute slots (via Frobenius automorphisms) [BGV12, 

GHS12]

1 2 3 4

2 3 4 1

�



Batch Inner Products

Statistical analysis reduces to computing inner products:

1

2

3

4

�

⋅

1

0

0

1

 

= 1 ⋅ 1 + 2 ⋅ 0 + 3 ⋅ 0 + 4 ⋅ 1 = 5

Naïve method: Encrypt each component separately.

Requires 4 multiplications!



Batch Inner Products

1

2

3

4

×

1

0

0

1

1

0

0

4

Batch inner product: 

encrypt multiple 

components in each 

ciphertext.

Requires 1 multiplication!

Not quite what 

we wanted!



Batch Inner Products

1

0

0

4

Result of batch multiplication:

Desired result: 5



Batch Inner Products

1

0

0

4

Use automorphisms to sum up components:

0

0

4

1

��

1

0

0

4

0

0

4

1

+

1

0

4

5

	� + 	


	� + 	�

	�

	


	�

	�



Batch Inner Products

Use automorphisms to sum up components:

1

0

4

5

	� + 	


	� + 	�

4

5

1

0

�


1

0

4

5

4

5

1

0

+

5

5

5

5

Σ�	�



Batch Inner Products

� multiplications

1 multiplication

log�

automorphisms

log� additionsBatches of size �



20

30

40

50

60

70

2000 20000 200000 2000000

T
im

e
 (

m
in

u
te

s)

Number of Datapoints

Time to Compute Mean and Covariance over 

Encrypted Data (Dimension 4)

Automorphisms

dominate Multiplications 

dominate



0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s)

Data Dimension

Time to Compute Mean and Covariance over Encrypted 

Data (4096 Data Points)

Runtime grows 

as � ��



0

10

20

30

40

50

60

70

80

1000 10000 100000 1000000

T
im

e
 (

m
in

u
te

s)

Number of Datapoints

Time to Perform Linear Regression on Encrypted Data

(2 Dimensions)

Automorphisms

dominate

Multiplications 

dominate



0

100

200

300

400

500

600

700

1 2 3 4 5

T
im

e
 (

m
in

u
te

s)

Dimension of Data

Time to Perform Linear Regression on Encrypted Data

(260,000 Data Points)

Runtime grows 

as � �!



Conclusions

SWHE allows computation of circuits of low-depth

Batching enables scaling to nontrivial datasets

Can perform statistical analysis on encrypted data 
with “reasonable” overhead



Open Source FHE Implementation:

https://github.com/dwu4/fhe-si


