
Beyond Software Watermarking:
Traitor-Tracing for Pseudorandom Functions

Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu



Software Watermarking

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is destroyed

Applications: proving software ownership,
preventing unauthorized distribution of software

[NSS99, BGIRSVY01, HMW07, CHNVW16]



Software Watermarking

CRYPTO

Embed a “mark” within a 
program

If mark is removed, then 
program is destroyed

Two main algorithms:
• Mark 𝐶,𝑚 → 𝐶′: Takes circuit 𝐶 and mark 𝑚 and outputs a marked circuit 𝐶′

• Extract 𝐶′ → 𝑚/⊥: Extracts the mark from a circuit 𝐶′

[NSS99, BGIRSVY01, HMW07, CHNVW16]



Software Watermarking

CRYPTO

Functionality-preserving: On input a circuit 𝐶 (and mark 𝑚), 
the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on almost all inputs 𝑥

Mark

[NSS99, BGIRSVY01, HMW07, CHNVW16]



Software Watermarking

CRYPTO

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient 
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

[NSS99, BGIRSVY01, HMW07, CHNVW16]



Software Watermarking

CRYPTO

• Notion only achievable for functions that are not learnable
• Focus has been on cryptographic functions

[NSS99, BGIRSVY01, HMW07, CHNVW16]



pseudorandom 
function

PRF(𝑘,⋅)

pseudorandom 
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs

CRYPTO

Mark

Previous works: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18, KW19]

Suffices for watermarking other symmetric primitives: 
(e.g., MAC signing key, symmetric decryption key)



A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient 
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO



A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient 
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO
Outputs first 𝑛/4 bits of PRF

Adversary’s circuit does 
not preserve functionality



A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient 
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

Outputs first 𝑛/4 bits of PRF

Adversary’s circuit does 
not preserve functionality

No guarantees on whether the mark is preserved or not!

CRYPTO



A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient 
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

Outputs first 𝑛/4 bits of PRF

Adversary’s circuit does 
not preserve functionality

No guarantees on whether the mark is preserved or not!

CRYPTO

Existing watermarking constructions 
are unable to recover the watermark 

from this type of program



A Closer Look at Watermarking Security

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

Suppose circuit that only outputs leading 
𝑛/4 bits does not contain the watermark

Is this a problem?

Suppose watermarkable PRF used to 
protect against unauthorized 

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

Adversary’s program is “good enough” to break 
the application, but may not preserve watermark

For building blocks like PRFs, we do not 
necessarily need to recover exact

output to “break” functionality



A Closer Look at Watermarking Security

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

Suppose circuit that only outputs leading 
𝑛/4 bits does not contain the watermark

Is this a problem?

Suppose watermarkable PRF used to 
protect against unauthorized 

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

For building blocks like PRFs, we do not 
necessarily need to recover exact

output to “break” functionality

Typically in cryptography:

adversary’s goals are separate
from honest parties’ goals

Encryption:
• Correctness: recover message from 

ciphertext
• Security: learn anything about message 

from ciphertext

Adversary’s program is “good enough” to break 
the application, but may not preserve watermark



A Closer Look at Watermarking Security

Suppose watermarkable PRF used to 
protect against unauthorized 

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

Watermarking cryptographic programs:
• Exact functionality preserving does not 

seem like the right security notion
• If adversary’s program can break the 

primitive, then watermark should be 
preserved

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

Adversary’s program is “good enough” to break 
the application, but may not preserve watermark



Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)
PRF security:

PRF 𝑘,⋅ indistinguishable 
from random function

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark 
should be preserved



Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark 
should be preserved

Traitor tracing: if program can distinguish 
ciphertexts, then mark is preserved

Traceable PRF: analog for PRFs



Traceable PRFs

Marking security (informal):
if program 𝐶 can distinguish PRF 𝑘,⋅

from random, then mark should be preserved

𝐶

PRF(𝑘, 𝑥)

𝑥

𝑓 𝑥

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random
𝑥

Problematic because 𝐶 could have 

𝑥∗, PRF 𝑘, 𝑥∗ hard-wired



Traceable PRFs

Marking security (informal):
if program 𝐶 can distinguish PRF 𝑘,⋅ from random 

on randomly sampled inputs, then mark should be preserved

𝐶

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random

𝑥 ← 𝒳

𝑥, PRF 𝑘, 𝑥

𝑥 ← 𝒳

𝑥, 𝑓 𝑥
Distinguisher can see arbitrarily

many input-output pairs



Traceable PRFs

Marking security (informal):
if program 𝐶 can break weak pseudorandomness

of PRF 𝑘,⋅ , then mark should be preserved

𝐶

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random

𝑥 ← 𝒳

𝑥, PRF 𝑘, 𝑥

𝑥 ← 𝒳

𝑥, 𝑓 𝑥
Distinguisher can see arbitrarily

many input-output pairs



Traceable PRFs

Setup 1𝜆 → msk, tk

KeyGen msk, id → skid

Eval sk, 𝑥 → 𝑦

Trace𝐷 tk → 𝑇 ⊆ 0,1 ℓ

msk: master PRF key
tk: tracing key (can be public or secret)

embeds id ∈ 0,1 ℓ into the key

sk can be either msk or skid

tracing algorithm given oracle access to 
weak PRF distinguisher



Traceable PRFs

Correctness: marked and unmarked keys agree almost everywhere

Pr
𝑥←𝒳

Eval msk, 𝑥 = Eval skid, 𝑥 = 1 − negl 𝜆

Pseudorandomness: Eval msk,⋅ is pseudorandom

id

skid ← KeyGen(msk, id)

single-key setting

if 𝐷 breaks weak pseudorandomness of 
Eval msk,⋅ with advantage 𝜀, then 

Trace𝐷(tk) outputs id with probability ≈ 𝜀

Tracing Security:

𝐷



Traceable PRFs

Tracing Security:
id

skid ← KeyGen(msk, id)

𝐷

single-key setting

if 𝐷 breaks weak pseudorandomness of 
Eval msk,⋅ with advantage 𝜀, then 

Trace𝐷(tk) outputs id with probability ≈ 𝜀

Traceable PRF directly implies secret-key traitor tracing (via nonce-based encryption)

Encrypt 𝑘,𝑚 ≔ (𝑟, PRF 𝑘, 𝑟 ⊕𝑚)

Instantiate PRF with a traceable PRF

Not the case if we start with watermarkable PRF!



Assuming LWE, there exists a single-key traceable PRF with secret tracing

Traceable PRFs

Our results:

Assuming indistinguishability obfuscation and injective one-way functions, 
there exists a fully collusion-resistant traceable PRF with public tracing

This talk

Notably: assumptions are the same as those needed for 
watermarkable PRFs (and rely on similar building blocks)



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶

PRF key Constrained key

Constrained PRF key: can be used to
evaluate at all points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Linear constraint family:
• Input points are associated with a (secret) index 𝑡 between 0 and 2ℓ

• Constrained key associated with id ∈ 0, 2ℓ − 1

𝑥 input point

index 𝑡 id

Can evaluate inputs with 
indices 𝑡 ≤ id



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

id

Can evaluate inputs with 
indices 𝑡 ≤ id

𝑥 input point

index 𝑡

0 2ℓid

can evaluate cannot evaluate

index 𝑡 (for PRF domain element)

privacy: index is hidden



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

id

Can evaluate inputs with 
indices 𝑡 ≤ id

𝑥 input point

index 𝑡

0 2ℓid

can evaluate cannot evaluate

There exists a sampling algorithm to
sample inputs with a specified index



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

0 2ℓid

can evaluate cannot evaluate

There exists a sampling algorithm to
sample inputs with a specified index

Inputs with index 0 are 
indistinguishable from 

random inputs

PRF outputs on inputs 
with index 2ℓ are 
pseudorandom

PRF inputs with indices 𝑖, 𝑗
are indistinguishable 

without key for 𝑖 ≤ id < 𝑗

Normal hiding Identity hiding Pseudorandomness

𝑖 𝑗



Constructing Traceable PRFs

0 2ℓid

can evaluate cannot evaluate

Tracing idea:
Assumption: Distinguisher 𝐷 can break weak pseudorandomness with advantage 𝜀

Inputs with index 0 are 
indistinguishable from 

random inputs, so decoder 
has advantage 𝜀

Inputs with index 2ℓ are 
pseudorandom, so 

decoder has advantage 0

𝑖 𝑗

Distinguishing advantage 
changes negligibly when 

id ∉ [𝑖, 𝑗 − 1]

Implication: There must be a jump somewhere, and can only appear at id

Normal hiding Identity hiding Pseudorandomness

Can trace using algorithm for oracle jump-finding problem [NWZ16]



Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF 
(for circuit constraints)

Constrain𝐶
id

𝐶id 𝑡 = ቊ
0, 𝑡 > id
1, 𝑡 ≤ id

Can decrypt input 
points with tags 𝑡 ≤ id

Problem: indices for domain 
element are public

Let domain 𝒳 = 0,1 ℓ



Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF 
(for circuit constraints)

Constrain𝐶
id

Let domain 𝒳 = 𝒞𝒯 (ciphertext space for symmetric encryption scheme)

Can decrypt input points 
corresponding to inputs that 
encrypt index greater than id

Solution: Encrypt indices

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key



Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF 
(for circuit constraints)

Constrain𝐶
id

Let domain 𝒳 = 𝒞𝒯

Can decrypt input points 
corresponding to inputs that 
encrypt index greater than id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key

Problem: constrained key might 
leak 𝑘 which leaks indices



Constructing Private Linear Constrained PRF

Constrain𝐶
id

Can decrypt input points 
corresponding to inputs that 
encrypt index greater than id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key

Solution: use a private
constrained PRF (constrained 

key hides constraint) [BLW17, CC17]Let domain 𝒳 = 𝒞𝒯

Starting point: standard constrained PRF 
(for circuit constraints)



Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

private constrained PRF

symmetric encryption

private linear constrained PRF
(with secret sampling)

traceable PRF
(with secret tracing)

LWE

single-key
single-key single-key



Traceable PRF Summary

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)
Mark

CRYPTO

Unremovability: Any program that can distinguish PRF outputs (on 
random inputs) must preserve the watermark

More generally: when considering software watermarking, should not 
always tie “functionality preserving” to “input-output preservation”

https://eprint.iacr.org/2020/316


