
SPIRAL: Fast High-Rate Single-Server
Private Information Retrieval

Samir Menon and David Wu

Private Information Retrieval (PIR)
[CGKS95]

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

𝒓𝒊

record 𝑖

Does not learn index 𝑖

Private Information Retrieval (PIR)
[CGKS95]

record 𝑖

Metadata-private messaging

Safe browsing

Contact discovery

Private DNS

Private contact tracing

Private navigation

Basic building block in many privacy-preserving protocols

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

Our focus: single-server setting

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”

Without preprocessing,
server must perform a linear

scan over the database

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

3 Rate

record size

response size

“measures how fast the server can
respond as a function of database size”

“measures communication
overhead in responses”

public parameters 4 Public parameter sizeClient generates a
reusable set of public

parameters

The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Cost: 3.4× larger public parameters (17 MB)

The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Higher throughput than running software AES over database
(Primary operation: 64-bit integer arithmetic)

Cost: 3.4× larger public parameters (17 MB)

The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Cost of privately streaming a 2 GB movie
from database of 214 movies estimated to be

1.9× more expensive than no-privacy
baseline (based on AWS compute costs)

Cost: 3.4× larger public parameters (17 MB)

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

Homomorphically compute product
between query vector and database matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Database is in the clear, so additive
homomorphism suffices

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Client decrypts to
learn records

Response size: 𝑁 ⋅ poly 𝜆

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Client decrypts to
learn records

Response size: 𝑁 ⋅ poly 𝜆

ciphertext size
(𝜆 is security parameter)

PIR from Homomorphic Encryption
[KO97]

𝑟112𝑟111

𝑟122𝑟121

0 0 1 0

Select along the first dimension

𝑟312𝑟311

𝑟322𝑟321

Output is encrypted

Approach: Use homomorphic multiplication

𝑟312𝑟311

𝑟322𝑟321

0 1
𝑟322𝑟321

1 0
𝑟321

Gentry-Halevi [GH19]

OnionPIR [MCR21]

Beyond 𝑁 communication: view the database as hypercube

SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two lattice-based FHE schemes:

Scheme 1: Regev’s encryption scheme [Reg04]

Scheme 2: Gentry-Sahai-Waters encryption scheme [GSW13]

High-rate; only supports additive homomorphism

FHE ciphertexts are noisy encodings
Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Low rate; supports homomorphic multiplication (with additive noise growth)

Goal: get the best of both worlds

Regev Encodings (over Rings)

Regev encoding of a scalar 𝑚 ∈ 𝑅:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝒔T ≈ 𝑚

secret key encoding message

• Secret key allows recovery of noisy version of
original message

• To support decryption of “small” values 𝑡 ∈
𝑅𝑝, we encode 𝑡 as Τ𝑞 𝑝 𝑡

• Decryption recovers noisy version of (𝑞/𝑝)𝑡
and rounding yields 𝑡

[Reg04, LPR10]

rate =
log 𝑝

2 log 𝑞
<

1

2

OnionPIR: rate = 0.24

𝑅𝑞
2 𝑅𝑞

2 𝑅𝑞

Matrix Regev Encodings (over Rings)

Regev encoding of a matrix 𝑴 ∈ 𝑅𝑞
𝑛×𝑛:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈ 𝑴

𝑅𝑞
𝑛×𝑛

Idea: “Reuse” encryption randomness

[PVW08, LPR10]

rate =
𝑛2 log 𝑝

𝑛 𝑛+1 log 𝑞
=

𝑛2

𝑛2+𝑛

log 𝑝

log 𝑞

Additively homomorphic:

𝑺T𝑪1 ≈ 𝑴1

𝑺T𝑪2 ≈ 𝑴2

𝑺T 𝑪1 + 𝑪2 ≈ 𝑴1 +𝑴2

Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other
decomposition bases

Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other
decomposition bases

Main property: for every vector 𝒗 ∈ ℤ𝑞
𝑛+1, can

define 𝑮−1 𝒗 ∈ 0,1 𝑚 where 𝑮𝑮−1 𝒗 = 𝒗
“binary decomposition”

Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other
decomposition bases

rate =
1

𝑑 𝑛+1 2 log 𝑞

Concretely: 𝑑 = 2048, 𝑛 ≥ 1, 𝑞 = 256

Regev-GSW Homomorphism
[CGGI18]

𝑺T𝑪Reg ≈ 𝑴

𝑺T𝑪GSW ≈ 𝜇𝑺T𝑮

𝑺T𝑪GSW𝑮
−1 𝑪Reg ≈ 𝜇𝑺T𝑪Reg ≈ 𝜇𝑴

𝑪GSW𝑮
−1 𝑪Reg is a Regev encoding of 𝜇𝑴

With noise terms:

𝑺T𝑪GSW𝑮
−1 𝑪Reg = 𝜇𝑴+ 𝑬GSW𝑮

−1 𝑪Reg + 𝜇𝐸Reg

Asymmetric noise growth: if all GSW ciphertexts are
“fresh,” then noise accumulation is additive in the number
of multiplications

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Each GSW ciphertext
participates in only one

multiplication with a
Regev ciphertext!

Response is a single
matrix Regev ciphertext

[GH19]

Indicator for index along subsequent dimensions

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Drawback: large queries

Can compress using
polynomial encoding

method of Angel et al.
[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

[GH19]

Indicator for index along subsequent dimensions

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

Drawback: large queries

Can compress using
polynomial encoding

method of Angel et al.
[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

SealPIR query size:
66 KB

[GH19]

OnionPIR
[MCR21]

High-level: Gentry-Halevi approach with scalar Regev ciphertexts (𝑛 = 1)

Leverages Chen et al. approach [CCR19] to “assemble” GSW ciphertext using
Regev-GSW multiplication

Regev ciphertexts can be packed using polynomial encoding method
[ACLS18, CCR19]

Use of scalar Regev ciphertexts reduces the rate to ≈ 0.24
(over 4× response overhead)

This Work: Translating Between Regev and GSW

“Best of both worlds”: Small queries (as in OnionPIR) with the high rate/throughput of the
Gentry-Halevi scheme

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

2000× smaller than Gentry-Halevi (4.5× smaller than OnionPIR)
2.1× higher than OnionPIR
2.9× higher than OnionPIR

(Database with 214 records of size 100 KB)

Cost: 3.4× larger public parameters for extra translation keys

Comparable improvements for other
database configurations; more speed-

ups in streaming setting

Leverage simple key-switching techniques for query and response compression

Scalar Regev → Matrix Regev
Matrix Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)

Scalar Regev → Matrix Regev

Input: encoding 𝒄 where 𝒔1
T𝒄 ≈ 𝑚

Output: encoding 𝑪 where 𝑺2
T𝑪 ≈ 𝑚𝐈𝑛

𝒔1
T = − ǁ𝑠0 1] ∈ 𝑅𝑞

2

𝒄T = 𝑐0 𝑐1] ∈ 𝑅𝑞
2

𝑺2
T =

− ǁ𝑠0

⋮

− ǁ𝑠0

𝑰𝑛 𝑪 =

𝑐0 ⋯ 𝑐0

𝑐1𝑰𝑛

𝑺2
T𝑪 = 𝑚𝑰𝒏

Can replace with 𝑺2 with arbitrary secret key
using standard key-switching techniques

Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝑺T = −𝒔 𝐈𝑛] ∈ 𝑅𝑞
𝑛× 𝑛+1

𝑮 =
𝒈T

⋱
𝒈T

rearrange

𝒈T

𝟎

𝟎

𝐈𝒏 2𝐈𝒏 22𝐈𝒏 ⋯ 2𝑡𝐈𝒏

𝑡 = log 𝑞

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑪 = 𝑨 𝑩0 𝑩1 𝑩2 ⋯ 𝑩𝑡 Break 𝑪 into blocks

Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑺T𝑪 = 𝑺T𝑨 𝑺T𝑩0 𝑺T𝑩1 𝑺T𝑩2 ⋯ 𝑺T𝑩𝑡

𝑩0, … , 𝑩𝑡 are matrix Regev
ciphertexts encrypting
𝜇𝐈𝑛, 2𝜇𝐈𝑛, … , 2𝑡𝜇𝐈𝑛

Can derive from scalar Regev
encodings of 𝜇, 2𝜇,… , 2𝑡𝜇

Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑺T𝑪 = 𝑺T𝑨 𝑺T𝑩0 𝑺T𝑩1 𝑺T𝑩2 ⋯ 𝑺T𝑩𝑡

Write 𝑺T = −𝒔 𝐈𝑛]

Let 𝒔Reg be the key for a Regev

encoding scheme

Construct key-switching matrix 𝑾:

𝑺T𝑾 ≈ −𝒔 𝒔Reg
T ⊗𝒈T

𝑾 will be included as part of the public parameters

Can show that 𝑺T𝑾𝒈−1 𝑪 ≈ 𝜇𝑺𝐓𝑮

Define 𝑨 = 𝑾𝒈−1(𝑪)

Matrix Regev → GSW

𝜇

2𝜇

2𝑡𝜇

⋮

scalar Regev encodings:
elements of 𝑅𝑞

2

𝜇𝐈𝑛

2𝑡𝜇𝐈𝑛

⋮

Scalar Regev to
Matrix Regev

matrix Regev encodings:

elements of 𝑅𝑞
𝑛+1 ×𝑛

−𝜇𝒔𝒈T
𝑾𝒈−1 [𝒄𝟎|⋯ |𝒄𝒕]

𝒄0

𝒄1

𝒄𝑡

−𝜇𝒔𝒈T 𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

Concatenate blocks to obtain
GSW encoding of 𝜇

Ciphertext contains
𝑛 + 1 2(𝑡 + 1) elements of 𝑅𝑞

Takeaway: instead of sending
𝑛 + 1 2(𝑡 + 1) ring elements per GSW
ciphertext, only need to send 2(𝑡 + 1)

Further Compression via Polynomial Encodings

𝜇

2𝜇

2𝑡𝜇

⋮

𝒄0

𝒄1

𝒄𝑡

Each Regev ciphertext is encoding a
scalar (i.e., an element of

ℤ𝑞 ⊆ 𝑅𝑞 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

[ACLS18, CCR19]: let 𝑓 𝑥 = 𝛼0 + 𝛼1𝑥 +⋯+ 𝛼𝑡 ⋅ 𝑥
𝑡 with 𝑡 < 𝑑

𝑓

𝛼0

𝛼1

𝛼𝑡

⋮

Expands a Regev encoding
of a polynomial into Regev

encodings of its coefficients

Takeaway: We can pack 𝜇, 2𝜇, …2𝑡𝜇

into a single polynomial

As long as 𝑡 + 1 < 𝑑, client and
communicate a GSW ciphertext with a

single Regev encoding (2 ring elements)

𝑛 + 1 2 𝑡 + 1
ring elements

2 ring elements

Cost: additional (reusable)
public parameters needed for

Regev-to-GSW translation

Query Expansion in Spiral

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

0

1

0

0

0 0 0 0

1 2 22 23

1 2 22 23

0 0 0 0

Compress into scalar
Regev encodings

1

𝑓

2 Pack scalars into
single polynomial

Query Expansion in Spiral

query

public parameters

response

Trade-off: larger public parameters, smaller queries

offline and one-time cost online cost

SealPIR: 3 MB
OnionPIR: 5 MB
SPIRAL: 18 MB

SealPIR: 66 KB Gentry-Halevi: ≈30 MB
OnionPIR: 63 KB SPIRAL: 14 KB

Moving costs from
online to offline phase

SPIRAL also achieves
higher rate and

throughput

Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]

Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Observation: At least half of the error components
are scaled by identity matrix!

Approach: Use two different moduli to rescale the
ciphertext

Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

Modulus 𝑞 must be large enough to support
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Observation: At least half of the error components
are scaled by identity matrix!

Approach: Use two different moduli to rescale the
ciphertext

𝒄0
T

𝑪1
=

Rescale by 𝑞2/𝑞

Rescale by 𝑞1/𝑞

෤𝒄0
T

෩𝑪1

Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

Modulus 𝑞 must be large enough to support
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

This work: Observe that rounding error
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Observation: At least half of the error components
are scaled by identity matrix!

Approach: Use two different moduli to rescale the
ciphertext

𝒄0
T

𝑪1
=

Rescale by 𝑞2/𝑞

Rescale by 𝑞1/𝑞

෤𝒄0
T

෩𝑪1

rate =
𝑛2 log 𝑝

𝑛2 log 𝑞1 + 𝑛 log 𝑞2

Sample parameters:
𝑞 = 256 , 𝑞1 ≈ 221 , 𝑞2 = 4𝑝

Overall rate: 0.34 (with vanilla modulus switching)
0.81 (with split modulus switching)

• SealPIR 0.01
• Gentry-Halevi (estimated) 0.44
• OnionPIR 0.24

Vanilla SPIRAL

public parameters

Key-switching matrices for
ciphertext expansion and

translation

record 𝑖

Vanilla SPIRAL

public parameters

query

Single scalar Regev
encoding of a

polynomial

𝑓 Homomorphic
expansion

0 𝐈𝑛 0 0

0 1 1

Vanilla SPIRAL

public parameters

query

Homomorphic
expansion

0 𝐈𝑛 0 0

0 1 1

Regev encodings
for first dimension

GSW encodings for
subsequent dimensions

Regev-GSW folding

First dimension processing

Vanilla SPIRAL

public parameters

query

Homomorphic
expansion

response

Single matrix Regev ciphertext
(with modulus reduction)𝑟𝑖

Many parameter choices in SPIRAL:
Plaintext matrix dimension
Plaintext modulus
Decomposition bases for key-switching
Database arrangement

Trade-offs in public
parameter size, query size,

server throughput, and rate Automatic parameter
selection tool

Use estimated running time +
compute cost to choose parameters
for an input database configuration

Basic Comparisons

Database Metric SealPIR FastPIR OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

3 MB

66 KB

3 MB

74.91 s

1 MB

8 MB

262 KB

50.5 s

5 MB

63 KB

127 KB

52.7 s

18 MB

14 KB

84 KB

24.5 s

Database configuration preferred by OnionPIR

Compared to OnionPIR:
reduce query size by 4.5×
reduce response size by 2×
reduce compute time by 2×

increase public parameter size by 3.6×

Throughput:

Rate: 0.24 0.36

322 MB/s149 MB/s

Basic Comparisons (with Larger Records)

Throughput for 100 GB database (𝟐𝟐𝟎 records):
• SPIRAL: 310 MB/S (322 S)
• SealPIR: 102 MB/s (977 s)
• FastPIR: 189 MB/s (528 s)
• OnionPIR: 122 MB/s (817 s)

Server cost is linear in
database size

All measurements based on single-
thread/single-core processing

SPIRAL also has smaller query size and
response size, but larger public parameters

Basic Comparisons (with Larger Records)

Client costs:
• Generating reusable public parameters is the

most expensive operation, but still < 1 s
• Query generation and response decoding

are fast (30 ms and < 1ms)

Server costs:
• Query expansion typically takes ≈ 1 second

(less than 1.5% of overall compute when
number of records is large)

• Parameter selection favors configurations
that evenly distributes the work between
first layer processing and ciphertext folding

(see paper for detailed microbenchmarks)

The Streaming Setting: SPIRALSTREAM

Streaming setting: same query reused over multiple databases

Private video stream (database 𝐷𝑖 contains 𝑖th block of media)

Private voice calls (repeated polling of the same “mailbox”)

Goal: minimize online costs (i.e., server compute, response size)
Consider larger public parameters or query size (amortized over lifetime of stream)

[GCMSAW16]

[AS16, AYAAG21]

𝑓

Matrix Regev encodings

GSW encodings

SPIRAL query expansion

0 1 0 0

0 0 0 0

1 𝑧 𝑧2 𝑧3

1 𝑧 𝑧2 𝑧3

0 0 0 0

0 𝐈𝑛 0 0

0 1 1

The Streaming Setting: SPIRALSTREAM

0 1 0 0

0 0 0 0

1 𝑧 𝑧2 𝑧3

1 𝑧 𝑧2 𝑧3

0 0 0 0

0 𝐈𝑛 0 0

0 1 1

Matrix Regev encodings

GSW encodings

SPIRALSTREAM query expansion

SPIRALSTREAM

query

Removing the initial expansion significantly reduces the noise growth from query expansion

Decreases size of public parameters (no more automorphism keys)

Better control of noise growth ⇒ higher server throughput and higher rate

Larger queries (more Regev encodings)

The Streaming Setting: SPIRALSTREAM

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

18 MB

14 KB

84 KB

24.5 s

Throughput:

Rate: 0.23 0.36

322 MB/s149 MB/s

SPIRALSTREAM

3 MB

15 MB

62 KB

9.0 s

0.48

874 MB/s

25% reduction in response size
2.7× increase in throughput

The Streaming Setting: SPIRALSTREAM

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Peaks at ≈1.5 GB/s
(over 7× faster than

previous constructions)

Higher Rate via Response Packing: SPIRALPACK

Can we further reduce response size?

rate =
𝑛2 log 𝑝

𝑛 log 𝑞2 + 𝑛2 log 𝑞1
𝑞1 = 4𝑝

Increasing the plaintext dimension 𝑛 increases the rate

SPIRAL and SPIRALSTREAM use 𝑛 = 2

Higher values of 𝑛 increases computational cost

Each Regev encoding is a 𝑛 + 1 × 𝑛 matrix, so number of ring operations per

homomorphic operation scale with 𝑂 𝑛3

SPIRALPACK: Perform homomorphic operations with 𝑛 = 1 and pack responses

[Not using fast matrix multiplications here]

Higher Rate via Response Packing: SPIRALPACK

SPIRAL

Plaintext space: 𝑅𝑝
𝑛×𝑛

Each record is
𝑛 × 𝑛 matrix

SPIRALPACK

Split database into 𝑛2 databases

𝑖th database contains 𝑖th entry of record
(elements of 𝑅𝑝)

Response consists of 𝑛2 Regev encodings

Better throughput
Worse rate

Higher Rate via Response Packing: SPIRALPACK

𝑛2 Regev ciphertexts
with dimension 1

Consists of 2𝑛2 ring elements

1 Regev ciphertext
with dimension 𝑛

Consists of 𝑛 𝑛 + 1 ring elements

Variant of scalar Regev
to matrix Regev
transformation

Requires publishing 𝑛
key-switching matrices

SPIRALPACK: higher throughput and rate (for sufficiently large records), larger public parameters

Packing done only at the very
end (cost does not scale with

number of records)

Higher Rate via Response Packing: SPIRALPACK

• Small records ⇒ can only take advantage of low packing dimension
• Higher throughputs since homomorphic operations cheaper
• Responses larger due to extra noise from response packing

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

SPIRALSTREAM

18 MB

14 KB

84 KB

24.5 s

→

→

→

→

18 MB

14 KB

86 KB

17.7 s

3 MB

15 MB

62 KB

9.0 s

→

→

→

→

16 MB

30 MB

96 KB

5.3 s

Higher Rate via Response Packing: SPIRALPACK

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

SPIRALSTREAM

18 MB

14 KB

84 KB

24.5 s

→

→

→

→

18 MB

14 KB

86 KB

17.7 s

3 MB

15 MB

62 KB

9.0 s

→

→

→

→

16 MB

30 MB

96 KB

5.3 s

𝟐𝟏𝟒 records
100 KB records

(1.6 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

508 KB

14.4 s

17 MB

14 KB

242 KB

4.92 s

→

→

→

→

47 MB

14 KB

188 KB

4.58 s

1 MB

8 MB

208 KB

2.4 s

→

→

→

→

24 MB

30 MB

150 KB

1.2 s

Throughput:

Rate: 0.20

333 MB/s114 MB/s 683 MB/s

0.41 0.53 0.48 0.67

358 MB/s 1.4 GB/s

→→

→→

With 100 KB records, higher rate and throughput in exchange for larger public parameters

Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

1.94 GB/s and a rate of 0.81
(125 MB public parameter and 30 MB query)

Memory bandwidth on system: ≈10 GB/s

Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

Cost of privately streaming a 2 GB movie
from database of 214 movies estimated to be

1.9× more expensive than no-privacy
baseline (based on AWS compute costs)

Previously: ≈17× more expensive

A Systematic Way to Explore PIR Trade-Offs

Parameter selection tool can be used to minimize online cost
with constraints on public parameter and query sizes

(Database configuration: 214 × 100 KB database)

The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev
Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller
12.3× higher

Improvements primarily due to
query and response compression

The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev
Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller
12.3× higher

Improvements primarily due to fine-
tuning scheme parameters for

database configuration

Future Directions

Leveraging FHE composition in other privacy-preserving systems

Private set intersection (PSI)

Oblivious RAM (ORAM)

Hardware acceleration for higher throughput

Thank you!

Paper: https://eprint.iacr.org/2022/368
Code: https://github.com/menonsamir/spiral-rs

Leveraging preprocessing to achieve sublinear server computation

