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Private Information Retrieval (PIR)
[CGKS95]

record 𝑖

Metadata-private messaging

Safe browsing

Contact discovery

Private DNS

Private contact tracing

Private navigation

Basic building block in many privacy-preserving protocols
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Our focus: single-server setting
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respond as a function of database size”
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2 Server Throughput

database size

server computation time

“measures how fast the server can 
respond as a function of database size”

Without preprocessing, 
server must perform a linear 

scan over the database



Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

3 Rate

record size

response size

“measures how fast the server can 
respond as a function of database size”

“measures communication 
overhead in responses”

public parameters 4 Public parameter sizeClient generates a 
reusable set of public 

parameters



The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Cost: 3.4× larger public parameters (17 MB)
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Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
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4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Higher throughput than running software AES over database
(Primary operation: 64-bit integer arithmetic)

Cost: 3.4× larger public parameters (17 MB)



The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller responses
12.3× higher

Best previous protocol:

Rate: 0.24
Throughput: 158 MB/s

Cost of privately streaming a 2 GB movie 
from database of 214 movies estimated to be 

1.9× more expensive than no-privacy
baseline (based on AWS compute costs)

Cost: 3.4× larger public parameters (17 MB)



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix
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Starting point: a 𝑁 construction (𝑁 = number of records)
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Encrypt a 0/1 vector indicating the row 
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product 
between query vector and database matrix

Database is in the clear, so additive
homomorphism suffices
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Encrypt a 0/1 vector indicating the row 
containing the desired record
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Client decrypts to 
learn records

Response size: 𝑁 ⋅ poly 𝜆



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row 
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product 
between query vector and database matrix

Client decrypts to 
learn records

Response size: 𝑁 ⋅ poly 𝜆

ciphertext size
(𝜆 is security parameter)



PIR from Homomorphic Encryption 
[KO97]

𝑟112𝑟111

𝑟122𝑟121

0 0 1 0

Select along the first dimension

𝑟312𝑟311

𝑟322𝑟321

Output is encrypted

Approach: Use homomorphic multiplication

𝑟312𝑟311

𝑟322𝑟321

0 1
𝑟322𝑟321

1 0
𝑟321

Gentry-Halevi [GH19]

OnionPIR [MCR21]

Beyond 𝑁 communication: view the database as hypercube



SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two lattice-based FHE schemes:

Scheme 1: Regev’s encryption scheme [Reg04]

Scheme 2: Gentry-Sahai-Waters encryption scheme [GSW13]

High-rate; only supports additive homomorphism

FHE ciphertexts are noisy encodings
Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Low rate; supports homomorphic multiplication (with additive noise growth)

Goal: get the best of both worlds



Regev Encodings (over Rings)

Regev encoding of a scalar 𝑚 ∈ 𝑅:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝒔T ≈ 𝑚

secret key encoding message

• Secret key allows recovery of noisy version of 
original message

• To support decryption of “small” values 𝑡 ∈
𝑅𝑝, we encode 𝑡 as Τ𝑞 𝑝 𝑡

• Decryption recovers noisy version of (𝑞/𝑝)𝑡
and rounding yields 𝑡

[Reg04, LPR10]

rate = 
log 𝑝

2 log 𝑞
<

1

2

OnionPIR: rate = 0.24

𝑅𝑞
2 𝑅𝑞

2 𝑅𝑞



Matrix Regev Encodings (over Rings)

Regev encoding of a matrix 𝑴 ∈ 𝑅𝑞
𝑛×𝑛:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈ 𝑴

𝑅𝑞
𝑛×𝑛

Idea: “Reuse” encryption randomness

[PVW08, LPR10]

rate = 
𝑛2 log 𝑝

𝑛 𝑛+1 log 𝑞
=

𝑛2

𝑛2+𝑛

log 𝑝

log 𝑞

Additively homomorphic:

𝑺T𝑪1 ≈ 𝑴1

𝑺T𝑪2 ≈ 𝑴2

𝑺T 𝑪1 + 𝑪2 ≈ 𝑴1 +𝑴2



Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other 
decomposition bases
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GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other 
decomposition bases

Main property: for every vector 𝒗 ∈ ℤ𝑞
𝑛+1, can 

define 𝑮−1 𝒗 ∈ 0,1 𝑚 where 𝑮𝑮−1 𝒗 = 𝒗
“binary decomposition”



Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other 
decomposition bases

rate = 
1

𝑑 𝑛+1 2 log 𝑞

Concretely: 𝑑 = 2048, 𝑛 ≥ 1, 𝑞 = 256



Regev-GSW Homomorphism
[CGGI18]

𝑺T𝑪Reg ≈ 𝑴

𝑺T𝑪GSW ≈ 𝜇𝑺T𝑮

𝑺T𝑪GSW𝑮
−1 𝑪Reg ≈ 𝜇𝑺T𝑪Reg ≈ 𝜇𝑴

𝑪GSW𝑮
−1 𝑪Reg is a Regev encoding of 𝜇𝑴

With noise terms:

𝑺T𝑪GSW𝑮
−1 𝑪Reg = 𝜇𝑴+ 𝑬GSW𝑮

−1 𝑪Reg + 𝜇𝐸Reg

Asymmetric noise growth: if all GSW ciphertexts are 
“fresh,” then noise accumulation is additive in the number 
of multiplications



The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts 

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Each GSW ciphertext 
participates in only one

multiplication with a 
Regev ciphertext!

Response is a single
matrix Regev ciphertext

[GH19]

Indicator for index along subsequent dimensions
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[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

[GH19]

Indicator for index along subsequent dimensions



The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts 

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

Drawback: large queries

Can compress using 
polynomial encoding 

method of Angel et al. 
[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

SealPIR query size: 
66 KB

[GH19]



OnionPIR
[MCR21]

High-level: Gentry-Halevi approach with scalar Regev ciphertexts (𝑛 = 1)

Leverages Chen et al. approach [CCR19] to “assemble” GSW ciphertext using 
Regev-GSW multiplication

Regev ciphertexts can be packed using polynomial encoding method 
[ACLS18, CCR19]

Use of scalar Regev ciphertexts reduces the rate to ≈ 0.24
(over 4× response overhead)



This Work: Translating Between Regev and GSW

“Best of both worlds”: Small queries (as in OnionPIR) with the high rate/throughput of the 
Gentry-Halevi scheme

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

2000× smaller than Gentry-Halevi (4.5× smaller than OnionPIR)
2.1× higher than OnionPIR
2.9× higher than OnionPIR

(Database with 214 records of size 100 KB)

Cost: 3.4× larger public parameters for extra translation keys

Comparable improvements for other 
database configurations; more speed-

ups in streaming setting

Leverage simple key-switching techniques for query and response compression

Scalar Regev → Matrix Regev
Matrix Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)



Scalar Regev → Matrix Regev

Input: encoding 𝒄 where 𝒔1
T𝒄 ≈ 𝑚

Output: encoding 𝑪 where 𝑺2
T𝑪 ≈ 𝑚𝐈𝑛

𝒔1
T = − ǁ𝑠0 1] ∈ 𝑅𝑞

2

𝒄T = 𝑐0 𝑐1] ∈ 𝑅𝑞
2

𝑺2
T =

− ǁ𝑠0

⋮

− ǁ𝑠0

𝑰𝑛 𝑪 =

𝑐0 ⋯ 𝑐0

𝑐1𝑰𝑛

𝑺2
T𝑪 = 𝑚𝑰𝒏

Can replace with 𝑺2 with arbitrary secret key
using standard key-switching techniques



Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝑺T = −𝒔 𝐈𝑛] ∈ 𝑅𝑞
𝑛× 𝑛+1

𝑮 =
𝒈T

⋱
𝒈T

rearrange

𝒈T

𝟎

𝟎

𝐈𝒏 2𝐈𝒏 22𝐈𝒏 ⋯ 2𝑡𝐈𝒏

𝑡 = log 𝑞

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑪 = 𝑨 𝑩0 𝑩1 𝑩2 ⋯ 𝑩𝑡 Break 𝑪 into blocks



Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑺T𝑪 = 𝑺T𝑨 𝑺T𝑩0 𝑺T𝑩1 𝑺T𝑩2 ⋯ 𝑺T𝑩𝑡

𝑩0, … , 𝑩𝑡 are matrix Regev 
ciphertexts encrypting 
𝜇𝐈𝑛, 2𝜇𝐈𝑛, … , 2𝑡𝜇𝐈𝑛

Can derive from scalar Regev 
encodings of 𝜇, 2𝜇,… , 2𝑡𝜇



Matrix Regev → GSW

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = −𝜇𝒔𝒈T 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑺T𝑪 = 𝑺T𝑨 𝑺T𝑩0 𝑺T𝑩1 𝑺T𝑩2 ⋯ 𝑺T𝑩𝑡

Write 𝑺T = −𝒔 𝐈𝑛]

Let 𝒔Reg be the key for a Regev 

encoding scheme

Construct key-switching matrix 𝑾:

𝑺T𝑾 ≈ −𝒔 𝒔Reg
T ⊗𝒈T

𝑾 will be included as part of the public parameters

Can show that 𝑺T𝑾𝒈−1 𝑪 ≈ 𝜇𝑺𝐓𝑮

Define 𝑨 = 𝑾𝒈−1(𝑪 )



Matrix Regev → GSW

𝜇

2𝜇

2𝑡𝜇

⋮

scalar Regev encodings:
elements of 𝑅𝑞

2

𝜇𝐈𝑛

2𝑡𝜇𝐈𝑛

⋮

Scalar Regev to 
Matrix Regev

matrix Regev encodings:

elements of 𝑅𝑞
𝑛+1 ×𝑛

−𝜇𝒔𝒈T
𝑾𝒈−1 [𝒄𝟎|⋯ |𝒄𝒕]

𝒄0

𝒄1

𝒄𝑡

−𝜇𝒔𝒈T 𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

Concatenate blocks to obtain 
GSW encoding of 𝜇

Ciphertext contains
𝑛 + 1 2(𝑡 + 1) elements of 𝑅𝑞

Takeaway: instead of sending 
𝑛 + 1 2(𝑡 + 1) ring elements per GSW 
ciphertext, only need to send 2(𝑡 + 1)



Further Compression via Polynomial Encodings

𝜇

2𝜇

2𝑡𝜇

⋮

𝒄0

𝒄1

𝒄𝑡

Each Regev ciphertext is encoding a 
scalar (i.e., an element of

ℤ𝑞 ⊆ 𝑅𝑞 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

[ACLS18, CCR19]: let 𝑓 𝑥 = 𝛼0 + 𝛼1𝑥 +⋯+ 𝛼𝑡 ⋅ 𝑥
𝑡 with 𝑡 < 𝑑

𝑓

𝛼0

𝛼1

𝛼𝑡

⋮

Expands a Regev encoding 
of a polynomial into Regev 

encodings of its coefficients

Takeaway: We can pack 𝜇, 2𝜇, …2𝑡𝜇

into a single polynomial

As long as 𝑡 + 1 < 𝑑, client and 
communicate a GSW ciphertext with a 

single Regev encoding (2 ring elements)

𝑛 + 1 2 𝑡 + 1
ring elements

2 ring elements

Cost: additional (reusable)
public parameters needed for 

Regev-to-GSW translation



Query Expansion in Spiral

Database is represented as 2𝜈1 × 2 × 2 ×⋯× 2
2𝜈2

hypercube

Query contains 2𝜈1 matrix Regev ciphertexts 

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

0

1

0

0

0 0 0 0

1 2 22 23

1 2 22 23

0 0 0 0

Compress into scalar
Regev encodings

1

𝑓

2 Pack scalars into 
single polynomial



Query Expansion in Spiral

query

public parameters

response

Trade-off: larger public parameters, smaller queries

offline and one-time cost online cost

SealPIR: 3 MB
OnionPIR: 5 MB
SPIRAL: 18 MB

SealPIR: 66 KB Gentry-Halevi: ≈30 MB
OnionPIR: 63 KB SPIRAL: 14 KB

Moving costs from 
online to offline phase

SPIRAL also achieves 
higher rate and 

throughput



Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support 
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by 
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error 
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]



Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support 
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by 
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error 
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛



Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

−𝒔 𝐈𝑛]
𝑞

𝑝
⋅ 𝑴≈

Modulus 𝑞 must be large enough to support 
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

Standard technique in FHE: modulus reduction

Rescale ciphertext by 
𝑞′

𝑞
where 𝑞′ < 𝑞

rate ∝
log 𝑝

log 𝑞′

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error 
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Observation: At least half of the error components 
are scaled by identity matrix!

Approach: Use two different moduli to rescale the 
ciphertext
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Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

Modulus 𝑞 must be large enough to support 
target number of homomorphic operations

rate ∝
log 𝑝

log 𝑞

This work: Observe that rounding error 
𝑬 is scaled by −𝒔 𝐈𝑛]

−𝒔 𝐈𝑛]
𝒆0
T

𝑬1

Error scaled by −𝒔

Error scaled by 𝐈𝑛

Observation: At least half of the error components 
are scaled by identity matrix!

Approach: Use two different moduli to rescale the 
ciphertext

𝒄0
T

𝑪1
=

Rescale by 𝑞2/𝑞

Rescale by 𝑞1/𝑞

෤𝒄0
T

෩𝑪1

rate =
𝑛2 log 𝑝

𝑛2 log 𝑞1 + 𝑛 log 𝑞2

Sample parameters:
𝑞 = 256 , 𝑞1 ≈ 221 , 𝑞2 = 4𝑝

Overall rate: 0.34 (with vanilla modulus switching)
0.81 (with split modulus switching)

• SealPIR 0.01
• Gentry-Halevi (estimated) 0.44
• OnionPIR 0.24



Vanilla SPIRAL

public parameters

Key-switching matrices for 
ciphertext expansion and 

translation

record 𝑖



Vanilla SPIRAL

public parameters

query

Single scalar Regev 
encoding of a 

polynomial

𝑓 Homomorphic 
expansion

0 𝐈𝑛 0 0

0 1 1



Vanilla SPIRAL

public parameters

query

Homomorphic 
expansion

0 𝐈𝑛 0 0

0 1 1

Regev encodings 
for first dimension

GSW encodings for 
subsequent dimensions

Regev-GSW folding

First dimension processing



Vanilla SPIRAL

public parameters

query

Homomorphic 
expansion

response

Single matrix Regev ciphertext
(with modulus reduction)𝑟𝑖

Many parameter choices in SPIRAL:
Plaintext matrix dimension
Plaintext modulus
Decomposition bases for key-switching
Database arrangement

Trade-offs in public 
parameter size, query size, 

server throughput, and rate Automatic parameter 
selection tool

Use estimated running time + 
compute cost to choose parameters 
for an input database configuration



Basic Comparisons

Database Metric SealPIR FastPIR OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

3 MB

66 KB

3 MB

74.91 s

1 MB

8 MB

262 KB

50.5 s

5 MB

63 KB

127 KB

52.7 s

18 MB

14 KB

84 KB

24.5 s

Database configuration preferred by OnionPIR

Compared to OnionPIR:
reduce query size by 4.5×
reduce response size by 2×
reduce compute time by 2×

increase public parameter size by 3.6×

Throughput:

Rate: 0.24 0.36

322 MB/s149 MB/s



Basic Comparisons (with Larger Records)

Throughput for 100 GB database (𝟐𝟐𝟎 records):
• SPIRAL: 310 MB/S (322 S)
• SealPIR: 102 MB/s (977 s)
• FastPIR: 189 MB/s (528 s)
• OnionPIR: 122 MB/s (817 s)

Server cost is linear in 
database size

All measurements based on single-
thread/single-core processing

SPIRAL also has smaller query size and 
response size, but larger public parameters



Basic Comparisons (with Larger Records)

Client costs:
• Generating reusable public parameters is the 

most expensive operation, but still < 1 s
• Query generation and response decoding 

are fast (30 ms and < 1ms)

Server costs:
• Query expansion typically takes ≈ 1 second 

(less than 1.5% of overall compute when 
number of records is large)

• Parameter selection favors configurations 
that evenly distributes the work between 
first layer processing and ciphertext folding

(see paper for detailed microbenchmarks)



The Streaming Setting: SPIRALSTREAM

Streaming setting: same query reused over multiple databases

Private video stream (database 𝐷𝑖 contains 𝑖th block of media)

Private voice calls (repeated polling of the same “mailbox”)

Goal: minimize online costs (i.e., server compute, response size)
Consider larger public parameters or query size (amortized over lifetime of stream)

[GCMSAW16]

[AS16, AYAAG21]

𝑓

Matrix Regev encodings

GSW encodings

SPIRAL query expansion

0 1 0 0

0 0 0 0

1 𝑧 𝑧2 𝑧3

1 𝑧 𝑧2 𝑧3

0 0 0 0

0 𝐈𝑛 0 0

0 1 1



The Streaming Setting: SPIRALSTREAM

0 1 0 0

0 0 0 0

1 𝑧 𝑧2 𝑧3

1 𝑧 𝑧2 𝑧3

0 0 0 0

0 𝐈𝑛 0 0

0 1 1

Matrix Regev encodings

GSW encodings

SPIRALSTREAM query expansion

SPIRALSTREAM

query

Removing the initial expansion significantly reduces the noise growth from query expansion 

Decreases size of public parameters (no more automorphism keys)

Better control of noise growth ⇒ higher server throughput and higher rate

Larger queries (more Regev encodings)



The Streaming Setting: SPIRALSTREAM

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

18 MB

14 KB

84 KB

24.5 s

Throughput:

Rate: 0.23 0.36

322 MB/s149 MB/s

SPIRALSTREAM

3 MB

15 MB

62 KB

9.0 s

0.48

874 MB/s

25% reduction in response size
2.7× increase in throughput



The Streaming Setting: SPIRALSTREAM

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Peaks at ≈1.5 GB/s
(over 7× faster than 

previous constructions)



Higher Rate via Response Packing: SPIRALPACK

Can we further reduce response size?

rate =
𝑛2 log 𝑝

𝑛 log 𝑞2 + 𝑛2 log 𝑞1
𝑞1 = 4𝑝

Increasing the plaintext dimension 𝑛 increases the rate

SPIRAL and SPIRALSTREAM use 𝑛 = 2

Higher values of 𝑛 increases computational cost

Each Regev encoding is a 𝑛 + 1 × 𝑛 matrix, so number of ring operations per 

homomorphic operation scale with 𝑂 𝑛3

SPIRALPACK: Perform homomorphic operations with 𝑛 = 1 and pack responses

[Not using fast matrix multiplications here]



Higher Rate via Response Packing: SPIRALPACK

SPIRAL

Plaintext space: 𝑅𝑝
𝑛×𝑛

Each record is 
𝑛 × 𝑛 matrix

SPIRALPACK

Split database into 𝑛2 databases

𝑖th database contains 𝑖th entry of record 
(elements of 𝑅𝑝)

Response consists of 𝑛2 Regev encodings

Better throughput
Worse rate



Higher Rate via Response Packing: SPIRALPACK

𝑛2 Regev ciphertexts 
with dimension 1

Consists of 2𝑛2 ring elements

1 Regev ciphertext 
with dimension 𝑛

Consists of 𝑛 𝑛 + 1 ring elements

Variant of scalar Regev 
to matrix Regev 
transformation

Requires publishing 𝑛
key-switching matrices

SPIRALPACK: higher throughput and rate (for sufficiently large records), larger public parameters

Packing done only at the very 
end (cost does not scale with 

number of records)



Higher Rate via Response Packing: SPIRALPACK

• Small records ⇒ can only take advantage of low packing dimension
• Higher throughputs since homomorphic operations cheaper
• Responses larger due to extra noise from response packing

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

SPIRALSTREAM

18 MB

14 KB

84 KB

24.5 s

→

→

→

→

18 MB

14 KB

86 KB

17.7 s

3 MB

15 MB

62 KB

9.0 s

→

→

→

→

16 MB

30 MB

96 KB

5.3 s



Higher Rate via Response Packing: SPIRALPACK

Database Metric OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

127 KB

52.7 s

SPIRALSTREAM

18 MB

14 KB

84 KB

24.5 s

→

→

→

→

18 MB

14 KB

86 KB

17.7 s

3 MB

15 MB

62 KB

9.0 s

→

→

→

→

16 MB

30 MB

96 KB

5.3 s

𝟐𝟏𝟒 records
100 KB records

(1.6 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

5 MB

63 KB

508 KB

14.4 s

17 MB

14 KB

242 KB

4.92 s

→

→

→

→

47 MB

14 KB

188 KB

4.58 s

1 MB

8 MB

208 KB

2.4 s

→

→

→

→

24 MB

30 MB

150 KB

1.2 s

Throughput:

Rate: 0.20

333 MB/s114 MB/s 683 MB/s

0.41 0.53 0.48 0.67

358 MB/s 1.4 GB/s

→→

→→

With 100 KB records, higher rate and throughput in exchange for larger public parameters



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms 
non-packed protocol 
for streaming settings



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms 
non-packed protocol 
for streaming settings

1.94 GB/s and a rate of 0.81
(125 MB public parameter and 30 MB query)

Memory bandwidth on system: ≈10 GB/s



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms 
non-packed protocol 
for streaming settings

Cost of privately streaming a 2 GB movie 
from database of 214 movies estimated to be 

1.9× more expensive than no-privacy
baseline (based on AWS compute costs)

Previously: ≈17× more expensive



A Systematic Way to Explore PIR Trade-Offs

Parameter selection tool can be used to minimize online cost 
with constraints on public parameter and query sizes

(Database configuration: 214 × 100 KB database)



The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev
Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller
12.3× higher

Improvements primarily due to 
query and response compression



The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev
Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression

(for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller
12.3× higher

Improvements primarily due to fine-
tuning scheme parameters for 

database configuration



Future Directions

Leveraging FHE composition in other privacy-preserving systems

Private set intersection (PSI)

Oblivious RAM (ORAM)

Hardware acceleration for higher throughput

Thank you!

Paper: https://eprint.iacr.org/2022/368
Code: https://github.com/menonsamir/spiral-rs 

Leveraging preprocessing to achieve sublinear server computation


