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Navigation: A Solved Problem?

directions from current
location to Fisherman’s

FA|

(o) waze

Issue: cloud learns where you are
and where you are going!
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“Trivial” Solution

Give me the entire

(o) waze
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“Trivial” Solution

g Give me the entire map!

Pros: lots of privacy (for the client)

Cons:

routing information
constantly changing
map provider doesn’t
want to just give away
map for “free”



Private Shortest Paths

AT&T park to
Fisherman’s
Wharf

protocol %
—
({o) waze
—
Client Privacy: server does not Server Privacy: client only learns

learn source or destination route from source to destination



Private Shortest Paths

Model: assume client knows topology of the network (e.g., road
network from OpenStreetMap)

Weights on edges (e.g., travel times) are hidden

Client Privacy: Server does not learn client’s source s or
destination t

Server Privacy: Client only learns s — t shortest path and nothing
about weights of other edges not in shortest path



Straw Man Solution

Suppose road network has n nodes

Construct n X n database:

record 7 : shortest path ) Shortest Path Protocol:
from node s tonode t privately retrieve record
(e.g.,s 2 vy 2V, o t) rs¢ from database



(Strong) Private Information Retrieval (SPIR)

SPIR
protocol
—
cloud database
Client Privacy: server does Server Privacy: client only

not learn i learns record i



(Strong) Private Information Retrieval (SPIR)

* single-server PIR: solutions

@ exist from additive

homomorphism [KO97]
prii’c')'zol . * SPIR: construction from PIR
o + OT on short secrets [NPO5]
database e computation lower bound:

linear in size of database

query on 10° records = 10° public key operations = several minutes
of (single-threaded) computation



Finding Structure

Straw man solution requires SPIR on databases with n? records —
guadratic in number of nodes in the graph — rather impracticall
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Finding Structure

Typically, an intersection has up to four neighbors (for the four
cardinal directions)
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Finding Structure

Next-hop routing matrix for graph with n nodes:

Ts¢: index of neighbor to take on
first hop on shortest path from
node s to node t

Shortest path protocol:
iteratively retrieve the next hop
in shortest path
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Finding Structure
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But same problem as
before: SPIR on database
with n? elements



Finding Structure
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Finding Structure

Cfisthop: 4 - | % If each node has four neighbors,
movenorth &ﬁﬁ can specify neighbors with two
bits:
15t bit: encode direction
along NW/SE axis
« 2nd bijt: encode direction
along NE/SW axis
Examples:
;  North: 00
~  East: 10
e South:11
* West: 01

first hop:)move south.



A Compressible Structure

Let MNE) gnd M(NW) he next-hop matrices along NE and NW axis
(entries in MNE) gnd M(NW) 3re bits)

Objective: for i € {NE, NW}, find matrices A, B such that



A Compressible Structure

Objective: for i € {NE, NW}, find matrices A, B® such that

B,: t™ row of

“destination matrix” BT Computing next-hop
reduces to computing inner

products

M,,: direction Index of row in A only

fromsons — t depend on source, index of
T shortest path row in B only depend on
Ag: s row of C
destination

“source matrix”

M



A Compressible Structure
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An lterative Shortest-Path Protocol

To learn next-hop on s — t shortest path:
1. Use SPIR to obtain s row of AINE) and 4(NW)

2. Use SPIR to obtain t™ row of BINE) gnd B(NW)
3. Compute

MS(tNE) = sign <A§NE), Bt(NE)> and MS(FW) = sign <A§NW), Bt(NW)>

Problem: rows and columns
of A, B reveal more
information than desired

SPIR queries on databases
with 1 records



Affine Encodings and Arithmetic Circuits

Goal: Reveal inner product without revealing vectors

Idea: Use a “garbled” arithmetic circuit (affine encodings) [AIK14]

Example: Encoding of addition circuit f(a,b) =a + b € F,,:
* Encoding of a, b given by (a + 7,b — r) forrandom r € IF,,
* Encodings (a + 1,b — 1) reveal a + b and nothing more

Solution: SPIR on arithmetic circuit encodings



An lterative Shortest-Path Protocol

To learn next-hop on s — t shortest path:
1. Use SPIR to obtain s™ row of AINE) gnd A(NW)

2. Use SPIR to obtain t™ row of BINE) gnd B(NW)

3. Evaluate inner products <A§NE), Bt(NE)> and <AgNW)» Bt(NW)>

4. Compute MS(FE) and Mgw) (signs of inner products)

Affine encodings hide source and
destination matrices, but inner
products reveal too much information



Thresholding via Garbled Circuits

Goal: Reveal only the sign of the inner product

Solution: Blind inner product and evaluate the sign function using
a garbled circuit [Yao86, BHR12]
* Instead of (x, y), compute a(x,y) + B forrandom a, f € FF,,

e Use garbled circuit to evaluate function
g(z,a,p) = sign(a™"(z — ) mod p)

Client input: z _ o
. Input privacy of garbled circuits hide a,
Server input: a, 8



An lterative Shortest-Path Protocol

To learn next-hop on s = t shortest path:

1. Use SPIR to obtain st row of AINE) gnd A(NW)
2. Use SPIR to obtain t™ row of BINE) gpnd p(NW)
3. Evaluate to obtain inner products zNE)and z(NW)
4. Use to compute MS(?IE) and Ms(fw)

But malicious client can make

Semi-honest secure! . . .
inconsistent queries...



Benchmarks
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Benchmarks

Cit Number | Time per Round | Bandwidth
4 of Nodes (s) (KB)

San Francisco 1830 1.42 + 0.09 88.24
Washington D.C. 2490 1.69 + 0.22 90.00
Dallas 4993 2.91 + 0.18 95.02

Los Angeles 7010 4.75 + 0.14 100.54

Timing and bandwidth for each round of the online
protocol (with protection against malicious clients)



Benchmarks

Most expensive component of protocol is sending garbled circuits (= 520
KB per circuit), but this can be done prior to the online (navigation) phase

Each round of the protocol completes in a few seconds (bottleneck is PIR

protocol); fast enough for real-time navigation if it takes more than a few
seconds between intersections (generally true)

Modest amount of bandwidth (around 100 KB) per round



Conclusions

Problem: privacy-preserving navigation

Routing information for road networks are compressible!

* Optimization-based compression technique achieves over 10x
compression of next-hop matrices

Compressed routing matrix lends itself to iterative shortest-path protocol

 Computing the shortest path reduces to computing sign of inner
product

* Leverage combination of arithmetic circuits + Boolean circuits



Questions?



