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Pseudorandom Functions (PRFs) [GGM84]

𝐹: 𝒦 ×𝒳 → 𝒴

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥

𝑘 
R
𝒦
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𝑏

𝑥 ∈ 𝒳
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Random

𝑏



Constrained PRFs [BW13, BGI13, KPTZ13]

𝐹: 𝒦 ×𝒳 → 𝒴

Constrained PRF: PRF with additional “constrain” 
functionality

Constrain𝐶

PRF key constrained key

can be used to evaluate at all 
points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳
where 𝐶 𝑥 = 1 yields PRF value at 𝑥

Security: PRF value at points 𝑥 ∈ 𝒳 where 
𝐶 𝑥 = 0 are indistinguishable from random



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Identity-Based Key Exchange, Optimal Broadcast 

Encryption [BW13]
•Punctured Programming Paradigm [SW14]
•Multiparty Key Exchange, Traitor Tracing [BZ14]



Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

• Puncturable PRF: constrained keys allow evaluation at all but 
a single point

• Easily constructed from GGM:



Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

puncture at 𝑥 = 01



Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

these two values suffice to evaluate at all other 
points



Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

given 𝑠1 and 𝑠00, easy to tell that 01 is the 
punctured point



Constraining PRFs Privately

Constrain𝐶

Can we build a constrained PRF where the 
constrained key for a circuit 𝐶 hides 𝐶?

msk sk𝐶



Constraining PRFs Privately

≈𝑐

𝐶0, 𝐶1

Constrain(msk, 𝐶0)

msk  Setup 1𝜆

World 0

𝑏

𝐶0, 𝐶1

World 1

𝑏

Constrain(msk, 𝐶1)

msk  Setup 1𝜆

Single-key privacy Definitions generalize to multi-key privacy. See paper for details.



Private Puncturing

•Correctness: constrained evaluation at 𝑥 ≠ 𝑧

yields 𝐹 𝑘, 𝑥

•Security: 𝐹(𝑘, 𝑧) is indistinguishable from random

•Privacy: constrained key hides 𝑧

Puncture𝑧
msk sk𝑧



Implications of Privacy

Consider value of ConstrainEval(sk𝑧, 𝑧):

•Security: Independent of Eval(msk, 𝑧)

•Privacy: Unguessable by the adversary

Puncture𝑧
msk sk𝑧



Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with 
encrypted index

key issuer

ConstrainEval(sk, Honeycomb)

5,8,13

skMarshmallow

msk

create index



Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with 
encrypted index

ConstrainEval(sk, Jelly Bean)

No results

search for non-existent 
keyword



Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with 
encrypted index

ConstrainEval(sk,Marshmallow)

No results

search for “restricted” 
keyword



Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with 
encrypted index

ConstrainEval(sk,Marshmallow)

No results

• Security: ConstrainEval sk,Marshmallow ≠

Eval msk,Marshmallow

• Privacy: Does not learn that no results were 

returned because no matches for keyword or if 

the keyword was restricted



The Many Applications of Privacy

• Private constrained MACs
• Parties can only sign messages satisfying certain policy (e.g., enforce a 

spending limit), but policies are hidden

• Symmetric Deniable Encryption [CDNO97]
• Two parties can communicate using a symmetric encryption scheme

• If an adversary has intercepted a sequence of messages and coerces one of 
the parties to produce a decryption key for the messages, they can produce a 
“fake” key that decrypts all but a subset of the messages

• Constructing a family of watermarkable PRFs
• Can be used to embed a secret message within a PRF that is “unremovable” –

useful for authentication [CHNVW15]

See paper for details!



Summary of our Constructions

• From indistinguishability obfuscation (iO):
• Private puncturable PRFs from iO + one-way functions
• Private circuit constrained PRFs from sub-exponentially 

hard iO + one-way functions

• From concrete assumptions on multilinear maps:
• Private puncturable PRFs from subgroup hiding 

assumptions
• Private bit-fixing PRF from multilinear Diffie-Hellman 

assumption

This talk

See paper



Constructing Private Constrained PRFs

Tool: indistinguishability obfuscation [BGI+01, GGH+13]

Program 𝑃1 Program 𝑃2

iO iO

iO(𝑃1) ≈𝑐 iO(𝑃2)

iO(𝑃1) iO(𝑃2)

∀𝑥 ∶ 𝑃1 𝑥 = 𝑃2(𝑥)



Private Puncturing from iO

•Starting point: puncturable PRFs (e.g. GGM)

•Need a way to hide the point that is punctured
• Intuition: obfuscate the puncturable PRF

•Question: what value to output at the punctured 
point?



Private Puncturing from iO

Use iO to hide the punctured point and output 
uniformly random value at punctured point

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

Program for punctured PRF
(punctured at 𝑧)

real value of 
the PRF

random value
(hard coded)



Private Puncturing from iO

Suppose PRF is puncturable (e.g., GGM)
• Master secret key: PRF key 𝑘
• PRF output at 𝑥 ∈ 𝒳: PRF 𝑘, 𝑥

Punctured key for a point 𝑧 is an obfuscated program

Constrained evaluation corresponds to evaluating obfuscated 
program

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

iO



Private Puncturing from iO: Privacy

Recall privacy notion:

≈𝑐

𝑥0, 𝑥1 ∈ 𝒳

Puncture(𝑘, 𝑥0)

msk  Setup 1𝜆

World 0

𝑏

𝑥0, 𝑥1 ∈ 𝒳

World 1

𝑏

Puncture(𝑘, 𝑥1)

msk  Setup 1𝜆



Private Puncturing from iO: Privacy

Proof is simple exercise in punctured programming

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

Program for punctured PRF
(punctured at 𝑧)

real value of 
the PRF

random value
(hard coded)



Private Puncturing from iO: Privacy

𝑃𝑥0(𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘, 𝑥)

≈𝑐iO iO

Hybrid 0: Real game Hybrid 1: Challenger 
responds to puncture 
query with iO of this 

program

𝑃𝑥0
′ (𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘𝑥0 , 𝑥)

𝑘𝑥0: 𝑘 punctured at 𝑥0



Private Puncturing from iO: Privacy

Hybrid 1 Hybrid 2

iO iO≈𝑐

Invoke puncturing security

𝑃𝑥0
′′ (𝑥):

• If 𝑥 = 𝑥0, output PRF(𝑘, 𝑥0)
• Else, output PRF(𝑘𝑥0 , 𝑥)

𝑃𝑥0
′ (𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘𝑥0 , 𝑥)



Private Puncturing from iO: Privacy

Hybrid 2 Hybrid 3

iO iO≈𝑐

Invoke iO security

𝑃𝑥0
′′′(𝑥):

• Output PRF(𝑘, 𝑥)

𝑃𝑥0
′′ (𝑥):

• If 𝑥 = 𝑥0, output PRF(𝑘, 𝑥0)
• Else, output PRF(𝑘𝑥0 , 𝑥)

The program in Hybrid 3 is independent of 𝑥0. Similar 
argument holds starting from 𝑃𝑥1(𝑥).



Private Puncturing from iO: Summary

Use iO to hide the punctured point and output 
uniformly random value at punctured point

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)



Private Circuit Constrained PRF from iO

Construction generalizes to circuit constraints, except 
random values now derived from another PRF

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)

𝑘′ is independently 
sampled PRF key

“real” PRF value



Private Circuit Constrained PRF from iO

Recall intuitive requirements for 
private constrained PRF:

• Security: Values at constrained 

points independent of actual 

PRF value at those points

• Privacy: Values at constrained 

points are unguessable by the 

adversary

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)



Private Circuit Constrained PRF from iO

Security proof similar to that for 
private puncturable PRF

Number of hybrids equal to 
number of points that differ 
across the two circuits, so sub-
exponential hardness needed in 
general

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)



Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps* [BS04]
• Fix composite modulus 𝑁 = 𝑝𝑞

• Base group 𝔾1 and target group 𝔾𝑛 (of order 𝑁) with 
canonical generators 𝑔1 and 𝑔𝑛, respectively

• Multilinear map operation:
𝑒 𝑔1

𝛼1 , 𝑔1
𝛼2 , … , 𝑔1

𝛼𝑛 = 𝑔𝑛
𝛼1𝛼2⋯𝛼𝑛

For simplicity, we describe our construction using ideal multilinear maps. It is straightforward to translate our 
construction to use composite-order graded multilinear encodings [CLT13]

*



Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps [BS04]
• Let 𝔾1,𝑝 be subgroup of order 𝑝 of 𝔾1

• Subgroup decision assumption [BGN05]: hard to 
distinguish random elements of the full group 𝔾1 from 
random elements of the subgroup 𝔾1,𝑝



Private Puncturing from Multilinear Maps

Starting point: multilinear analog of Naor-Reingold [NR97, 
BW13]

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

⋯

⋯

𝑔1
𝛼𝑛,0

𝑔1
𝛼𝑛,1

master secret 
key:

collection of 2𝑛 random group elements 
from 𝔾1



Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1
𝛼4,1

𝑔1
𝛼3,0

𝑔1
𝛼3,1

𝑔1
𝛼5,0

𝑔1
𝛼5,1



Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1
𝛼4,1

𝑔1
𝛼3,0

𝑔1
𝛼3,1

𝑔1
𝛼5,0

𝑔1
𝛼5,1

𝐹𝑘 01101 = 𝑒 𝑔1
𝛼1,0 , 𝑔1

𝛼2,1, 𝑔1
𝛼3,1, 𝑔1

𝛼4,0, 𝑔1
𝛼5,1



Private Puncturing from Multilinear Maps

Puncture PRF by exploiting orthogonality

master secret 
key:

𝑔1,𝑝
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1,𝑝
𝛼2,1

𝑔1,𝑝
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1,𝑝
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1,𝑝
𝛼5,1

puncture at 
01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

all elements in subgroup

punctured components in full group



Private Puncturing from Multilinear Maps

Correctness

puncture at 
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Correctness by multilinearity (and CRT):

𝑒 𝑔1
𝛽1 , … , 𝑔1

𝛽𝑛 = 𝑒 𝑔1,𝑝, … , 𝑔1,𝑝
𝛽1⋯𝛽𝑛 mod 𝑝

𝑒 𝑔1,𝑞 , … , 𝑔1,𝑞
𝛽1⋯𝛽𝑛 mod 𝑞

For all 𝑥 ≠ 𝑥∗, there is some 𝑖 where 𝑥𝑖 ≠ 𝑥𝑖
∗ so 𝛽𝑖,𝑥𝑖

∗ = 0 (mod 𝑞)

where 𝑔𝛽𝑖,0 , 𝑔𝛽𝑖,1 is the 𝑖th component of the secret key



Private Puncturing from Multilinear Maps

Privacy

puncture at 
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Follows directly by subgroup decision: elements of 𝔾1 look 
indistinguishable from elements of 𝔾1,𝑝



Private Puncturing from Multilinear Maps

Puncturing Security

puncture at 
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Follows from a multilinear Diffie-Hellman subgroup decision 
assumption on composite-order multilinear maps

See paper for details!



Private Puncturing and Distributed Point Functions [GI14]

Gen(1𝜆, 𝑥)

𝑘0 𝑘1

Eval 𝑘0, 𝑥
′ ⊕Eval 𝑘1, 𝑥

′ =  
1, 𝑥′ = 𝑥
0, 𝑥′ ≠ 𝑥

Privacy: 𝑘0 and 𝑘1 individually 
must hide 𝑥

Correctness: 𝑘0 and 𝑘1 implement a point function



Private Puncturing and Distributed Point Functions [GI14]

A private puncturable PRF can be used to build a distributed 
point function (DPF):

Gen(1𝜆, 𝑥)

𝑘0  Setup 1𝜆 𝑘1  Puncture(𝑘0, 𝑥)

Correctness: Eval(𝑘0,⋅) and ConstrainEval(𝑘1,⋅) agree 
everywhere except 𝑥

Privacy: 𝑘0 is independent of 𝑥 and 𝑘1 hides 𝑥



Private Puncturing and Distributed Point Functions [GI14]

However, distributed point functions do not give a private 
puncturable PRF

Key difference:
• In a DPF, the point 𝑥 is known at setup time: both 𝑘0 and 

𝑘1 are generated together
• In a private puncturable PRF, the point 𝑥 is known after

the master parameters (the key 𝑘0) are generated

Open question: Can constructions of DPFs be adapted to 
obtain a private puncturable PRF?



Conclusions

•New notion of private constrained PRFs

• Simple definitions, but require powerful tools to 
construct: iO / multilinear maps

•Private constrained PRFs immediately provide natural 
solutions to many problems



Open Questions

• Puncturable PRFs (and DPFs) can be constructed from OWFs
• Can we construct private puncturable PRFs from OWFs?

• Does private puncturing necessitate strong assumptions like 
multilinear maps?

• Can we construct private circuit-constrained PRFs without requiring 
sub-exponentially hard iO?

• Most of our candidate applications just require private 
puncturable PRFs
• New applications for more expressive families of constraints?



Part II: Practical Order-Revealing 
Encryption with Limited Leakage

Joint work with Nathan Chenette, Kevin Lewi, 
and Stephen A. Weis



Order-Revealing Encryption [BLRSZZ15]

Client Server

sk
ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

secret-key encryption scheme



Order-Revealing Encryption [BLRSZZ15]

Server

ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

Which is greater: 
the value encrypted 
by ct1 or the value 
encrypted by ct2?

Application: range 
queries / binary search 

on encrypted data



Order-Revealing Encryption [BLRSZZ15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

there is a publically
evaluatable function 

that evaluates the 
comparison function



Defining Security

Starting point: semantic security (IND-CPA) [GM84]

𝑏 ∈ 0,1

semantic security: adversary cannot guess 𝑏 (except with 
probability negligibly close to 1/2)

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

Enc sk,𝑚𝑏
𝑖

challenger adversary



Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

must impose restriction on messages: otherwise trivial 
to break semantic security using comparison operator



Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

∀𝑖, 𝑗:𝑚0
𝑖
< 𝑚0

𝑗
⟺ 𝑚1

𝑖
< 𝑚1

𝑗



Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

order of “left” set of messages same as order 
of “right” set of messages



Existing Approaches

General-Purpose Multi-Input Functional Encryption 
[GGGJKLSSZ14, BV15, AJ15]

• Powerful cryptographic primitive that fully subsumes 
ORE

• Achieves best-possible security
• Impractical (requires obfuscating a PRF)



Existing Approaches

Multilinear-map-based Solution [BLRSZZ15]
• Much more efficient than general purpose 

indistinguishability obfuscation
• Achieves best-possible security
• Security of multilinear maps not well-understood
• Still quite inefficient (e.g., ciphertexts on the order of GB)



Existing Approaches

Order-preserving encryption (OPE) [BCLO09, BCO11]:
• Comparison operation is direct comparison of 

ciphertexts:
𝑥 > 𝑦 ⟺ Enc sk, 𝑥 > Enc(sk, 𝑦)

• Lower bound: no OPE scheme can satisfy “best-possible” 
security unless the size of the ciphertext space is 
exponential in the size of the plaintext space



Existing Approaches

Order-preserving encryption (OPE) [BCLO09, BCO11]:
• No “best-possible” security, so instead, compare with 

random order-preserving function (ROPF)

encryption function 
implements a random

order-preserving function
domain range



Existing Approaches

Properties of a random order-preserving function 
[BCO’11]:

• Each ciphertext roughly leaks half of the most significant 
bits

• Each pair of ciphertexts roughly leaks half of the most 
significant bits of their difference

No semantic security for 
even a single message!



Existing Approaches
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A New Security Notion

Two existing security notions:
• IND-OCPA: strong security, but hard to achieve efficiently
• ROPF-CCA: efficiently constructible, but lots of leakage, 

and difficult to precisely quantify the leakage



A New Security Notion: SIM-ORE

Idea: augment “best-possible” security with a leakage function ℒ

𝑚1 𝑚1 ∣ ℒ 𝑚1

Enc sk,𝑚1 ct1

sk

𝑚2

Enc sk,𝑚2

𝑚2 ∣ ℒ 𝑚1, 𝑚2

ct2

⋮ ⋮

???

Real World Ideal World



A New Security Notion: SIM-ORE

Similar to SSE definitions [CM05, CGKO06]

Leakage functions specifies exactly what is leaked

“Best-possible” simulation security:

ℒ 𝑚1, … ,𝑚𝑞 = 𝟏 𝑚𝑖 < 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞



A New Security Notion: SIM-ORE

“Best-possible” simulation security:

ℒ 𝑚1, … ,𝑚𝑞 = 1 𝑚𝑖 < 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞

Anything that can be computed given the ciphertexts can 
be computed given the ordering on the messages



Our Construction

Leak a little more than just the ordering:

ℒ 𝑚1, … ,𝑚𝑞 = 1 𝑚𝑖 < 𝑚𝑗 , inddiff 𝑚𝑖 , 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞

1 0 0 1 0 1

1 0 0 0 1 1

inddiff(𝑚1, 𝑚2): index of 
first bit that differs



Our Construction

1 0 0 1 0 1

For each index 𝑖, apply a 
PRF to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3



Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

For each index 𝑖, apply a 
PRF to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3

empty prefix



Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0 For each index 𝑖, apply a 
PRF to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3



Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0

𝐹𝑘(10) + 0

For each index 𝑖, apply a 
PRF to the first 𝑖 − 1 bits, 

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3



Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 0 𝐹𝑘(1000) + 1 𝐹𝑘(10001) + 1

1 0 0 0 1 1

same prefix = same 
ciphertext block

different prefix = value 
computationally hidden

first block 
that differs

compare values (mod 𝑛)
to determine ordering



Our Construction: Security

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

Security follows directly from security of the PRF

Proof sketch. Simulator responds to encryption queries using 
random strings. Maintains consistency using leakage 
information (first bit that differs).
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General-purpose 
MIFE from iO

Direct construction 
from multilinear maps

Directions for Future Research

Security

Ef
fi
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cy

OPE

Our 
construction

Shorter 
ciphertexts?

New leakage 
functions?

Best-possible ORE from 
standard assumptions?
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Questions?


