Functional Encryption: Deterministic
to Randomized Functions from
Simple Assumptions

Shashank Agrawal and David J. Wu

Public-Key Functional Encryption [BSW11, O’'N10]

Keys are associated with
deterministic functions f

----,

Skf

Public-Key Functional Encryption [BSW11, O'N10]
. Setup(l’l): Outputs (msk, mpk)
* KeyGen(msk, f): Outputs decryption key sk
* Encrypt(mpk, m): Outputs ciphertext ct,,

* Decrypt(skg, ct,,): Outputs f(m)

Public-Key Functional Encryption [BSW11, O'N10]
. Setup(ll): Outputs (msk, mpk)
* KeyGen(msk, f): Outputs decryption key sk

* Encrypt(mp text ct,,

Deterministic
° Decrypt(skf’ fu nCt|On f

Functional Encryption for Randomized Functionalities (rFE) [GJKS15]

But what if f is

randomized?

Many interesting functions are
randomized

Application 1: Proxy Re-Encryption

personal email
| AIice" | l | AIice"
Vk email

Mail server has functional key
to re-encrypt message under Wl

secretary’s public key

Application 2: Auditing an Encrypted Database

Encrypted database of records

e nfrlnlnfs]n

Sample a random
subset to audit

Does Public-Key rFE Exist?

[GJKS15]

General-
Purpose rFE

(selectively secure)

Public-Key Functional Encryption [BSW11, O'N10]

Can be instantiated from a wide range of assumptions

[SS10, GVW12,GKPVZ13, ...]

Bounded-
PKE / LWE — Collucion FE

[GGHRSW13, GGHZ16, Wat1l5, ...]

>

General-
Purpose FE

Multilinear
Maps / iO

The State of (Public-Key) Functional Encryption

Deterministic functionalities Randomized functionalities

[SS10, GVW12, ...]

Bounded-
E ‘
Collusion FE

[GGHRSW13, GGHZ1S6, ...]

[GJKS15]

General-
=)

Purpose rFE

Multilinear ' General-
Purpose FE

Maps / iO

Generally adaptively
secure

Selectively secure

The State of (Public-Key) Functional Encryption

Does extending FE to support

randomized functionalities
» require much stronger tools?

\Y

Our Main Result

General-purpose FE General-purpose FE
for deterministic for randomized

(e.g., DDH, RSA)

functionalities functionalities

Implication: randomized FE is not much more
difficult to construct than standard FE.

Defining rFE

Defining Correctness for FE

Deterministic functionalities

ER + fam)

Defining Correctness for rFE [GJKS15]

Randomized functionalities

ER + o fami)
ER + o Fam's

Different Same function Independent draws
from output

distribution

ciphertexts key

Defining Correctness for rFE [GJKS15]

Randomized functionalities

ER + 7 Famsm)
5 ;)

Different

Independent draws

from output

ciphertexts function keys et b

Simulation-Based Security (Informally)

Real World: honestly
generated ciphertexts
and secret keys

Ideal World:
f simulated ciphertexts

n and secret keys

Public-Key Functional Encryption [BSW11, O'N10]

Simulation-based notion of security:

msk f flr
KeyGen(msk, f) O sKy /
m m| fi(m), .., fo, (M) & 2
f f1A7m)
KeyGen(msk, f) O O sk

Real World Ideal World

Public-Key Functional Encryption [BSW11, O'N10]

Selective security: adversary first commits to challenge

lliiilll m| s

msk m
mpk mpk
Encrypt(mpk, m 2 B ct,,
f AVSIGON
KeyGen(msk, f) O ' O sk¢

Real World |deal World

Security for rFE

Simulation-based notion of security:

Function f is a
randomized function

mpKk
msk —_—

KeyGen(msk, f) O

Each function

{\ evaluated using freshly
KeyGen(msk, f) sampled randomness

m
C——
Encrypt(mpk, m z
f

\

Real World Ideal World

The Case for Malicious Encrypters

Encrypted database of records

t

What if
encrypter (bank)
is adversarial?

Sample a random

W subset to audit

The Case for Malicious Encrypters

Flmim)

Randomized functionalities

Fom';)

Dishonest encrypters can
construct “bad” ciphertexts such

that decryption produces
correlated outputs

Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like
definition) [GJKS15]

msk ct, f ct,f | ct
—
skr <« KeyGen(msk, f)

m o« Decrypt(skf,ct)”‘%"

m
—

Simulator sees ciphertext

and can make a single
Give the adversary access to a decryption query to an ideal

definition) [GJKS15] evaluation oracle O

Capturing Dishonest

ct, f

G ——
sk; < KeyGen(msk, f)

m < Decrypt(skg, ct)

m
—

Simulator sees ciphertext
and can make a single

Capturing Dishonest

Give the adversary access to a decryption « query to an ideal
definition) [GJKS15] evaluation oracle O,
ct, f
———————

sk < KeyGen(msk, f)
m < Decrypt(skg, ct)

m
—

Simulator sees ciphertext

and can make a single
Give the adversary access to a decryption query to an ideal

definition) [GJKS15] evaluation oracle O

Capturing Dishonest

ct, f

sk; < KeyGen(msk, f)

|deal evaluation oracle
takes an input x and

outputs random draw from
output distribution f(x)

Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like
definition) [GJKS15]

msk ct, f ct, f |

sk; < KeyGen(msk, f)
m < Decrypt(sky,ct) =

m f(x)

— - —

Note: in ideal world, distinguisher always sees a
function evaluation using uniform randomness

Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like
definition) [GJKS15]

msk ct, f ct, f |

sk; < KeyGen(msk, f)
m < Decrypt(sky,ct) =

m f(x)

— - —

Notion also well-defined in deterministic setting and
is easily achieved by attaching a NIZK to ciphertext

Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

{Cti}ie[n]' f

sk; < KeyGen(msk, f)
m; <« Decrypt(ske,ct;)™

Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk
/,—/ {Cti}ie[n]'f
3 —
sk < KeyGen(msk,f) &

o

m; <« Decrypt(skf,ctl-)“‘}

o

1
Same decryption key

used for all decryptions

in real distribution

Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk {ct ey f {(Ctitiem)p [1 {ctidicin

sk; < KeyGen(msk, f) @
m; <« Decrypt(skg,ct;)

Same decryption key

used for all decryptions
in real distribution

Capturing Dishonest Encrypters

This work: Extend security model to allaw
ciphertexts (rules out adversary’s ak
ciphertexts)

mskp
-
'S

|deal evaluation oracle Of takes

vector of inputs x; and for each
input, outputs random draw
{Cti}ie[n]!f
———— i

skr <« KeyGen(msk, f) 1
D

m; < Decrypt(skg,ct
a“
Same decryption key

used for all decryptions

in real distribution

Capturing Dishonest Encrypters

This work: Extend security model to g
ciphertexts (rules out adversary’s ab
ciphertexts)

Impose admissibility criterion
to rule out cases where
adversary submits same

M ciphertext twice
sk; < KeyGen(msk, f)
m; < Decrypt(skg,ct;)

Our Generic Transformation

I I I S S S S -y

Starting Point: Derandomization

- - S - S S S S S S S S S -y

Randomized *
functionality

Derandomized ",
functionality

‘_________

Starting point: construct “derandomized
function” where randomness for f
derived from outputs of a PRF

Starting Point: Derandomization

- - S - S S S S S S S S S -y

Randomized *
functionality

Derandomized ",
functionality

I I I S S S S -y

Derandomized function g,

Randomized function f g5 (%) = f(x PRF(k X))
kA = ‘ ’

I I I S S S S -y

Starting Point: Derandomization

- - S - S S S S S S S S S -y Il Il S S S S S S S S S S S S S S -

Randomized * Derandomized ",
functionality x functionality :
|

|
l
l
l
l
l
l

‘_________

PRF key embedded '
inside g, kil g

: Lanction i
gk(x) = (x PRF(k, x))

Randomized function f

Starting Point: Derandomization

But in public-
key setting, keys

rFE. KeyGen(msk, f)

do not hide the
function!

FE. KeyGen(msk, g)

gk (x) = f(x, PRF(k, x))

Starting Point: Derandomization

rFE. KeyGen(msk, f)
jc |

FE. KeyGen(msk, g) ‘ ’:k
9k

gi(x) = f(x, PRF(k, x))

Given sk, , adversary can

R learn the PRF key k
k «

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so
place part of the key in the ciphertext

Secret-share the
PRF key

Key share in Key share in
ciphertext function key

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so

place part of the key in the ciphertext

rFE. Encrypt(mpk, m)

R
ki <X

FE. Encrypt(mpk, (m, k,)) ‘

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so

place part of the key in the ciphertext

rFE. KeyGen(msk, f)

Some operation to

combine shares of key

R
ky =X 9k, (m ky) = f(m; PRE(ky o kp,m)

—) T,

How to Hide the Key?

Key idea: functional encryption provides message-hiding, so
place part of the key in the ciphertext

Security now relies on

rFE. KeyGen(msk, f) related-key security

for PRFs

R
ky =X 9k, (m ky) = f(m; PRE(ky o kp,m)

—) T,

Why Related-Key Security?

Challenge ciphertext:

Adversary knows

m, k, and k; and
Chosen by Chosen by

adversary challenger

outputs still look
random!

Secret key queries: Adversary sees

‘, (f(m ; PRF(kq ¢ ko, m))
sk sk and

g Ik,
k- ko f(m ; PRF(kl 0 ké; m))

Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

rFE. Encrypt(mpk, m)

Cannot influence
R Encrypter can .)
ki <X choose the key- output dIStrIbut|c.)n
share due to RKA-security

FE. Encrypt(mpk, (m, k,)) ‘

Encrypter can choose the randomness Potentially problematic

Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

FE. Encrypt(mpk, (m, k,))

Run encryption
algorithm twice with
different randomness

Two distinct FE ciphertexts encrypting the same message

Security Against Dishonest Encrypters
Encrypter has a lot of flexibility in constructing ciphertexts:

Decryption in real world: always
produces same output

Decryption in ideal world: always
produces independent outputs

Encrypter has too much freedom in constructing ciphertexts

Applying Deterministic Encryption

Key observation: honestly generated ciphertexts have high
entropy

Should be random PRF | |
key — high entropy! Derive encryption

randomness from k4 and
include a NIZK argument that
ciphertext is well-formed

Putting the Pieces Together

rFE. Encrypt(mpk, m)

R
ki <K

NIZK argument of
knowledge of (m, k;)
that explains ciphertext

FE. Encrypt(mpk, (m, k) ; h(ky)) +

Randomness for FE encryption derived from
deterministic function on k, (e.g., a PRG)

Putting the Pieces Together

rFE. Encrypt(mpk, m) Ciphertext is a deterministic function
of (m, k,) so for any distinct pairs
(m, k), (m', k7), outputs of PRF

uniform and independently
distributed by RKA-security

FE. Encrypt(mpk, (m, k) ; h(ky)) +

R
ki <K

Our Transformation in a Nutshell

DDH + RSA

Simulation-
secure FE

NIZK RKA- deterministic
arguments secure PRF encryption

Security properties of

underlying FE scheme is

. Simulation-
preserved (e.g., adaptive

The State of (Public-Key) Functional Encryption

Deterministic functionalities Randomized functionalities

[SS10, GVW12, ...]

Bounded-
E ‘
Collusion FE

[GGHRSW13, GGHZ1S6, ...]

[GJKS15]

General-
=)

Purpose rFE

Multilinear ' General-
Purpose FE

Maps / iO

Generally adaptively
secure

Selectively secure

The State of (Public-Key) Functional Encryption

Number-theoretic
[SS10, GVW12, ...] assumptions

Bounded- Bounded-
E ‘
Collusion FE Collusion rFE ,
Adaptively secure

[GGHRSW13, GGHZ16, ...] against malicious
General- encrypters!

Purpose rFE

| This work

Multilinear General-

Maps / iO Purpose FE

Open Questions

 More direct / efficient constructions of rFE for
simpler classes of functionalities (e.g., sampling from
a database)?

* Generic construction of rFE from FE without making
additional assumptions?

* Connections between rFE and other primitives (e.g.,
various flavors of obfuscation)?

http://eprint.iacr.orqg/2016/482

