
Collusion Resistant Trace-and-Revoke for Arbitrary
Identities from Standard Assumptions

Sam Kim and David J. Wu

March 2021

Traitor Tracing
[CFN94]

sk1 sk2 sk4 sk5 sk6sk3

pk
Public encryption:

anyone can encrypt

Any secret key sk𝑖
can decrypt ct

ct ← Encrypt pk,𝑚

Traitor Tracing
[CFN94]

sk1 sk2 sk4 sk5 sk6sk3

Pirate
decoder

ct 𝑚

Traitor Tracing
[CFN94]

sk1 sk2 sk4 sk5 sk6sk3

Pirate
decoder

Trace

If decoder is “useful,” then
tracing algorithm will recover at

least one compromised key

index 2

index 4

Traitor Tracing
[CFN94]

sk1 sk2 sk4 sk5 sk6sk3

Pirate
decoder

Trace

If decoder is “useful,” then
tracing algorithm will recover at

least one compromised key

Bob

Daisy

Identity-based traitor
tracing: keys are

associated with arbitrary
identities (from an

exponential-size space)

Black-box tracing: tracing
algorithm only requires black-

box access to the decoder

Collusion-resistant: tracing
possible against adversary

who obtains any (polynomial)
number of keys

Trace and Revoke
[BW06]

sk1 sk2 sk4 sk5 sk6sk3

Revocation List ℒ

Bob Daisy

pk

ct ← Encrypt pk,𝑚, ℒ

Trace and Revoke
[BW06]

sk1 sk2 sk4 sk5 sk6sk3

Revocation List ℒpk

ct ← Encrypt pk,𝑚, ℒ

Revoked users
unable to decrypt

Bob Daisy

Identity-Based Trace and Revoke
[NWZ16]

• Setup 1𝜆 → pp,msk

• KeyGen msk, id

• Encrypt pp,𝑚, ℒ

• Decrypt(sk, ct)

• Trace𝒟 msk,𝑚0, 𝑚1, ℒ

Formally:

generates secret key for id ∈ 0,1 𝑛 𝜆

encrypts 𝑚 with respect to revocation list ℒ

tracing algorithm has oracle access to a
“good” decoder 𝒟

𝒟 is good if Pr 𝑏 ← 0,1 ∶ 𝒟 Encrypt pp,𝑚𝑏 , ℒ = 𝑏 >
1

2
+ 𝜀

Important: decoder only needs to distinguish
between encryptions of two messages (i.e.,
break semantic security)

This Work

Assuming sub-exponential hardness of LWE, there exists a
fully collusion-resistant identity-based trace-and-revoke scheme

sk = 𝑛 ⋅ poly(𝜆, log 𝑛)
ct = 𝑚 + ℒ ⋅ poly 𝜆, log 𝑛

𝑚: message
𝑛: bit-length of identity
ℒ: revocation list

Encryption algorithm is public-key
Tracing algorithm is secret-key

Existing construction of trace-and-revoke systems:
• Bounded collusion-resistant: [NWZ16, ABPSY17]
• Strong assumptions (e.g., iO or WE): [NWZ16, GVW19]
• Polynomial-size identity space: [BW06, GKSW10, GQWW19]

This Work

Assuming sub-exponential hardness of LWE, there exists a
fully collusion-resistant identity-based trace-and-revoke scheme

General blueprint:
• Construct identity-based traitor tracing by combining ideas from

Nishimaki et al. [NWZ16] and Goyal et al. [GKW18]

• Combine with combinatorial revocation approach of Naor et al. [NNL01]

to obtain identity-based trace-and-revoke

Private Linear Broadcast Encryption
[BSW06]

Secret keys are associated with index 𝑖 ∈ 𝑁

id

Can decrypt ciphertexts
with indices id ≤ 𝑡

𝑥 ciphertext

hidden index 𝑡

0 𝑁id

can decryptcannot decrypt

ciphertext index 𝑡

Public encryption algorithm Encrypt pk,𝑚

Secret encryption algorithm to encrypt to an index 𝑡: Encrypt sk, 𝑡,𝑚

Private Linear Broadcast Encryption
[BSW06]

Secret keys are associated with index 𝑖 ∈ 𝑁

Public encryption algorithm Encrypt pk,𝑚

Secret encryption algorithm to encrypt to an index 𝑡: Encrypt sk, 𝑡,𝑚

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index 𝑖 and 𝑖 + 1 are indistinguishable without key for 𝑖 + 1

0 𝑁id

cannot decrypt

ciphertext index 𝑡

can decrypt

Private Linear Broadcast Encryption
[BSW06]

Secret keys are associated with index 𝑖 ∈ 𝑁

Public encryption algorithm Encrypt pk,𝑚

Secret encryption algorithm to encrypt to an index 𝑡: Encrypt sk, 𝑡,𝑚

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index 𝑖 and 𝑖 + 1 are indistinguishable without key for 𝑖 + 1

0 𝑁id

cannot decrypt

ciphertext index 𝑡

can decrypt

“Strong attribute hiding:” indices are hidden
even if the key successfully decrypts

Private Linear Broadcast Encryption
[BSW06]

Secret keys are associated with index 𝑖 ∈ 𝑁

Public encryption algorithm Encrypt pk,𝑚

Secret encryption algorithm to encrypt to an index 𝑡: Encrypt sk, 𝑡,𝑚

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index 𝑖 and 𝑖 + 1 are indistinguishable without key for 𝑖 + 1

Indistinguishability: Encrypt sk, 𝑁,⋅ is indistinguishable from Encrypt pk,⋅

0 𝑁id

cannot decrypt

ciphertext index 𝑡

can decrypt

Private Linear Broadcast Encryption
[BSW06]

Tracing idea:

Assumption: Distinguisher 𝐷 can break semantic security with advantage 𝜀

Implication: There exists a jump in decoder advantage, and can only appear at id

0 𝑁id

cannot decrypt can decrypt

𝑖 𝑖 + 1

Ciphertexts with index 𝑁
are indistinguishable from

real ciphertexts, so decoder
has advantage 𝜀

Indistinguishability

Distinguishing advantage
changes negligibly between 𝑖

and 𝑖 + 1 when id ≠ 𝑖 + 1

Index Hiding

Ciphertexts with index 0 are
semantically secure so decoder

has negligible advantage

Message Hiding

Private Linear Broadcast Encryption
[BSW06]

Secret keys are associated with index 𝑖 ∈ 𝑁

Public encryption algorithm Encrypt pk,𝑚

Secret encryption algorithm to encrypt to an index 𝑡: Encrypt sk, 𝑡,𝑚

Message hiding: ciphertexts with index 0 are semantically secure (given any collection of keys)

Index hiding: ciphertexts with index 𝑖 and 𝑗 are indistinguishable without key for 𝑖 ≤ id < 𝑗
(even for exponentially-large intervals)

Indistinguishability: Encrypt sk, 𝑁,⋅ is indistinguishable from Encrypt pk,⋅

0 𝑁id

cannot decrypt

ciphertext index 𝑡

can decrypt

Enables tracing over exponential-size interval
(identity-based traitor tracing) [NWZ16]

PLBE from Mixed FE and ABE
[GKW18]

𝑓 Ciphertexts ct𝑓 are associated with functions 𝑓:𝒳 → 0,1

𝑥
Decryption keys sk𝑥 are associated with inputs 𝑥 ∈ 𝒳

Decrypt sk𝑥 , ct𝑓 → 𝑓 𝑥 ∈ 0,1

Two encryption algorithms:
• Public encryption: PKEnc pp → ct (outputs encryption of all-ones function)
• Secret encryption: SKEnc msk, 𝑓 → ct𝑓 (outputs encryption of function 𝑓)

Mixed functional encryption (mixed FE):

Key-generation requires master secret key

MFE

MFE

PLBE from Mixed FE and ABE
[GKW18]

Ciphertexts ct𝑓 are associated with functions 𝑓:𝒳 → 0,1

Decryption keys sk𝑥 are associated with inputs 𝑥 ∈ 𝒳

Decrypt sk𝑥 , ct𝑓 → 𝑓 𝑥 ∈ 0,1

Two encryption algorithms:
• Public encryption: PKEnc pp → ct (outputs encryption of all-ones function)
• Secret encryption: SKEnc msk, 𝑓 → ct𝑓 (outputs encryption of function 𝑓)

Mixed functional encryption (mixed FE):

Key-generation requires master secret key

Adversary who has secret key sk𝑥 cannot
distinguish PKEnc pp from SKEnc msk, 𝑓

whenever 𝑓 𝑥 = 1

ct𝑓0 and ct𝑓1 are indistinguishable if

𝑓0 𝑥 = 𝑓1(𝑥) for all keys 𝑥 adversary has

𝑓
MFE

𝑥
MFE

PLBE from Mixed FE and ABE
[GKW18]

Ciphertexts ct𝑓 are associated with functions 𝑓:𝒳 → 0,1

Decryption keys sk𝑥 are associated with inputs 𝑥 ∈ 𝒳

Decrypt sk𝑥 , ct𝑓 → 𝑓 𝑥 ∈ 0,1

Two encryption algorithms:
• Public encryption: PKEnc pp → ct (outputs encryption of all-ones function)
• Secret encryption: SKEnc msk, 𝑓 → ct𝑓 (outputs encryption of function 𝑓)

Mixed functional encryption (mixed FE):

Key-generation requires master secret key

Selectively-secure mixed FE for circuits
(with bounded ciphertext queries) known

from LWE [GKW18, CVWWW19]

ct𝑓0 and ct𝑓1 are indistinguishable if

𝑓0 𝑥 = 𝑓1(𝑥) for all keys 𝑥 adversary has

𝑓
MFE

𝑥
MFE

PLBE from Mixed FE and ABE
[GKW18]

Ciphertexts ct𝑥,𝑚 are associated with public attribute 𝑥 ∈ 𝒳
and a message 𝑚

Decryption keys sk𝑓 are associated with predicate 𝑓:𝒳 → 0,1

Decrypt sk𝑓 , ct𝑥,𝑚 → ቊ
𝑚, 𝑓 𝑥 = 1

⊥, 𝑓 𝑥 = 0

Attribute-based encryption (ABE):

Encryption is public operation

Key-generation requires master secret key

𝑥,𝑚
ABE

𝑓
ABE

Selectively-secure ABE for circuits known from LWE [GVW13, BGGHNSVV14]

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

Encrypt sk, 𝑡,𝑚

KeyGen sk, id

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

Correctness: If id ≤ 𝑡, then 𝑔𝑡 id = 1, so ABE decryption succeeds

Public encryption: encrypt using public MFE encryption

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

If 𝑡 = 0, then 𝑔𝑡 id = 0 for all id, so semantic security by ABE security

Message hiding: Ciphertexts with index 0 are semantically secure (given any collection of keys)

Public encryption: encrypt using public MFE encryption
Encrypt sk, 𝑡,𝑚

KeyGen sk, id

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

MFE. ct𝑔𝑖 and MFE. ct𝑔𝑖+1 indistinguishable without MFE. sk𝑖+1

Index hiding: Ciphertexts with index 𝑖 and 𝑖 + 1 are indistinguishable without key for 𝑖 + 1

Public encryption: encrypt using public MFE encryption
Encrypt sk, 𝑡,𝑚

KeyGen sk, id

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

𝑔𝑁 id = 1 for all id; follows by MFE public/secret indistinguishability

Indistinguishability: Encrypt sk, 𝑁,⋅ is indistinguishable from Encrypt pk,⋅

Public encryption: encrypt using public MFE encryption
Encrypt sk, 𝑡,𝑚

KeyGen sk, id

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

Encrypt sk, 𝑡,𝑚

KeyGen sk, id

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

Public encryption: encrypt using public MFE encryption

[GKW18]: Instantiate mixed FE + selectively-secure ABE from polynomial hardness of LWE
⇒ PLBE for polynomial number of identities
⇒ Traitor tracing for polynomial number of identities from polynomial hardness of LWE

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

Encrypt sk, 𝑡,𝑚

KeyGen sk, id

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

Public encryption: encrypt using public MFE encryption

Complexity leveraging: Instantiate mixed FE + adaptively-secure ABE from sub-exponential hardness of LWE
⇒ PLBE for super-polynomial number of identities

PLBE from Mixed FE and ABE
[GKW18]

Can decrypt ciphertexts with indices id ≤ 𝑡

Encrypt sk, 𝑡,𝑚

KeyGen sk, id

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

Public encryption: encrypt using public MFE encryption

Complexity leveraging: Instantiate mixed FE + adaptively-secure ABE from sub-exponential hardness of LWE
⇒ PLBE for super-polynomial number of identities
⇒ Traitor tracing for super-polynomial number of identities from sub-exponential LWE

Using tracing
algorithm of [NWZ16]

Secret-Key Predicate Encryption

Can decrypt ciphertexts with indices id ≤ 𝑡

Encrypt sk, 𝑡,𝑚

KeyGen sk, id

id
MFE

MFE secret key for id

𝑓
ABE

𝑓 ⋅ = MFE. Decrypt(MFE. skid,⋅)

ABE key for function 𝑓

𝑔𝑡
MFE

MFE ciphertext for
comparison function 𝑔𝑡

𝑔𝑡 id = ቊ
1, id ≤ 𝑡
0, id > 𝑡

MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔𝑡

Public encryption: encrypt using public MFE encryption

Can view this more generally as a
secret-key ciphertext-policy predicate encryption scheme with public broadcast

Secret-Key Predicate Encryption

Can decrypt ciphertexts ct𝑔 where 𝑔 𝑥 = 1

Encrypt msk, 𝑔,𝑚

KeyGen msk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

𝑓
ABE

𝑓 ct𝑔 = MFE.Decrypt(MFE. sk𝑥, ct𝑔)

ABE key for function 𝑓

𝑔
MFE MFE ciphertext for

function 𝑔 MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔

Public encryption: encrypt using public MFE encryption

Can view this more generally as a
secret-key ciphertext-policy predicate encryption scheme with public broadcast

𝑔 encodes the decryption policy

𝑥 is an attribute

Revocable Predicate Encryption

Goal: allow encryption to take in a revocation list ℒ of identities (decryption keys associated
with identities)

𝑔
MFE MFE ciphertext for

function 𝑔 MFE. ct,𝑚
ABE ABE encryption of 𝑚

with attribute MFE. ct𝑔

Attempt: embed ℒ as part of the ciphertext decryption policy and id with the key

𝑔ℒ 𝑥, id = 1 if and only if 𝑔 𝑥 = 1 ∧ id ∉ ℒ

Problem: Public encryption algorithm only supports broadcast (strong attribute-hiding
public-key predicate encryption equivalent to functional encryption)

Problem: Length of revocation list is a priori unbounded (incompatible with MFE for circuits)

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

pk000/sk000

pk0/sk0

pk01/sk01

pk001/sk001 pk010/sk010 pk011/sk011

Users associated with leaves

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

𝐩𝐤𝟎𝟎/𝐬𝐤𝟎𝟎

pk000/sk000

𝐩𝐤𝟎/𝐬𝐤𝟎

pk01/sk01

𝐩𝐤𝟎𝟎𝟏/𝐬𝐤𝟎𝟎𝟏 pk010/sk010 pk011/sk011

Secret key for user: all secret keys along the path

sk = sk0, sk00, sk001

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

𝐩𝐤𝟎𝟎/𝐬𝐤𝟎𝟎

pk000/sk000

𝐩𝐤𝟎/𝐬𝐤𝟎

pk01/sk01

𝐩𝐤𝟎𝟎𝟏/𝐬𝐤𝟎𝟎𝟏 pk010/sk010 pk011/sk011

Encrypting to all users: encrypt under root key pk0

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

𝐩𝐤𝟎𝟎𝟎/𝐬𝐤𝟎𝟎𝟎

pk0/sk0

𝐩𝐤𝟎𝟏/𝐬𝐤𝟎𝟏

pk001/sk001 pk010/sk010 pk011/sk011

Revocation: encrypt under subset that excludes revoked users

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

𝐩𝐤𝟎𝟎𝟎/𝐬𝐤𝟎𝟎𝟎

pk0/sk0

𝐩𝐤𝟎𝟏/𝐬𝐤𝟎𝟏

pk001/sk001 pk010/sk010 pk011/sk011

Revocation: encrypt under subset that excludes revoked users

Encryption under pk01
can be decrypted by
users 010 and 011

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

𝐩𝐤𝟎𝟎𝟎/𝐬𝐤𝟎𝟎𝟎

pk0/sk0

𝐩𝐤𝟎𝟏/𝐬𝐤𝟎𝟏

pk001/sk001 pk010/sk010 pk011/sk011

Generally: ciphertext consists of 𝑂(log ℒ) encryptions

Encryption under pk01
can be decrypted by
users 010 and 011

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

𝐩𝐤𝟎𝟎𝟎/𝐬𝐤𝟎𝟎𝟎

pk0/sk0

𝐩𝐤𝟎𝟏/𝐬𝐤𝟎𝟏

pk001/sk001 pk010/sk010 pk011/sk011

Generally: ciphertext consists of 𝑂(ℒ log ℒ) encryptions

Encryption under pk01
can be decrypted by
users 010 and 011

More generally: can revoke
based on prefixes

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

0 1

0 1 0 1

Encode 𝑥 → ℐ𝑥 ComputeCover ℒ → 𝒥ℒ

ℐ𝑥: Nodes associated with leaf 𝑥 𝒥ℒ: Nodes that “cover” all leaves outside ℒ

Combinatoric Approach to Revocation
[NNL01]

[NNL01]: Combinatoric approach for revocation based on subset-cover set systems

0 1

0 1 0 1

pk00/sk00

𝐩𝐤𝟎𝟎𝟎/𝐬𝐤𝟎𝟎𝟎

pk0/sk0

𝐩𝐤𝟎𝟏/𝐬𝐤𝟎𝟏

pk001/sk001 pk010/sk010 pk011/sk011

Issue: number of public keys in this construction is exponential

Revocable Predicate Encryption

Can decrypt ciphertexts ct𝑔 where 𝑔 𝑥 = 1KeyGen sk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

𝑓
ABE

Observation: ABE (or even IBE) can
be used to “compress” the public

keys into a short public parameters

𝑓id

ABE 𝑓id id∗, ct𝑔 =

MFE. Decrypt MFE. sk𝑥, ct𝑔 ∧ (id = id∗)

ABE key for function 𝑓idAssociate each key with an identity id

Can decrypt ciphertexts with attributes id∗, ct𝑔 where

id = id∗ and 𝑔 𝑥 = 1

KeyGen sk, id, 𝑥

𝑓 ct𝑔 = MFE.Decrypt(MFE. sk𝑥, ct𝑔)

ABE key for function 𝑓

Revocable Predicate Encryption

Can decrypt ciphertexts ct𝑔 where 𝑔 𝑥 = 1KeyGen sk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

𝑓
ABE

Observation: ABE (or even IBE) can
be used to “compress” the public

keys into a short public parameters

𝑓id

ABE 𝑓id id∗, ct𝑔 =

MFE. Decrypt MFE. sk𝑥, ct𝑔 ∧ (id = id∗)

ABE key for function 𝑓idAssociate each key with an identity id

Can decrypt ciphertexts with attributes id∗, ct𝑔 where

id = id∗ and 𝑔 𝑥 = 1

KeyGen sk, id, 𝑥

𝑓 ct𝑔 = MFE.Decrypt(MFE. sk𝑥, ct𝑔)

ABE key for function 𝑓

Revocation at ABE level ensures
semantic security for revoked users
(i.e., revoked keys cannot decrypt)

Revocable Predicate Encryption

Can decrypt ciphertexts ct𝑔 where 𝑔 𝑥 = 1KeyGen sk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

𝑓
ABE

𝑓id

ABE 𝑓id id∗, ct𝑔 =

MFE. Decrypt MFE. sk𝑥, ct𝑔 ∧ (id = id∗)

ABE key for function 𝑓id

Can decrypt ciphertexts with attributes id∗, ct𝑔 where

id = id∗ and 𝑔 𝑥 = 1

𝑓 ct𝑔 = MFE.Decrypt(MFE. sk𝑥, ct𝑔)

ABE key for function 𝑓

Approach does not extend to mixed FE
(only supports public encryption

to the all-ones function)

If we only have revocation for ABE keys,
then scheme does not hide 𝑥 (namely,
can learn if 𝑔 𝑥 = 1 even if id ≠ id∗)

Revocable Predicate Encryption

Can decrypt ciphertexts ct𝑔 where 𝑔 𝑥 = 1KeyGen sk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

𝑓
ABE

𝑓id

ABE 𝑓id id∗, ct𝑔 =

MFE. Decrypt MFE. sk𝑥, ct𝑔 ∧ (id = id∗)

ABE key for function 𝑓id

Can decrypt ciphertexts with attributes id∗, ct𝑔 where

id = id∗ and 𝑔 𝑥 = 1

𝑓 ct𝑔 = MFE.Decrypt(MFE. sk𝑥, ct𝑔)

ABE key for function 𝑓

Approach does not extend to mixed FE
(only supports public encryption

to the all-ones function)

If we only have revocation for ABE keys,
then scheme does not hide 𝑥 (namely,
can learn if 𝑔 𝑥 = 1 even if id ≠ id∗)

Does not satisfy (strong) attribute-hiding:
problematic for tracing

Revocable Predicate Encryption

KeyGen sk, 𝑥

𝑥
MFE

MFE secret key for 𝑥

Observation: master secret key in
existing mixed FE schemes can be

sampled after the public parameters

𝑓id

ABE 𝑓id id∗, ct𝑔 =

MFE. Decrypt MFE. sk𝑥, ct𝑔 ∧ (id = id∗)

ABE key for function 𝑓id

Can decrypt ciphertexts with attributes id∗, ct𝑔 where

id = id∗ and 𝑔 𝑥 = 1

0 1

0 1 0 1

msk00

𝐦𝐬𝐤𝟎𝟎𝟎

msk0

𝐦𝐬𝐤𝟎𝟏

msk001 msk010 msk011

All master secret keys in the tree share
a common set of public parameters pp

Derive msks from a PRF:
msk𝑖 ← PRF(𝑘, 𝑖)

Putting the Pieces Together

Public parameters: mpk (for ABE scheme) and pp (for mixed FE scheme)

Master secret key: msk (for ABE scheme) and 𝑘 (for PRF)

Putting the Pieces Together

𝐊𝐞𝐲𝐆𝐞𝐧 𝐦𝐬𝐤, 𝐢𝐝, 𝒙

0 1

0 1 0 1

Step 1: Encode id → ℐid

Step 2: For each node 𝑖 in ℐid:
• Sample MFE master secret key:

MFE.msk𝑖 ← MFE.MSKGen MFE. pp; PRF 𝑘, 𝑖

• Issue MFE secret key for 𝑥:
MFE. sk𝑖,𝑥 ← MFE. KeyGen MFE.msk𝑖 , 𝑥

• Issue ABE secret key (MFE key + id hard-wired)
ABE. sk𝑖,𝑥 ← ABE. KeyGen ABE.msk, 𝑓id

𝑥
MFE

MFE secret key for 𝑥
(with respect to node 𝑖)

𝑓id

ABE

𝑓id id∗, ct𝑔 = 1 if:

• MFE.Decrypt MFE. sk𝑖,𝑥, ct𝑔
• id = id∗

Step 2: For each node 𝑖 in 𝒥ℒ:
• Sample MFE ciphertext

MFE. ct𝑖 ← MFE. PKEnc(MFE. pp)
• Encrypt message using ABE
ABE. ct𝑖 ← ABE. Enc ABE. pp, MFE. ct𝑖 , 𝑖 , 𝑚

Putting the Pieces Together

𝐁𝐫𝐨𝐚𝐝𝐜𝐚𝐬𝐭 𝐩𝐤,𝒎, 𝓛

0 1

0 1 0 1

Step 1: ComputeCover ℒ → 𝒥ℒ

public MFE ciphertext
(for all-ones function)

ABE ciphertext

1 ⋅
MFE

MFE. ct𝑖 , 𝑖, 𝑚
ABE

Step 2: For each node 𝑖 in 𝒥ℒ:
• Sample MFE master secret key:

MFE.msk𝑖 ← MFE.MSKGen MFE. pp; PRF 𝑘, 𝑖

• Sample MFE ciphertext
MFE. ct𝑖 ← MFE. SKEnc MFE.msk𝑖 , 𝑔

• Encrypt message using ABE
ABE. ct𝑖 ← ABE. Enc ABE. pp, MFE. ct𝑖 , 𝑖 , 𝑚

Putting the Pieces Together

𝐄𝐧𝐜𝐫𝐲𝐩𝐭 𝐦𝐬𝐤, 𝒈,𝒎, 𝓛

0 1

0 1 0 1

Step 1: ComputeCover ℒ → 𝒥ℒ

public MFE ciphertext
(for function 𝑔)

ABE ciphertext

𝑔
MFE

MFE. ct𝑖 , 𝑖, 𝑚
ABE

Putting the Pieces Together

Assuming sub-exponential hardness of LWE, there exists a
fully collusion-resistant identity-based trace-and-revoke scheme

sk = 𝑛 ⋅ poly(𝜆, log 𝑛)
ct = 𝑚 + ℒ ⋅ poly 𝜆, log 𝑛

𝑚: message
𝑛: bit-length of identity
ℒ: revocation list

Encryption algorithm is public-key
Tracing algorithm is secret-key

Open Problems

Assuming sub-exponential hardness of LWE, there exists a
fully collusion-resistant identity-based trace-and-revoke scheme

sk = 𝑛 ⋅ poly(𝜆, log 𝑛)
ct = 𝑚 + ℒ ⋅ poly 𝜆, log 𝑛

Encryption algorithm is public-key
Tracing algorithm is secret-key

• Succinct broadcast: Ciphertext size scaling sublinearly in the number of revoked users
(i.e., description length of ℒ)

• Support public tracing
• Polynomial hardness (polynomial hardness of LWE suffices for identity-based traitor

tracing [GKW19])
Thank you!

https://eprint.iacr.org/2019/984

