SPIRAL: Fast High-Rate Single-Server

Private Information Retrieval

Samir Menon and David Wu




Private Information Retrieval (PIR)

[CGKS95]

<D »
‘o, T ]
‘ —_— |
— —
!

[ Does not learn index i
ri ]




Private Information Retrieval (PIR)

Our focus: single-server setting

ri

rp

[
[
[
[

e

r

N

J
J
J
J

Basic building block in many privacy-preserving protocols

* Metadata-private messaging @ Private DNS
¢! Contact discovery ~~ Private contact tracing

O, Safe browsing ) Private navigation

[CGKS95]




Efficiency Metrics

€ Query size
query

response
—

© Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”



Efficiency Metrics

€ Query size
query Without preprocessing,
server must perform a linear
4& scan over the database

© Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”



Efficiency Metrics

Client generates a public parameters G Public parameter size
reusable set of public .
parameters o Query size
query
response )
—
e ————
© Rate ©) Server Throughput
record size database size
response size server computation time
“measures communication “measures how fast the server can

overhead in responses” respond as a function of database size”



The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of SPIRAL Streaming versions of SPIRAL
Query size: 14 KB 4.5X smaller Rate: 0.81 3.4X smaller responses
Rate: 0.41 2.1X higher Throughput: 1.9 GB/s 12.3X higher

Throughput: 333 MB/s 2.9% higher Best previous protocol:

(Database with 2% records of size 100 KB) Rate: 0.24

_ Throughput: 158 MB/s
Cost: 3.4X larger public parameters (17 MB)



The SPIRAL Family of PIR Protocols

Techniques to translate between FHE sclj _
Higher throughput than running software AES over database

Automatic parameter selection based o (Primary operation: 64-bit integer arithmetic)

Base version of SPIRAL Streaming versions of SPIRAL
Query size: 14 KB 4.5X smaller Rate: 0.81 3.4X smaller responses
Rate: 0.41 2.1X higher Throughput: 1.9 GB/s 12.3X higher

Throughput: 333 MB/s 2.9% higher Best previous protocol:

(Database with 2% records of size 100 KB) Rate: 0.24

_ Throughput: 158 MB/s
Cost: 3.4X larger public parameters (17 MB)



The SPIRAL Family of PIR Protocols

Techniques to translate between FHE schemes enabl iU ECUIL L ERE IS
from database of 2™ movies estimated to be

Automatic parameter selection based on database co 1.9x more expensive than no-privacy

baseline (based on AWS compute costs)

Base version of SPIRAL Streaming versions of SPIRAL
Query size: 14 KB 4.5X smaller Rate: 0.81 3.4X smaller responses
Rate: 0.41 2.1X higher Throughput: 1.9 GB/s 12.3X higher

Throughput: 333 MB/s 2.9% higher Best previous protocol:

(Database with 2% records of size 100 KB) Rate: 0.24

_ Throughput: 158 MB/s
Cost: 3.4X larger public parameters (17 MB)



PIR from Homomorphic Encryption

Starting point: a VN construction (N = number of records)

Arrange the database as a

VN-by-V/N matrix



PIR from Homomorphic Encryption

Starting point: a VN construction (N = number of records)

% Encrypt a 0/1 vector indicating the row
11, T2 T3 T4 . :
containing the desired record

Arrange the database as a Homomorphically compute product
VN-by-vVN matrix between query vector and database matrix



PIR from Homomorphic Encryption

Starting point: a VN construction (N = number of records)

Encrypt a 0/1 vector indicating the row
containing the desired record

T41 T42 T43 T34 X n

Arrange the database as a Database is in the clear, so additive
VN-by-VN matrix homomorphism suffices




PIR from Homomorphic Encryption

Starting point: a VN construction (N = number of records)

| Encrypt a 0/1 vector indicating the row
Client decrypts to containing the desired record

learn records

Response size: VN - poly(1)
Homomorphically compute product

between query vector and database matrix



PIR from Homomorphic Encryption

Starting point: a VN construction (N = number of records)

| Encrypt a 0/1 vector indicating the row
Client decrypts to containing the desired record

learn records

Response size: VN - poly(1)
Homomorphically compute product

Ciphertext size between query vector and database matrix

(A is security parameter)



PIR from Homomorphic Encryption

Beyond VN communication: view the database as hypercube

(

Y

(

A

(

N

D

(
\.

N
111 | |T112

121 | |T122
_J

Output is encrypted

ool Bo
EEE—

Select along the first dimension

r
.

311 | |1312
321 | |1322

~
v,

Approach: Use homomorphic multiplication

r
.

N
311 | 1312
1321 | 1322

Yy

o N1
oy 2

fl 0

Gentry-Halevi [GH19]
OnionPIR [MCR21]

321



SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two |attice-based FHE schemes:

FHE ciphertexts are noisy encodings
Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Scheme 1: Regev’s encryption scheme [Reg04]

High-rate; only supports additive homomorphism

Scheme 2: Gentry-Sahai-Waters encryption scheme [Gsw13]

Low rate; supports homomorphic multiplication (with additive noise growth)

Goal: get the best of both worlds




Regev Encodings (over Rings)

[Reg04, LPR10]

Regev encoding of a scalar m € R: « Secret key allows recovery of noisy version of
R, original message
~ * To support decryption of “small” values t €
R,, we encode t as (q/p)t

* Decryption recovers noisy version of (q/p)t

and rounding yields t
citer
logp

rate =
2logq

1
< =
2

OnionPIR: rate =0.24

All elements are polynomials in the ring R = Z[x]/(x% + 1) where d = 2*



Matrix Regev Encodings (over Rings)

[PVWO0S, LPR10]

Regev encoding of a matrix M € RZ}X": Idea: “Reuse” encryption randomness

nx(n+1) R(n+1)><n Ran ate = n2 logp - n2 logp
- . n(n+logqg mn2+nloggq
. Additively homomorphic:
sTc, ~ M,
s'c, ~ M,

ST(Cl —+ Cz) ~ Ml + Mz

All elements are polynomials in the ring R = Z[x]/(x% + 1) where d = 2*



Gentry-Sahai-Waters Encodings

[GSW13]
GSW encoding of a bit u € {0,1}: Gadget matrix [vp12):
nx(n+1) R(n+1)><n nx(n+1) R(n+1)><m 'gT
mpg-cmpn
=[1 2 22 .. ~2llogzql]
m=(n+1)logq “Powers-of-2” matrix

Construction will use other

decomposition bases

All elements are polynomials in the ring R = Z[x]/(x% + 1) where d = 2*



Gentry-Sahai-Waters Encodings

[GSW13]
GSW encoding of a bit u € {0,1}: Gadget matrix (mp12]:
nx(n+1) R(n+1)><n nx(n+1) R(n+1)><m _gT ]
- . gT_
=[1 2 22 .. ~2llogzql]
m=(n+1)logq “Powers-of-2” matrix
Main property: for every vector v € Z7*?, can Construction will use other
define G™1(v) € {0,1}™ where GG (v) = v decomposition bases

“binary decomposition”

All elements are polynomials in the ring R = Z[x]/(x% + 1) where d = 2*



Gentry-Sahai-Waters Encodings

[GSW13]
GSW encoding of a bit u € {0,1}: Gadget matrix mp12):
nx(n+1) R(n+1)><n nx(n+1) (n+1)><m _gT
- . gT—
=[1 2 22 .. ~2llogzql]
— 11 “Powers-of-2” matrix
rate = = (n+Dlogg

d(n+1)% lo
( ) &d Construction will use other

decomposition bases

Concretely: d = 2048,n > 1,q = 2°°

All elements are polynomials in the ring R = Z[x]/(x% + 1) where d = 2*



Regev-GSW Homomorphism

[CGGI18]

ST CR ~ M With noise terms:
e _ _
- g - STCGSWG 1(CReg) — .uM T EGSWG 1(C‘Reg) + .uEReg
S5 Cosw =S G

!

STCGSWG_l(CReg) ~ .uSTCReg ~ uM

Asymmetric noise growth: if all GSW ciphertexts are
“fresh,” then noise accumulation is additive in the number
of multiplications

CoswG*(Creg) is a Regev encoding of uM



The Gentry-Halevi Blueprint

(- N\

Database is represented as 271 X 2 X 2 X - X 2 hypercube
2V2

2\
2\
4 A
DD Query contains 2Y1 matrix Regev ciphertexts
WU aanononNn
\. L,
L y,

Indicator for index along first dimension

Each GSW ciphertext

Query contains v, GSW ciphertexts > ;
participates in only one

oMl WMo

Indicator for index along subsequent dimensions

Response is a single

multiplication with a
Regev ciphertext!

matrix Regev ciphertext



The Gentry-Halevi Blueprint

Database is represented as 271 X 2 X 2 X - X 2 hypercube
2V2

Drawback: large queries

_ Query contains 2Y1 matrix Regev ciphertexts
Can compress using

el M menm o
method of Angel et al. =
[ACLS18]

Indicator for index along first dimension

Query contains v, GSW ciphertexts

0 0
Estimated query size:

30 MB Indicator for index along subsequent dimensions

Estimated size:
4 MB/ciphertext




The Gentry-Halevi Blueprint

Database is represented as 271 X 2 X 2 X - X 2 hypercube
2V2

Drawback: large queries

_ Query contains 2Y1 matrix Regev ciphertexts
Can compress using

el M mmom o
method of Angel et al. =

[ACLS18]

_ Query contains v, GSW ciphertexts
SealPIR query size:
66 KB

0 0
Estimated query size:

30 MB Indicator for index along subsequent dimensions

Indicator for index along first dimension




OnionPIR

[MCR21]

High-level: Gentry-Halevi approach with scalar Regev ciphertexts (n = 1)

Leverages Chen et al. approach [ccr19] to “assemble” GSW ciphertext using
Regev-GSW multiplication

Regev ciphertexts can be packed using polynomial encoding method
[ACLS18, CCR19]

Use of scalar Regev ciphertexts reduces the rate to = 0.24
(over 4X response overhead)



This Work: Translating Between Regev and GSW

“Best of both worlds”: Small queries (as in OnionPIR) with the high rate/throughput of the
Gentry-Halevi scheme

Query size: 14 KB 2000 smaller than Gentry-Halevi (4.5X smaller than OnionPIR)
Rate: 0.41 2.1X higher than OnionPIR
Throughput: 333 MB/s 2.9X% higher than OnionPIR Comparable improvements for other

database configurations; more speed-
ups in streaming setting

(Database with 2% records of size 100 KB)

Cost: 3.4X larger public parameters for extra translation keys

Leverage simple key-switching techniques for query and response compression

Scalar Regev = Matrix Regev Scalar Regev = Matrix Regev
Matrix Regev —» GSW

Response compression

Query compression (for large records)



Scalar Regev — Matrix Regev

Input: encoding ¢ where SIC ~m sI =[5, | 1] € RS

= [co | ¢1] € RZ

.-

Output: encoding C where SrZFC ~ ml,

_§O

ST=- ITl C:

c 1,

Can replace with S, with arbitrary secret key
using standard key-switching techniques




Matrix Regev —» GSW

Goal: use Regev encodings to construct C such that STC ~ uS'G

ST = [-s | 1,] € RP*™*D

' I N
a=| . D

t =logq

Break C into blocks



Matrix Regev —» GSW

Goal: use Regev encodings to construct C such that STC ~ uS'G

By, ..., B; are matrix Regev
ciphertexts encrypting

ul,, 2ul,, ..., 2tul,

4

Can derive from scalar Regev
encodings of u, 24, ..., 2t u




Matrix Regev —» GSW

Goal: use Regev encodings to construct C such that STC ~ uS'G

Write ST = [—s | I,]

Let Sgeg be the key for a Regev
encoding scheme

Construct key-switching matrix W'
T
STW ~ —s (sReg ® gT)

n Zz.uln Ztﬂln

W will be included as part of the public parameters
Can show that STWg~1(C) ~ uS'G

Define A = Wg~1(C)




Matrix Regev —» GSW

Wg=1([co| - |c,]) Concatenate blocks to obtain
t .
e ~ | —usg’ GSW encoding of u
CO T t
W —usg ul, 2"l
Cq Scalar Regev to uly

Matrix Regev Ciphertext contains
: (n + 1)*(t + 1) elements of R,

EEEmm———)

Ct Zt/,t
\ )
Takeaway: instead of sending

scalar Regev encodings: matrix Regev encodings: (n + 1)%(t + 1) ring elements per GSW
elements of Ré elements of Rc(ln+1)><n ciphertext, only need to send 2(t + 1)




Further Compression via Polynomial Encodings

[ACLS18, CCR19]: let f(x) = ag + ax + -+ a, - x* witht < d
0 1 t

Expands a Regev encoding
. ‘ : of a polynomial into Regev

encodings of its coefficients

- Takeaway: We can pack (u, 24, ... 2t pt) (n + D*(t+1)
CO?t. additional (reusable) into a single polynomial ring elements
public parameters neede-d (o] Aslongast + 1 < d, client and l
Regev-to-GSW translation communicate a GSW ciphertext with a

single Regev encoding (2 ring elements) 2 ring elements



Query Expansion in Spiral

Database is represented as 271 X 2 X 2 X - X 2 hypercube
2V2

Compress into scalar
Query contains 2Y1 matrix Regev ciphertexts n Regev encodings

1
AAAQ =g

Indicator for index along first dimension

9 Pack scalars into
single polynomial

s A

Query contains v, GSW ciphertexts

npAaaean —

Indicator for index along subsequent dimensions

°]-1-1-M-
DEODB

N N



Query Expansion in Spiral

Moving costs from

public parameters online to offline phase
—

query
—

response
—

offline and one-time cost m

Trade-off: larger public parameters, smaller queries nigherrate ane

SealPIR: 3 MEB throughput
eg : .

OnionPIR: 5 MB SealPIR: 66 KB Gentry-Halevi: =30 MB
SPIRAL: 18 MB ] | OnionPIR: 63 KB SPIRAL: 14 KB

SPIRAL also achieves




Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

511, I ~
C

Standard technique in FHE: modulus reduction

Modulus g must be large enough to support
target number of homomorphic operations

logp

rate <
log g

This work: Observe that rounding error

' E isscaled by |—s | I
Rescale ciphertext by%where q <q yI[=s 1]

logp
logq'

Rescaling introduces small amount of noise (from rounding)

[—s | I,]

rate «




Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

511, I ~
C

Standard technique in FHE: modulus reduction

Modulus g must be large enough to support
target number of homomorphic operations

logp

rate <
log g

This work: Observe that rounding error

' E isscaled by |—s | I
Rescale ciphertext by%where q <q yI[=s 1]

Error scaled by —s
logp

logq'

Rescaling introduces small amount of noise (from rounding)

[—s | I,]

rate «

Error scaled by I,




Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding

~ Observation: At least half of the error components
[_S | In] ~ ' are scaled by identity matrix!

Approach: Use two different moduli to rescale the
ciphertext

Standard technique in FHE: modulus reduction This work: Observe that rounding error
E is scaled by [—s | L]

[—s | I,]

!/
Rescale ciphertext by % where g’ < q

Error scaled by —s
logp

logq'

Rescaling introduces small amount of noise (from rounding)

rate «

Error scaled by I,




Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding
Rescale by qz/q>

Observation: At least half of the error components
are scaled by identity matrix!

Rescale by q1/q . Approach: Use two different moduli to rescale the
ciphertext

Standard technique in FHE: modulus reduction This work: Observe that rounding error

' E isscaled by |—s | I
Rescale ciphertext by%where q <q yI[=s 1]

Error scaled by —s
logp

logq'

Rescaling introduces small amount of noise (from rounding)

rate «

Error scaled by I,




Response Compression via Modulus Switching

PIR response consists of a single matrix Regev encoding
Rescale by qz/q>

Observation: At least half of the error components
are scaled by identity matrix!

Approach: Use two different moduli to rescale the
ciphertext

Rescale by g /q X

2
n”logp This work: Observe that rounding error

n®logq, + nlogq; E is scaled by [—s | L]

* SealPIR 0.01
* Gentry-Halevi (estimated) 0.44

rate =

Error scaled by —s

* OnionPIR 0.24

Overall rate: 0.34 (with vanilla modulus switching) Error scaled by I,

0.81 (with split modulus switching)




Vanilla SPIRAL

public parameters
—

Key-switching matrices for
ciphertext expansion and
translation




Vanilla SPIRAL

public parameters (])()
—
query e OO
— \, J
Single sczfllar Rfegev Homomorphic
encodlngc.) a expansion
polynomial

o] JoJo
o N B



Vanilla SPIRAL

(/N

public parameters (])()
—

query = \DDJ

Homomorphic
expansion

DD First dimension processing Regev encodings
as e Wil 0 1, Jo o

‘ Regev-GSW folding GSW encod.ings f(?r 1 1
subsequent dimensions
=)



Vanilla SPIRAL

public parameters (])()

query
response

Homomorphic
expansion

Single matrix Regev ciphertext
i (with modulus reduction)

i ] Use estimated running time +
Many parameter choices in SPIRAL: compute cost to choose parameters

i .. ) Trade-offs in public
Plaintext matrix dimension . P .

_ parameter size, query size,
Plaintext modulus

server throughput, and rate Automatic parameter

Decomposition bases for key-switching lection tool
Database arrangement selection too

for an input database configuration




Basic Comparisons

Database Metric SealPIR FastPIR OnionPIR SPIRAL

Public Param. Size 3 MB 1 MB 5 MB 18 MIB
1

218 records Query Size 66 KB 8 MB 63 KB 14 KB
7390:::-“;“ Response Size 3 MB 262 KB 127 KB 84 KB
(7. atabase) (. er Compute 74.91 s 50.5s 52.7 s 24.5s
Rate: 0.24 0.36

Throughput: 149 MB/s 322 MB/s

Database configuration preferred by OnionPIR

Compared to OnionPIR:
reduce query size by 4.5X increase public parameter size by 3.6 X

reduce response size by 2X
reduce compute time by 2X



Basic Comparisons (with Larger Records)

Throughput for 100 GB database (22° records):

10° E
. S 4 |° SPIRAL: 310 MB/s (322 s)
K C 1 |+ SealPIR: 102 MB/s (977 s)
@ - 1 |+ FastPIR: 189 MB/s (528 s)
= 2 | | . i :
2. 10 : 1L OnionPIR: 122 MB/s (817 s) \
% - . SPIRAL also has smaller query size and
O . R o — | response size, but larger public parameters
s 107 F E
z - E
% : i

100 | | All measurements based on single-

E | | | | | | 3 thread/single-core processing

210 212 214 216 218 220

Number of Records (100 KB Records) Server cost is linear in

—— SPIRAL —— SealPIR —¢— FastPIR —&— OnionPIR database size




Basic Comparisons (with Larger Records)

e

Client costs:
* Generating reusable public parameters is the
most expensive operation, but still < 1 s
* Query generation and response decoding
are fast (30 ms and < 1 ms)

.

e

Server costs:

* Query expansion typically takes = 1 second
(less than 1.5% of overall compute when
number of records is large)

e Parameter selection favors configurations
that evenly distributes the work between

; | | | | | |
10° E E
=2 f :
o _ i
2 |- —
2 107
E - -

o

@) R o 8 i
5 10'
P> B .
o = .
5 C ]
U) e =
100 = E
= | | | | |3

210 212 214 216 218 220

Number of Records (100 KB Records)

first layer processing and ciphertext folding

—

(see paper for detailed microbenchmarks)

—— SPIRAL —— SealPIR —¢— FastPIR —&— OnionPIR



The Streaming Setting: SPIRALSTREAM

Streaming setting: same query reused over multiple databases

Private video stream (database D; contains it block of media) [GCMSAW16]
Private voice calls (repeated polling of the same “mailbox”) [AS16, AYAAG21]

Goal: minimize online costs (i.e., server compute, response size)
Consider larger public parameters or query size (amortized over lifetime of stream)

n n n > n n n Matrix Regev encodings

GSW encodings

SPIRAL query expansion



The Streaming Setting: SPIRALSTREAM

Removing the initial expansion significantly reduces the noise growth from query expansion

Decreases size of public parameters (no more automorphism keys)
Better control of noise growth = higher server throughput and higher rate

Larger queries (more Regev encodings)

> n n n Matrix Regev encodings
) n GSW encodings

SPIRALSTREAM query expansion

B

SPIRALSTREAM
query

0
B
0

BDODB




The Streaming Setting: SPIRALSTREAM

Database Metric OnionPIR SPIRAL SPIRALSTREAM
Public Param. Size 5 MB 18 MB 3 MB
18
277 records Query Size 63 KB 14 KB 15 MB
7390(;(:;‘3?;‘"5 Response Size 127 KB 84 KB 62 KB
(7. atabase) Server Compute 52.7 s 24.5s 9.0s
Rate: 0.23 0.36 0.48
Throughput: 149 MB/s 322 MB/s 874 MB/s

25% reduction in response size

2.7X increase in throughput




The Streaming Setting: SPIRALSTREAM

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

)

~—

as)

2 1,500 |-

= i

Q, - Peaks at =1.5 GB/s

'éig 1,000 | (over 7X faster than

S i previous constructions)

e - i
o 500 | = ]
o - ./o— N
§= i ———o¢
A ———
g 0

)

210 212 214 216 218 220
Number of Records
—@®— SPIRAL —@— SPIRALSTREAM ~—— SealPIR —¢— FastPIR —#&— OnionPIR



Higher Rate via Response Packing: SPIRALPACK

Can we further reduce response size?

n?logp
te = = 4
rate nlogq, + n?logq h P

Increasing the plaintext dimension n increases the rate

SPIRAL and SPIRALSTREAM use n = 2

Higher values of n increases computational cost

Each Regev encodingis a (n + 1) X n matrix, so number of ring operations per
homomorphic operation scale with 0(n3) [Not using fast matrix multiplications here]

SPIRALPACK: Perform homomorphic operations with n = 1 and pack responses




Higher Rate via Response Packing: SPIRALPACK

SPIRAL

H . nxn
Plaintext space: R,

Each record is
n X n matrix

SPIRALPACK

Split database into n“ databases

ith database contains i™ entry of record

(elements of R})

Better throughput
Worse rate

Response consists of n? Regev encodings




Higher Rate via Response Packing: SPIRALPACK

Variant of scalar Regev
to matrix Regev
transformation

n? Regev ciphertexts
with dimension 1

. 2 .
Requires publishing n Consists of 2n“ ring elements

key-switching matrices

Packing done only at the very 1 Regev ciphertext
end (cost does not scale with with dimension n

number of records)

Consists of n(n + 1) ring elements

SPIRALPACK: higher throughput and rate (for sufficiently large records), larger public parameters



Higher Rate via Response Packing: SPIRALPACK

Database Metric OnionPIR SPIRAL SPIRALSTREAM
Public Param. Size 5 MB 18 MB —» 18 MB 3MB - 16 MB
18
2-" records Query Size 63 KB 14KB — 14KB 15 MB — 30 MB
7390(?:;@:0:'5 Response Size 127 KB 84KB — 86KB 62 KB — 96 KB
(7. atabase) Server Compute 52.7 s 245s —» 17.7s 9.0s —» 53s

 Small records = can only take advantage of low packing dimension
* Higher throughputs since homomorphic operations cheaper
* Responses larger due to extra noise from response packing



Higher Rate via Response Packing: SPIRALPACK

Database Metric OnionPIR SPIRAL SPIRALSTREAM
Public Param. Size 5 MB 18 MB —» 18 MB 3MB — 16 MB
18
27" records Query Size 63 KB 14KB — 14KB 15 MB - 30 MB
7390(;(:;‘3?;‘"5 Response Size 127 KB 84KB — 86 KB 62 KB — 96 KB
(7. atabase) Server Compute 52.7 s 245s — 17.7s 9.0s — 5.3s
14 Public Param. Size 5 MB 17MB — 47 MB 1MB — 24 MB
27" records Query Size 63 KB 14KB — 14KB 8MB — 30 MB
100 KB records Response Size 508 KB 242 KB — 188 KB 208 KB — 150 KB
(1.6 GB database)
Server Compute 14.4 s 492s — 4.58s 24s - 1.2s
Rate: 0.20 0.41 - 0.53 0.48 - 0.67
Throughput: 114 MB/s 333 MB/s — 358 MB/s 683 MB/s — 1.4 GB/s

With 100 KB records, higher rate and throughput in exchange for larger public parameters



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

2,000

1,500

1,000

500

Packing outperforms

E

non-packed protocol
for streaming settings

Streaming Throughput (MB/s)

210 212 214 216 218 220
Number of Records

—@— SPIRAL :-QO-::- SPIRALPACK —@— SPIRALSTREAM -::@Q-: SPIRALSTREAMPACK
—— SealPIR —¢— FastPIR —#— OnionPIR



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Q

% 2,000 B | | | | | |

= -

S 1,500 . 1.94 GB/s and a rate of 0.81

%D E ox" (125 MB public parameter and 30 MB query)

§ 1,000 |

E:D - Memory bandwidth on system: =10 GB/s
Packing outperforms é 500 Y ‘
non-packed protocol g Z_‘-r=_—%‘;_a‘:
for streaming settings % 0 910

Number of Records
—@— SPIRAL --O-+ SPIRALPACK —@— SPIRALSTREAM :-Q-- SPIRALSTREAMPACK

—— SealPIR —¢— FastPIR —&— OnionPIR



Packing in the Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Q)

= 2000F

-+ -

2. 1,500 [

= ’ - Cost of privately streaming a 2 GB movie

= - from database of 21* movies estimated to be

= 1,000 1.9X more expensive than no-privacy

E:D E baseline (based on AWS compute costs)
Packing outperforms [B= >00 -
non-packed protocol % - Previously: 17X more expensive
for streaming settings % 0 510 512 514 516 518 920

Number of Records
—@— SPIRAL --O-- SPIRALPACK —@— SPIRALSTREAM :-@::- SPIRALSTREAMPACK

—— SealPIR —¢— FastPIR —&— OnionPIR



Rate

A Systematic Way to Explore PIR Trade-Offs

Parameter selection tool can be used to minimize online cost
with constraints on public parameter and query sizes

(Database configuration: 21* x 100 KB database)

07 FT T rr[rrrrpr1 |‘|‘¢_|._|__|"|_ L S S S S B S

06 ;_ “‘0 ‘‘‘‘‘

0.5 I—(o—o """

0.4

03 F OnjonPIR

0.2 - @

0.1 :_QFastPIR
0:||||I|||||||||I||||||||||||||

0 10 20 30 40 50 60

Public Parameter + Query Size (MB)

—&— SPIRALSTREAM

— 15 [T 1Tt rJjrrrrrrrrr1rrrrrJ|rrrrprri |£’
5 1.2 _
2 [ ]
5 09F ‘_
Qy n -
& 0.6 [ -
= B i
S 03} -
= UL OnionPIR i
= 0 i ﬁlstPJRl E EEEEE RN N

10 20 30 40 50
Public Parameter + Query Size (MB)

S

-+ 0+ SPIRALSTREAMPACK

60



The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev = Matrix Regev Scalar Regev = Matrix Regev
Regev —» GSW
Response compression

Query compression (for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL Streaming versions of SPIRAL
Query size: 14 KB 4.5X smaller Rate: 0.81 3.4X smaller
Rate: 0.41 2.1X higher Throughput: 1.9 GB/s 12.3X% higher

Throughput: 333 MB/s 2.9% higher

(Database with 21* records of size 100 KB) Improvements primarily due to

query and response compression




The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev = Matrix Regev Scalar Regev = Matrix Regev
Regev —» GSW
Response compression

Query compression (for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL Streaming versions of SPIRAL
Query size: 14 KB 4.5X smaller Rate: 0.81 3.4X smaller
Rate: 0.41 2.1X higher Throughput: 1.9 GB/s 12.3X% higher

Throughput: 333 MB/s 2.9% higher

s _ Improvements primarily due to fine-
(Database with 2** records of size 100 KB)

tuning scheme parameters for
database configuration




Future Directions

Leveraging FHE composition in other privacy-preserving systems

Private set intersection (PSI)
Oblivious RAM (ORAM)

Hardware acceleration for higher throughput

Leveraging preprocessing to achieve sublinear server computation

Paper: https://eprint.iacr.org/2022/368
Code: https://github.com/menonsamir/spiral-rs

Thank you!



