Collusion Resistant Trace-and-Revoke for Arbitrary

|dentities from Standard Assumptions

Sam Kim and David J. Wu
March 2021




Traitor Tracing

[CFN94]

Public encryption:
ct « Encrypt(pk, m
yp (p ) anyone can encrypt

Any secret key sk;
can decrypt ct




o]0
=
.
©
—
-
O
5=
©
—




Traitor Tracing

[CFN94]

If decoder is “useful,” then
tracing algorithm will recover at
least one compromised key

W7 index 2

8\
M index 4

o

] Pirate

M ecoder
@

wn
~
(A
- -

s



Traitor Tracing

[CFN94]

Black-box tracing: tracing
algorithm only requires black-
box access to the decoder \F Pirate

If decoder is “useful,” then
tracing algorithm will recover at
least one compromised key

Collusion-resistant: tracing
possible against adversary
who obtains any (polynomial)
number of keys

Identity-based traitor
tracing: keys are
associated with arbitrary
identities (from an

exponential-size space)

2
%

wn
~
(A
- -

i NN EEN EEN NN DN B S B S
! 1
L)




Trace and Revoke

S )
Revocation List L

ct « Encrypt(pk, m, L) y/”} M
a ~ Bob Daisy

J J




Trace and Revoke

S )
Revocation List L

}
ct « Encrypt(pk, m, L) ‘(\/ A
<t < Enerypiom. ) S

J J

Revoked users
unable to decrypt




Identity-Based Trace and Revoke

[INWZ16]

Important: decoder only needs to distinguish

Formally: between encryptions of two messages (i.e.,
R Setup(l’l) N (pp’ msk) break semantic security)
» KeyGen(msk,id) generates secret key for id € {0,1}*4)
* Encrypt(pp, m, £) encrypts m with respect to revocation list £

* Decrypt(sk, ct)

e Trace? (msk, mgy, My, L) tracing algorithm has oracle access to a
“sood” decoder D

D is good if Pr[b < {0,1} : D(Encrypt(pp, m;, £)) = b| > % + ¢



This Work

Assuming sub-exponential hardness of LWE, there exists a
fully collusion-resistant identity-based trace-and-revoke scheme

|sk| = n - poly(4,logn) Encryption algorithm is public-key
|ct] = |m| + |£]| - poly(4,logn) Tracing algorithm is secret-key

m: message

n: bit-length of identity Existing construction of trace-and-revoke systems:
L: revocation list e Bounded collusion-resistant: [NWZ16, ABPSY17]
e Strong assumptions (e.g., iO or WE): [NWZ16, GVW19]
* Polynomial-size identity space: [BW06, GKSW10, GQWW19]



This Work

Assuming sub-exponential hardness of LWE, there exists a
identity-based trace-and-revoke scheme

General blueprint:
* Construct identity-based traitor tracing by combining ideas from

Nishimaki et al. [NWz16] and Goyal et al. [GKW18]
 Combine with combinatorial revocation approach of Naor et al. [NNLO1]

to obtain identity-based trace-and-revoke



Private Linear Broadcast Encryption

[BSWO06]

Public encryption algorithm Encrypt(pk, m)
Secret keys are associated with index i € [N]
Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

ciphertext /

. . Can decrypt ciphertexts
hidden index t

Mm with indicesid < t

cannot decrypt can decrypt J

—

0 ciphertext index t id N




Private Linear Broadcast Encryption

Public encryption algorithm Encrypt(pk, m)
Secret keys are associated with index i € [N]
Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and i + 1 are indistinguishable without key fori + 1

cannot decrypt can decrypt

—

ciphertext indext  1d

[BSWO06]

|

N



Private Linear Broadcast Encryption

[BSWO06]

Public encryption algorithm Encrypt(pk, m)
Secret keys are associated with index i € [N]
Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and i + 1 are indistinguishable without key fori + 1

“Strong attribute hiding:” indices are hidden

even if the key successfully decrypts

cannot decrypt can decrypt

—— |

ciphertext index t id N



Private Linear Broadcast Encryption

Public encryption algorithm Encrypt(pk, m)
Secret keys are associated with index i € [N]
Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)
Index hiding: ciphertexts with index i and i + 1 are indistinguishable without key fori + 1

Indistinguishability: Encrypt(sk, N,-) is indistinguishable from Encrypt(pk,-)

cannot decrypt can decrypt

—

0 ciphertext index t id

[BSWO06]

|

N



Private Linear Broadcast Encryption

[BSWO06]

Tracing idea:

Assumption: Distinguisher D can break semantic security with advantage ¢

Implication: There exists a jump in decoder advantage, and can only appear at id

cannot decrypt can decrypt

1 |
0 11+ 1 id N

Message Hiding Index Hiding Indistinguishability

Ciphertexts with index N

DS EUE g SRR are indistinguishable from

Ciphertexts with index 0 are

changes negligibly between i
andi+ 1whenid #i+1

semantically secure so decoder

. real ciphertexts, so decoder
has negligible advantage P

has advantage ¢



Private Linear Broadcast Encryption

Public encryption algorithm Encrypt(pk, m)
Secret keys are associated with index i € [N]
Secret encryption algorithm to encrypt to an index t: Encrypt(sk, t, m)

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index i and j are indistinguishable without key fori < id < j
(even for exponentially-large intervals)

Indistinguishability: Encrypt(sk, N,-) is Enables tracing over exponential-size interval

(identity-based traitor tracing) [NWZ16]

cannot decrypt can decrypt

—

0 ciphertext index t id

[BSWO06]

|

N



PLBE from Mixed FE and ABE

[GKW18]

Mixed functional encryption (mixed FE):

Ciphertexts cty are associated with functions f: X — {0,1}

Decryption keys sk, are associated with inputs x € X

Key-generation requires master secret key

Decrypt(sk,, th) - f(x) € {0,1}

Two encryption algorithms:
* Public encryption: PKEnc(pp) — ct (outputs encryption of all-ones function)
* Secret encryption: SKEnc(msk, /) — ct (outputs encryption of function f)




PLBE from Mixed FE and ABE

[GKW18]

Mixed functional encryption (mixed FE):

Ciphertexts cty are associated with functions f: X — {0,1}

ctr and ctg, are indistinguishable if
fo(x) = f1(x) for all keys x adversary has

Decryption keys sk, are associated with inputs x € X

Key-generation requires master secret key

Decrypt(sk,, th) - f(x) € {0,1}

Two encryption algor.ithms: Adversary who has secret key sk, cannot
* Public encryption: PKEnc(pp) — ct distinguish PKEnc(pp) from SKEnc(msk, f)
* Secret encryption: SKEnc(msk, /) — ct whenever f(x) =1




PLBE from Mixed FE and ABE

[GKW18]

Mixed functional encryption (mixed FE):

Ciphertexts cty are associated with functions f: X — {0,1}

ctr and ctg, are indistinguishable if
fo(x) = f1(x) for all keys x adversary has

Decryption keys sk, are associated with inputs x € X

Key-generation requires master secret key

Decrypt(sk,, th) - f(x) € {0,1}

Two encryption algorithms: Selectively-secure mixed FE for circuits
* Public encryption: PKEnc(pp) — ct (with bounded ciphertext queries) known
 Secret encryption: SKEnc(msk, f) — cts from LWE [GKW18, CVWWW19]




PLBE from Mixed FE and ABE

[GKW18]

Attribute-based encryption (ABE):

Ciphertexts ct, ,,, are associated with public attribute x € X

and a message m Encryption is public operation

Decryption keys sk are associated with predicate f: X — {0,1}

Key-generation requires master secret key

Decrypt(sky, ctym) - {T ]]: ((;C)) : 3

Selectively-secure ABE for circuits known from LWE [Gvw13, BGGHNSVV14]



PLBE from Mixed FE and ABE

KeyGen(sk, id)

| /j MFE secret key for id

{l\ﬂFE >
Encrypt(sk, t, m)

MFE ciphertext for

MFE comparison function g;

9t

(1, id<t
9:(id) = {0, id >t

[GKW18]

Can decrypt ciphertexts with indicesid < t

ABE key for function f
f(-) = MFE. Decrypt(MFE. sk;q4,")

~

J

Public encryption: encrypt using public MFE encryption

r

\

~
ABE ABE encryption of m
MFE. ct,m with attribute MFE. ct,,
J

Correctness: Ifid < t, then g,(id) = 1, so ABE decryption succeeds



PLBE from Mixed FE and ABE

KeyGen(sk, id)

. /j MFE secret key for id

MFE
Encrypt(sk, t, m)
MFE ciphertext for

MFEg comparison function g;
L

|1, d<t

g:(id) = {o, id >t

[GKW18]

Can decrypt ciphertexts with indicesid < t

r . A
ﬁBE % ABE key for function f
ﬂ f(-) = MFE. Decrypt(MFE. skiq,")
\ J

Public encryption: encrypt using public MFE encryption

4 )

ABE encryption of m
with attribute MFE. ct,,

ABE
MFE.ct,m

. J

Message hiding: Ciphertexts with index 0 are semantically secure (given any collection of keys)

If t = 0, then g,(id) = 0 for all id, so semantic security by ABE security



PLBE from Mixed FE and ABE

KeyGen(sk, id)

. /j MFE secret key for id

MFE
Encrypt(sk, t, m)
MFE ciphertext for

MFEg comparison function g;
L

|1, d<t

g:(id) = {o, id >t

Index hiding:

[GKW18]

Can decrypt ciphertexts with indicesid < t

-
|
ﬁBE % ABE key for function f
ﬂ f(-) = MFE. Decrypt(MFE. skiq,")
\_

~N

J

Public encryption: encrypt using public MFE encryption

r

.

~
ABE ABE encryption of m
MFE. ct,m with attribute MFE. ct,,
J

Ciphertexts with index i and i 4+ 1 are indistinguishable without key fori + 1

MFE. ct,, and MFE. ct, indistinguishable without MFE. sk;



PLBE from Mixed FE and ABE

[GKW18]

KeyGen(sk, id) Can decrypt ciphertexts with indicesid < t

-
. /j MFE secret key for id

~N

|
% ABE key for function f

,MFE > (ABE
,ﬁ. ﬂ f(-) = MFE. Decrypt(MFE. sk;q4,")
g J
Encrypt(sk, L, m) Public encryption: encrypt using public MFE encryption
MFE ciphertext for (" )
MFE comparison function g, EE o ABE encryption of m
.gt o with attribute MFE. ct,,
1, id<t . y,

9:(id) = {0, id >t

Indistinguishability: Encrypt(sk, N,-) is indistinguishable from Encrypt(pk,-)
gy (d) = 1 for all id; follows by MFE public/secret indistinguishability



PLBE from Mixed FE and ABE

[GKW18]

KeyGen(sk, id) Can decrypt ciphertexts with indices id < ¢
4 )
]
MFE%j MFE secret key for id AR % ABE key for function f
(e m §@ f() = MFE.Decrypt(MFE. sk;4,")
G J

Encrypt(sk, t, m)

MFE ciphertext for

Public encryption: encrypt using public MFE encryption

r

MFE comparison function g;

9t

1, id<t .

~
ABE ABE encryption of m
MFE. ct,m with attribute MFE. ct,,
J

9:(id) = {0, id >t

[GKW18]: Instantiate mixed FE + selectively-secure ABE from polynomial hardness of LWE

= PLBE for polynomial number of identities

= Traitor tracing for polynomial number of identities from polynomial hardness of LWE



PLBE from Mixed FE and ABE

KeyGen(sk, id)

. /j MFE secret key for id

}\]IFE g
Encrypt(sk, t, m)

MFE ciphertext for

MFE comparison function g;

9t

. 1, id<t
id) = .
g¢(id) {0, id >t
Complexity leveraging: Instantiate mixed FE +
= PLBE for

[GKW1

Can decrypt ciphertexts with indicesid < t

8]

-
|
ﬁBE % ABE key for function f
ﬂ f(-) = MFE. Decrypt(MFE. skiq,")
\_

~N

J

Public encryption: encrypt using public MFE encryption

r

.

~
ABE ABE encryption of m
MFE. ct,m with attribute MFE. ct,,
J

ABE from hardness of LWE

number of identities



PLBE from Mixed FE and ABE

KeyGen(sk, id)

. /j MFE secret key for id

}\]IFE g
Encrypt(sk, t, m)

MFE ciphertext for

MFE comparison function g;

9t

. 1, id<t
id) = .
g¢(id) {0, id >t
Complexity leveraging: Instantiate mixed FE +
= PLBE for

= Traitor tracing for

[GKW18]

Can decrypt ciphertexts with indicesid < t

r

ABE /1
A

.

~
ABE key for function f

f(-) = MFE. Decrypt(MFE. sk;q4,")
J

Public encryption: encrypt using public MFE encryption

4 )

ABE
MFE.ct,m

ABE encryption of m
with attribute MFE. ct,,

. J

Using tracing
hardness of LWE

algorithm of [NWZ16]

number of identities from LWE



Secret-Key Predicate Encryption

KeyGen(sk, id)

. /j MFE secret key for id

MFE
Encrypt(sk, t, m)
MFE ciphertext for

MFEg comparison function g;
L

|1, d<t

g:(id) = {o, id >t

Can decrypt ciphertexts with indicesid < t

r . A
ﬁBE % ABE key for function f
ﬂ f(-) = MFE. Decrypt(MFE. skiq,")
\ J

Public encryption: encrypt using public MFE encryption

4 )

ABE encryption of m
with attribute MFE. ct,,

ABE
MFE.ct,m

. J

Can view this more generally as a
secret-key ciphertext-policy predicate encryption scheme with public broadcast



Secret-Key Predicate Encryption

KeyGen(msk, x)

MEE

. /j MFE secret key for

Encrypt(msk, g, m)

MFE

g

MFE ciphertext for
function

Can decrypt ciphertexts where
(" ) )
A % ABE key for function f
ﬂ f(cty) = MFE. Decrypt(MFE. sk, ct,)
. Y,

Public encryption: encrypt using public MFE encryption

r

.

~
ABE ABE encryption of m
S with attribute MFE. ct,
y,

Can view this more generally as a
secret-key ciphertext-policy predicate encryption scheme with public broadcast



Revocable Predicate Encryption

Goal: allow encryption to take in a revocation list L of identities (decryption keys associated
with identities)

(" )
MFE MFE ciphertext for ABE ABE encryption of m
g function g MEE. ct, m with attribute MFE. ct,
G y,

Attempt: embed L as part of the ciphertext decryption policy and id with the key
gr(x,id) = 1ifandonlyifg(x) =1Aid ¢ L

Problem: Public encryption algorithm only supports broadcast (strong attribute-hiding
public-key predicate encryption equivalent to functional encryption)

Problem: Length of revocation list is a priori unbounded (incompatible with MFE for circuits)




Combinatoric Approach to Revocation

[INNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

PKo1/sKo1

- —
\_----_,

PKooo/sKooo PKoo1/SKoo1 PKo10/5Ko10 PKo11/5Ko11

________________________________________________________________________________

Users associated with leaves

\



Combinatoric Approach to Revocation

[INNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

Pko/skg

PKoo/sKopo PKo1/sKo1

PKooo/sKooo PKoo1/5Ko01 PKo10/5Ko10 PKo11/5Ko11

Secret key for user: all secret keys along the path
Sk —_ {Sko, Skoo, SkOOl}



Combinatoric Approach to Revocation

[INNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

Pko/skg

PKoo/sKopo PKo1/sKo1

PKooo/sKooo PKoo1/5Ko01 PKo10/5Ko10 PKo11/5Ko11

Encrypting to all users: encrypt under root key pk,



Combinatoric Approach to Revocation

[NNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

PKo1/sKp1

PKooo/sKooo PKoo1/SKoo1 PKo10/5Ko10 PKo11/5Ko11

Revocation: encrypt under subset that excludes revoked users



Combinatoric Approach to Revocation

[INNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

\LOYWAL. O30 Encryption under pkoy;
can be decrypted by
users 010 and 011

PKooo/sKooo PKoo1/SKoo1 PKo10/5Ko10 PKo11/5Ko11

Revocation: encrypt under subset that excludes revoked users



Combinatoric Approach to Revocation

[INNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

\LOYWAL. O30 Encryption under pkoy;
can be decrypted by
users 010 and 011

PKooo/sKooo PKoo1/SKoo1 PKo10/5Ko10 PKo11/5Ko11

Generally: ciphertext consists of O(log|L]|) encryptions



Combinatoric Approach to Revocation

[INNLO1]

[INNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

\LOYWAL. O30 Encryption under pkoy;
can be decrypted by
users 010 and 011

More generally: can revoke

. Pko11/5Ko11
based on prefixes

PKooo/sKooo PKoo1/SKoo1

Generally: ciphertext consists of O(|£| log|L|) encryptions



Combinatoric Approach to Revocation

[NNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

Encode(x) — ComputeCover(L) — J,

: Nodes associated with leaf Jr: Nodes that “cover” all leaves outside L



Combinatoric Approach to Revocation

[NNLO1]

[NNLO1]: Combinatoric approach for revocation based on subset-cover set systems

pko/skg

PKo1/sKp1

PKooo/sKooo PKoo1/SKoo1 PKo10/5Ko10 PKo11/5Ko11

Issue: number of public keys in this construction is exponential




Revocable Predicate Encryption

KeyGen(sk, x)

}
|

% MFE secret key for x

w7
}\/IFE /

Observation: ABE (or even IBE) can
be used to “compress” the public
keys into a short public parameters

Associate each key with an identity id

KeyGen(sk, id, x)

Can decrypt ciphertexts ct; where g(x) = 1
g ]
ABE % ABE key for function f

f(ctg) = MFE. Decrypt(MFE. sk, ct;)

“ra

~N

. J

4

Can decrypt ciphertexts with attributes (id*, ctg) where
id =id*and g(x) =1

~N

e \
| /j ABE key for function fig

: $ fia(id*, cty) =
MFE. Decrypt(MFE. sky, cty) A (id = id*)

. J




Revocable Predicate Encryption

KeyGen(sk, x) Can decrypt ciphertexts ct; where g(x) = 1
(" )
] / .
MFE’*‘”"/ MFE secret key for x AR % ABE key for function f
e h e §B  /(cty) = MFE. Decrypt(MFE. sky, ct)
. Y,
Observation: ABE (or even IBE) can '
be used to “compress” the public Can decrypt ciphertexts with attributes (id*, ctg) where
keys into a short public parameters id =id*and g(x) = 1
~

4 ) .
Revocation at ABE level ensures | f//j ABE key for function fiq
& -
semantic security for revoked users ﬁ% fia(id*, cty) =

(i.e., revoked keys cannot decrypt) MFE. Decrypt(MFE. sk, cty) A (id = id"),

8




Revocable Predicate Encryption

KeyGen(sk, x) Can decrypt ciphertexts ct; where g(x) = 1
(" )
|
MFE%j MFE secret key for x AR % ABE key for function f
( h e §A  [(cty) = MFE. Decrypt(MFE. sky, ct,)
"‘ \ y,
Approach does not extend to mixed FE l
(only supports public encryption Can decrypt ciphertexts with attributes (id*, ctg) where
to the all-ones function) id = id* and g(x) = 1
N

/,;f ABE key for function fiq

If we only have revocation for ABE keys, B |
then scheme does not hide x (namely, *‘$ fia(id*, ctg) =

MFE. Decrypt(MFE. sky, cty) A (id = id*)

can learn if g(x) = 1 even if id # id*) \ )




Revocable Predicate Encryption

KeyGen(sk, x) Can decrypt ciphertexts ct; where g(x) = 1
-
|
MFE%j MFE secret key for x AR % ABE key for function f
(e h e g  /(cty) = MFE Decrypt(MFE. sky, ct,)

. J

~N

Approach does not extend to mixed FE l

(only supports public encryption Can decrypt ciphertexts with attributes (id*, ctg) where
to the all-ones function) id = id* and g(x) = 1

If we only have revocation for ABE keys, Does not satisfy (strong) attribute-hiding:
then scheme does not hide x (namely, problematic for tracing
can learnif g(x) = 1 evenifid # id*)




Revocable Predicate Encryption

KeyGen(sk, x)
FE%j MFE secret key for x

Derive msks from a PRF:
msk; < PRF(k, 1)

mSkOOO

Can decrypt ciphertexts with attributes (id*, ctg) where
id=id"and g(x) =1

4 3 )
/ ABE key for function fi4
e BEﬁ; fia(id", cty) =
\ MFE. Decrypt(MFE- skx, Ctg) A (id = id*)

Observation: master secret key in
existing mixed FE schemes can be
sampled after the public parameters

All master secret keys in the tree share

a common set of public parameters pp




Putting the Pieces Together

Public parameters: mpk (for ABE scheme) and pp (for mixed FE scheme)

Master secret key: msk (for ABE scheme) and k (for PRF)



Putting the Pieces Together

KeyGen(msk, id, x)

Step 2: For each node i in Jj4:
* Sample MFE master secret key:
Step 1: Encode(id) — 7,4 MFE. msk; < MFE. MSKGen(MFE. pp; PRF(k, i))
* |ssue MFE secret key for x:
MFE. sk; , < MFE. KeyGen(MFE. msk;, x)
 |ssue ABE secret key (MFE key + id hard-wired)
ABE. sk; , < ABE.KeyGen(ABE. msKk, fiq)

'i§/§ A%{

MFE secret key for x ﬁd(l\l/ldF]’ECg) =1 lfl:vlFE .
(with respect to node i) id :'idfcrypt( -Kix, Ctg)




Putting the Pieces Together

Broadcast(pk,m, £)

Step 2: For each node i in J;:
* Sample MFE ciphertext
Step 1: ComputeCover(L) — Jr MFE. ct; « MFE. PKEnc(MFE. pp)
* Encrypt message using ABE
ABE. ct; < ABE.Enc(ABE. pp, (MFE. ct;, i), m)

ABE
MFE. ct;, i, m

public MFE ciphertext ABE ciphertext
(for all-ones function)



Putting the Pieces Together

Encrypt(msk, g, m, £)

Step 2: For each node i in J;:
 Sample MFE master secret key:

Step 1: ComputeCover(L) = J, MFE. msk; < MFE. MSKGen(MFE. pp; PRF(k, i))

 Sample MFE ciphertext
MFE. ct; « MFE. SKEnc(MFE. msk;, g)
* Encrypt message using ABE
ABE. ct; « ABE.Enc(ABE. pp, (MFE.ct;, i), m)

public MFE ciphertext ABE ciphertext
(for function g)

ABE
MFE. ct;, i, m




Putting the Pieces Together

Assuming sub-exponential hardness of LWE, there exists a
identity-based trace-and-revoke scheme

|sk| = n - poly(4,logn) Encryption algorithm is public-key
|ct] = |m| + |£]| - poly(4,logn) Tracing algorithm is secret-key

m: message
n: bit-length of identity
L: revocation list



Open Problems

Assuming sub-exponential hardness of LWE, there exists a
identity-based trace-and-revoke scheme

|sk| = n - poly(4,logn) Encryption algorithm is public-key
|ct] = |m| + |£]| - poly(4,logn) Tracing algorithm is secret-key

e Succinct broadcast: Ciphertext size scaling sublinearly in the number of revoked users
(i.e., description length of L)

* Support public tracing

* Polynomial hardness (polynomial hardness of LWE suffices for identity-based traitor
tracing [GKW19])

Thank you!
https://eprint.iacr.org/2019/984



