Collusion Resistant Trace-and-Revoke for Arbitrary Identities from Standard Assumptions

Sam Kim and <u>David J. Wu</u> March 2021

sks

 sk_3

 sk_1

Trace and Revoke

Trace and Revoke

Identity-Based Trace and Revoke

Formally:

- Setup $(1^{\lambda}) \rightarrow (pp, msk)$
- KeyGen(msk, id)
- Encrypt(pp, m, \mathcal{L})
- Decrypt(sk, ct)
- Trace $^{\mathcal{D}}(\text{msk}, m_0, m_1, \mathcal{L})$

Important: decoder only needs to <u>distinguish</u> between encryptions of two messages (i.e., break semantic security)

generates secret key for id $\in \{0,1\}^{n(\lambda)}$

encrypts m with respect to revocation list ${\mathcal L}$

tracing algorithm has oracle access to a "good" decoder $\ensuremath{\mathcal{D}}$

 \mathcal{D} is good if $\Pr[b \leftarrow \{0,1\} : \mathcal{D}(\text{Encrypt}(pp, m_b, \mathcal{L})) = b] > \frac{1}{2} + \varepsilon$

This Work

Assuming sub-exponential hardness of LWE, there exists a fully collusion-resistant identity-based trace-and-revoke scheme

$$|sk| = n \cdot poly(\lambda, log n)$$

 $|ct| = |m| + |\mathcal{L}| \cdot poly(\lambda, log n)$

Encryption algorithm is public-key Tracing algorithm is secret-key

m: message

n: bit-length of identity

 \mathcal{L} : revocation list

Existing construction of trace-and-revoke systems:

- Bounded collusion-resistant: [NWZ16, ABPSY17]
- Strong assumptions (e.g., iO or WE): [NWZ16, GVW19]
- Polynomial-size identity space: [BW06, GKSW10, GQWW19]

This Work

Assuming sub-exponential hardness of LWE, there exists a fully collusion-resistant identity-based trace-and-revoke scheme

General blueprint:

- Construct identity-based traitor tracing by combining ideas from Nishimaki et al. [NWZ16] and Goyal et al. [GKW18]
- Combine with combinatorial revocation approach of Naor et al. [NNL01] to obtain identity-based trace-and-revoke

Public encryption algorithm Encrypt(pk, m)

Secret keys are associated with index $i \in [N]$

Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Public encryption algorithm Encrypt(pk, m)

Secret keys are associated with index $i \in [N]$

Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and i+1 are indistinguishable without key for i+1


```
Public encryption algorithm Encrypt(pk, m)
```

Secret keys are associated with index $i \in [N]$

Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and i+1 are indistinguishable without key for i+1

"Strong attribute hiding:" indices are hidden even if the key successfully decrypts

cannot decrypt can decrypt 0 ciphertext index t id

Public encryption algorithm Encrypt(pk, m)

Secret keys are associated with index $i \in [N]$

Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and i+1 are indistinguishable without key for i+1

Indistinguishability: Encrypt(sk, N_i) is indistinguishable from Encrypt(pk,i)

Tracing idea:

Assumption: Distinguisher D can break semantic security with advantage ε

Implication: There exists a jump in decoder advantage, and can only appear at id


```
Public encryption algorithm Encrypt(pk, m)
```

Secret keys are associated with index $i \in [N]$

Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and j are indistinguishable without key for $i \le id < j$ (even for **exponentially-large** intervals)

Indistinguishability: Encrypt(sk, N, ·) is

Enables tracing over exponential-size interval (identity-based traitor tracing) [NWZ16]

cannot decrypt can decrypt 0 ciphertext index t id N

Mixed functional encryption (mixed FE):

Ciphertexts ct_f are associated with functions $f\colon \mathcal{X} \to \{0,1\}$

Decryption keys sk_x are associated with inputs $x \in \mathcal{X}$

Key-generation requires master secret key

$$Decrypt(sk_x, ct_f) \rightarrow f(x) \in \{0,1\}$$

Two encryption algorithms:

- Public encryption: $PKEnc(pp) \rightarrow ct$
 - Secret encryption: SKEnc(msk, f) \rightarrow ct_f

(outputs encryption of all-ones function)

(outputs encryption of function f)

Mixed functional encryption (mixed FE):

Ciphertexts ct_f are associated with functions $f: \mathcal{X} \to \{0,1\}$

 ct_{f_0} and ct_{f_1} are indistinguishable if $f_0(x) = f_1(x)$ for all keys x adversary has

Decryption keys sk_x are associated with inputs $x \in \mathcal{X}$

Key-generation requires master secret key

$$Decrypt(sk_x, ct_f) \rightarrow f(x) \in \{0,1\}$$

Two encryption algorithms:

- Public encryption: $PKEnc(pp) \rightarrow ct$
- Secret encryption: SKEnc(msk, f) \rightarrow ct_f

Adversary who has secret key sk_x cannot distinguish PKEnc(pp) from SKEnc(msk, f) whenever f(x) = 1

Mixed functional encryption (mixed FE):

Ciphertexts ct_f are associated with functions $f: \mathcal{X} \to \{0,1\}$

 ct_{f_0} and ct_{f_1} are indistinguishable if $f_0(x) = f_1(x)$ for all keys x adversary has

Decryption keys sk_x are associated with inputs $x \in \mathcal{X}$

Key-generation requires master secret key

$$Decrypt(sk_x, ct_f) \rightarrow f(x) \in \{0,1\}$$

Two encryption algorithms:

- Public encryption: $PKEnc(pp) \rightarrow ct$
- Secret encryption: SKEnc(msk, f) \rightarrow ct_f

Selectively-secure mixed FE for circuits (with bounded ciphertext queries) known from LWE [GKW18, CVWWW19]

Attribute-based encryption (ABE):

Ciphertexts $\operatorname{ct}_{x,m}$ are associated with public attribute $x \in \mathcal{X}$ and a message m Encryption is public operation

Decryption keys sk_f are associated with predicate $f: \mathcal{X} \to \{0,1\}$

Key-generation requires master secret key

Decrypt(
$$\operatorname{sk}_f, \operatorname{ct}_{x,m}$$
) $\to \begin{cases} m, & f(x) = 1 \\ \bot, & f(x) = 0 \end{cases}$

Selectively-secure ABE for circuits known from LWE [GVW13, BGGHNSVV14]

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \le t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Correctness: If $id \le t$, then $g_t(id) = 1$, so ABE decryption succeeds

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \leq t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Message hiding: Ciphertexts with index 0 are semantically secure (given any collection of keys)

If t = 0, then $g_t(id) = 0$ for all id, so semantic security by ABE security

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \leq t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Index hiding: Ciphertexts with index i and i+1 are indistinguishable without key for i+1 MFE. ct_{g_i} and MFE. $\operatorname{ct}_{g_{i+1}}$ indistinguishable without MFE. sk_{i+1}

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices id $\leq t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Indistinguishability: Encrypt(sk, N, \cdot) is indistinguishable from Encrypt(pk, \cdot)

 $g_N(id) = 1$ for all id; follows by MFE public/secret indistinguishability

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \leq t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

[GKW18]: Instantiate mixed FE + selectively-secure ABE from polynomial hardness of LWE

- ⇒ PLBE for polynomial number of identities
- ⇒ Traitor tracing for polynomial number of identities from polynomial hardness of LWE

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \le t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Complexity leveraging: Instantiate mixed FE + adaptively-secure ABE from sub-exponential hardness of LWE ⇒ PLBE for super-polynomial number of identities

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Complexity leveraging: Instantiate mixed FE + adapt

Using tracing algorithm of [NWZ16] ⇒ PLBE for super-polynomia-ria

Can decrypt ciphertexts with indices id $\leq t$

ABE key for function *f*

$$f(\cdot) = MFE. Decrypt(MFE. sk_{id}, \cdot)$$

Public encryption: encrypt using public MFE encryption

ABE encryption of *m* with attribute MFE. ct_{a_t}

ential hardness of LWE

⇒ Traitor tracing for super-polynomial number of identities from sub-exponential LWE

Secret-Key Predicate Encryption

KeyGen(sk, id)

MFE secret key for id

Encrypt(sk, t, m)

MFE ciphertext for comparison function g_t

$$g_t(id) = \begin{cases} 1, & \text{id} \le t \\ 0, & \text{id} > t \end{cases}$$

Can decrypt ciphertexts with indices $id \leq t$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_{g_t}

Can view this more generally as a secret-key ciphertext-policy predicate encryption scheme with public broadcast

Secret-Key Predicate Encryption

KeyGen(msk, x)

MFE secret key for x

x is an attribute

Encrypt(msk, g, m)

MFE ciphertext for function *g*

g encodes the decryption policy

Can decrypt ciphertexts ct_g where g(x) = 1

ABE key for function *f*

 $f(\operatorname{ct}_g) = \operatorname{MFE.Decrypt}(\operatorname{MFE.sk}_x, \operatorname{ct}_g)$

Public encryption: encrypt using public MFE encryption

ABE encryption of m with attribute MFE. ct_g

Can view this more generally as a secret-key ciphertext-policy predicate encryption scheme with public broadcast

Revocable Predicate Encryption

Goal: allow encryption to take in a revocation list \mathcal{L} of identities (decryption keys associated with identities)

MFE ciphertext for function *g*

ABE encryption of m with attribute MFE. ${\rm ct}_g$

Attempt: embed \mathcal{L} as part of the ciphertext decryption policy and id with the key

$$g_{\mathcal{L}}(x, \mathrm{id}) = 1$$
 if and only if $g(x) = 1 \land \mathrm{id} \notin \mathcal{L}$

Problem: Public encryption algorithm only supports *broadcast* (strong attribute-hiding *public-key* predicate encryption equivalent to functional encryption)

Problem: Length of revocation list is a priori unbounded (incompatible with MFE for circuits)

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Users associated with leaves

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Secret key for user: all secret keys along the path $sk = \{sk_0, sk_{00}, sk_{001}\}$

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Encrypting to all users: encrypt under root key pk_0

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Revocation: encrypt under subset that excludes revoked users

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Revocation: encrypt under subset that excludes revoked users

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Generally: ciphertext consists of $O(\log |\mathcal{L}|)$ encryptions

Combinatoric Approach to Revocation

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Generally: ciphertext consists of $O(|\mathcal{L}| \log |\mathcal{L}|)$ encryptions

Combinatoric Approach to Revocation

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

 \mathcal{I}_{x} : Nodes associated with leaf x

 $Encode(x) \rightarrow \mathcal{I}_x$

 $\mathcal{J}_{\mathcal{L}}$: Nodes that "cover" all leaves outside \mathcal{L}

ComputeCover(\mathcal{L}) $\rightarrow \mathcal{J}_{\mathcal{L}}$

Combinatoric Approach to Revocation

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

Issue: number of public keys in this construction is <u>exponential</u>

KeyGen(sk, x)

MFE secret key for x

Observation: ABE (or even IBE) can be used to "compress" the public keys into a short public parameters

Associate each key with an identity id

KeyGen(sk, id, x)

Can decrypt ciphertexts ct_g where g(x) = 1

ABE key for function f $f(ct_a) = MFE. Decrypt(MFE. sk_x, ct_a)$

Can decrypt ciphertexts with attributes (id^*, ct_g) where $id = id^*$ and g(x) = 1

ABE key for function f_{id}

$$f_{\mathrm{id}}(\mathrm{id}^*,\mathrm{ct}_g) =$$

MFE. Decrypt (MFE. sk_x , ct_g) \land (id = id*)

KeyGen(sk, x)

MFE secret key for x

Observation: ABE (or even IBE) can be used to "compress" the public keys into a short public parameters

Revocation at ABE level ensures semantic security for revoked users (i.e., revoked keys cannot decrypt)

Can decrypt ciphertexts ct_g where g(x) = 1

ABE key for function f $f(ct_g) = MFE. Decrypt(MFE. sk_x, ct_g)$

Can decrypt ciphertexts with attributes (id^*, ct_g) where $id = id^*$ and g(x) = 1

ABE key for function f_{id}

$$f_{\mathrm{id}}(\mathrm{id}^*,\mathrm{ct}_g) =$$

MFE. Decrypt (MFE. sk_x , ct_g) \land (id = id*)

KeyGen(sk, x)

MFE secret key for x

Approach does not extend to mixed FE (only supports public encryption to the all-ones function)

If we only have revocation for ABE keys, then scheme does <u>not</u> hide x (namely, can learn if g(x) = 1 even if $id \neq id^*$)

Can decrypt ciphertexts ct_g where g(x) = 1

ABE key for function f $f(ct_g) = MFE. Decrypt(MFE. sk_x, ct_g)$

Can decrypt ciphertexts with attributes (id^*, ct_g) where $id = id^*$ and g(x) = 1

ABE key for function f_{id}

$$f_{\mathrm{id}}(\mathrm{id}^*,\mathrm{ct}_g) =$$

MFE. Decrypt (MFE. sk_x , ct_g) \land (id = id*)

KeyGen(sk, x)

MFE secret key for x

Approach does not extend to mixed FE (only supports public encryption to the all-ones function)

If we only have revocation for ABE keys, then scheme does <u>not</u> hide x (namely, can learn if g(x) = 1 even if $id \neq id^*$)

Can decrypt ciphertexts ct_g where g(x) = 1

ABE key for function f $f(ct_g) = MFE. Decrypt(MFE. sk_x, ct_g)$

Can decrypt ciphertexts with attributes (id^*, ct_g) where $id = id^*$ and g(x) = 1

Does not satisfy (strong) attribute-hiding: **problematic for tracing**

KeyGen(sk, x)

MFE secret key for x

Derive msks from a PRF: $msk_i \leftarrow PRF(k, i)$

Can decrypt ciphertexts with attributes (id^*, ct_g) where $id = id^*$ and g(x) = 1

ABE key for function $f_{\rm id}$

$$f_{id}(id^*, ct_g) =$$

MFE. Decrypt (MFE. sk_x , ct_g) \land (id = id*)

Observation: master secret key in existing mixed FE schemes can be sampled *after* the public parameters

All master secret keys in the tree share a common set of public parameters pp

Public parameters: mpk (for ABE scheme) and pp (for mixed FE scheme)

Master secret key: msk (for ABE scheme) and k (for PRF)

KeyGen(msk, id, x)

Step 1: Encode(id) $\rightarrow \mathcal{I}_{id}$

- Sample MFE master secret key: MFE. msk_i \leftarrow MFE. MSKGen(MFE. pp; PRF(k, i))
- Issue MFE secret key for x: MFE. $sk_{i,x} \leftarrow MFE$. $KeyGen(MFE. msk_i, x)$
- Issue ABE secret key (MFE key + id hard-wired) ABE. $sk_{i,x} \leftarrow ABE$. KeyGen(ABE. msk, f_{id})

MFE secret key for x (with respect to node i)

 $f_{\mathrm{id}}(\mathrm{id}^*,\mathrm{ct}_g) = 1$ if:

- MFE. Decrypt (MFE. $sk_{i,x}$, ct_g)
- $id = id^*$

Broadcast(pk, m, \mathcal{L})

Step 1: ComputeCover(\mathcal{L}) $\rightarrow \mathcal{J}_{\mathcal{L}}$

Step 2: For each node i in $\mathcal{J}_{\mathcal{L}}$:

- Sample MFE ciphertext MFE. $ct_i \leftarrow MFE$. PKEnc(MFE. pp)
- Encrypt message using ABE ABE. $ct_i \leftarrow ABE$. $Enc(ABE.pp, (MFE.ct_i, i), m)$

public MFE ciphertext (for all-ones function)

ABE ciphertext

Encrypt(msk, g, m, \mathcal{L})

Step 1: ComputeCover(\mathcal{L}) $\rightarrow \mathcal{J}_{\mathcal{L}}$

Step 2: For each node i in $\mathcal{J}_{\mathcal{L}}$:

- Sample MFE master secret key:
 MFE. msk_i ← MFE. MSKGen(MFE. pp; PRF(k, i))
- Sample MFE ciphertext
 MFE. ct_i ← MFE. SKEnc(MFE. msk_i, g)
- Encrypt message using ABE
 ABE. ct_i ← ABE. Enc(ABE. pp, (MFE. ct_i, i), m)

public MFE ciphertext (for function g)

ABE ciphertext

Assuming sub-exponential hardness of LWE, there exists a fully collusion-resistant identity-based trace-and-revoke scheme

$$|sk| = n \cdot poly(\lambda, log n)$$

 $|ct| = |m| + |\mathcal{L}| \cdot poly(\lambda, log n)$

Encryption algorithm is public-key Tracing algorithm is secret-key

m: message

n: bit-length of identity

 \mathcal{L} : revocation list

Open Problems

Assuming sub-exponential hardness of LWE, there exists a fully collusion-resistant identity-based trace-and-revoke scheme

```
|sk| = n \cdot poly(\lambda, log n) Encryption algorithm is public-key |ct| = |m| + |\mathcal{L}| \cdot poly(\lambda, log n) Tracing algorithm is secret-key
```

- Succinct broadcast: Ciphertext size scaling sublinearly in the number of revoked users (i.e., description length of \mathcal{L})
- Support public tracing
- Polynomial hardness (polynomial hardness of LWE suffices for identity-based traitor tracing [GKW19])

Thank you!

https://eprint.iacr.org/2019/984