
Privacy, Discovery, and Authentication 

for the Internet of Things

David Wu

Joint work with Ankur Taly, Asim Shankar, and Dan Boneh



The Internet of Things (IoT)

Lots of smart devices, but 

only useful if users can 

discover them!



Private Service Discovery

• Many existing service discovery protocols: Multicast DNS 
(mDNS), Apple Bonjour, Bluetooth Low Energy (BLE)

• But… not much privacy
• Recent study of mDNS announcements by Könings et al. [KBSW13] 

show that nearly 60% of devices revealed the device owner’s 
name in the clear (across approximately 3000 devices on a 
university campus)

• Service advertisements are not authenticated: malicious 
devices can forge service broadcasts



Private Service Discovery

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Alice

Each service specifies an 

authorization policy
Guest

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage

Stranger

Samsung TV
Guide | Setup

Philips Hue
Brightness

ADT Security
Manage

Door Lock
Manage



Private Mutual Authentication

Bob

How to authenticate between mutually 
distrustful parties?

Will only reveal 

identity to 

devices owned 

by Alice.

Will only reveal 

identity to Alice’s 

family members.

security system



Private Mutual Authentication

Bob

In most existing mutual authentication protocols 
(e.g., TLS, IKE, SIGMA), one party must reveal its 

identity first

security system



Primary Protocol Requirements

•Mutual privacy: Identity of protocol participants are 
only revealed to authorized recipients

•Authentic advertisements: Service advertisements 
(for discovery) should be unforgeable and authentic



Identity and Authorization Model

Every party has a signing + verification key, and a

collection of human-readable names bound to their 

public keys via a certificate chain

alice/family/

bob/

alice/device/

security/

popular_corp/

prod/S1234

verification key



Identity and Authorization Model

Authorization decisions expressed as prefix patterns

alice/family/

bob/

alice/device/

security/

Policy: 
alice/devices/*

Policy: 
alice/family/*



Protocol Construction



Starting Point: Diffie-Hellman Key Exchange

�	: cyclic group of prime order �

with generator �

��

��� ���

�
�
←�� �

�
←��

��

Shared key: 

KDF ��, �� , ���



Starting Point: Diffie-Hellman Key Exchange

�	: cyclic group of prime order �

with generator �

��

��� ���

�
�
←�� �

�
←��

��

Shared key: 

KDF ��, �� , ���



Secure Key Agreement: SIGMA-I Protocol [CK01]

�
�, ID�, SIG� ID�,�

�,�� �

�
�
←ℤ� �

�
←ℤ�

��

Key requirement: some form of authentication

Bob’s certificate (binds his 

identity to a signature 

verification key)

Bob’s signature on the 

ephemeral DH 

exponents



Secure Key Agreement: SIGMA-I Protocol [CK01]

�
�, ID�, SIG� ID�,�

�,�� �

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
�,��) �

Alice’s 

certificate

Alice’s 

signature



Secure Key Agreement: SIGMA-I Protocol [CK01]

�
�, ID�, SIG� ID�,�

�,�� �

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
�,��) �

Bob sends his identity before 

learning anything about Alice’s 

identity!



Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

Public-key encryption scheme where public-keys can be 
arbitrary strings (identities)

IBE.Encrypt

public 

parameters Bob

message ciphertext

mpk id

� ct

Alice can encrypt a 

message to Bob without 

needing to have exchanged 

keys with Bob



Identity Based Encryption (IBE) [Sha84, BF01, Coc01]

root authority

sk�����

msk
To decrypt messages, users go 

to a (trusted) identity provider 

to obtain a decryption key for 

their identity

Bob can decrypt all messages 

encrypted to his identity 

using sk���

sk�	




Prefix-Based Encryption

Secret-keys and ciphertexts both associated with names

alice/devices/

security/
�

alice/devices/

secret key ciphertext

+

Decryption succeeds if name in ciphertext is a 

prefix of the name in the secret key



Prefix-Based Encryption

Can be leveraged for prefix-based policies

Policy: 
alice/devices/*

Bob encrypts his message to the 

identity alice/devices/. Any 

user with a key that begins with 

alice/devices/ can decrypt. 



Prefix-Based Encryption

Can be leveraged for prefix-based policies

Policy: 
alice/devices/*

Bob encrypts his message to the 

identity alice/devices/. Any 

user with a key that begins with 

alice/devices/ can decrypt. 

Can be built 

directly from 

IBE!



Private Mutual Authentication

�
�, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

Key idea: encrypt certificate using prefix-based encryption



Private Mutual Authentication

�
�, {PE. Enc(�� , ID�)

���

, SIG� CT�,�
�,�� }�

�
�
←ℤ� �

�
←ℤ�

��

ID�, SIG�(ID�,�
� ,��) �

• Privacy for Alice’s identity: Alice sends her identity only after 
verifying Bob’s identity

• Privacy for Bob’s identity: Only users with a key that satisfies Bob’s 
policy can decrypt his identity



Private Service Discovery

Prefix-based encryption can also be leveraged for 
private service discovery

See paper for details:

http://arxiv.org/abs/1604.06959



Implementation and Benchmarks

• Integrated private mutual authentication and private service 
discovery protocols into the Vanadium open-source 
framework for building distributed applications

https://github.com/vanadium/



Implementation and Benchmarks

Comparison of private mutual authentication protocol 
with non-private SIGMA-I protocol

Note: x86 assembly optimizations for pairing curve operations available only on desktop

Intel Edison Raspberry 

Pi

Nexus 5X Laptop Desktop

SIGMA-I 252.1 ms 88.0 ms 91.6 ms 6.3 ms 5.3 ms

Private Mutual Auth. 1694.3 ms 326.1 ms 360.4 ms 19.6 ms 9.5 ms

Slowdown 6.7x 3.7x 3.9x 3.1x 1.8x



Conclusions

• Existing key-exchange and service discovery protocols do not 
provide privacy controls

• Prefix-based encryption can be combined very naturally with 
existing key-exchange protocols to provide privacy + 
authenticity

• Overhead of resulting protocol small enough that protocols 
can run on many existing devices



Questions?

http://arxiv.org/abs/1604.06959


