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Preface

Cryptography is an indispensable tool used to protect information in computing systems. It is
used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at
rest and data in motion. Cryptographic systems are an integral part of standard protocols, most
notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate
strong encryption into a wide range of applications.

While extremely useful, cryptography is also highly brittle. The most secure cryptographic
system can be rendered completely insecure by a single specification or programming error. No
amount of unit testing will uncover a security vulnerability in a cryptosystem.

Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs
to show that a particular system satisfies the security properties attributed to it. We often need to
introduce certain plausible assumptions to push our security arguments through.

This book is about exactly that: constructing practical cryptosystems for which we can argue
security under plausible assumptions. The book covers many constructions for di↵erent tasks in
cryptography. For each task we define a precise security goal that we aim to achieve and then
present constructions that achieve the required goal. To analyze the constructions, we develop a
unified framework for doing cryptographic proofs. A reader who masters this framework will be
capable of applying it to new constructions that may not be covered in the book.

Throughout the book we present many case studies to survey how deployed systems operate.
We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the
importance of rigor in cryptography. We end every chapter with a fun application that applies the
ideas in the chapter in some unexpected way.

Intended audience and how to use this book

The book is intended to be self contained. Some supplementary material covering basic facts from
probability theory and algebra is provided in the appendices.

The book is divided into three parts. The first part develops symmetric encryption which
explains how two parties, Alice and Bob, can securely exchange information when they have a
shared key unknown to the attacker. The second part develops the concepts of public-key encryption
and digital signatures, which allows Alice and Bob to do the same, but without having a shared,
secret key. The third part is about cryptographic protocols, such as protocols for user identification,
key exchange, and secure computation.

A beginning reader can read though the book to learn how cryptographic systems work and
why they are secure. Every security theorem in the book is followed by a proof idea that explains
at a high level why the scheme is secure. On a first read one can skip over the detailed proofs
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without losing continuity. A beginning reader may also skip over the mathematical details sections
that explore nuances of certain definitions.

An advanced reader may enjoy reading the detailed proofs to learn how to do proofs in cryptog-
raphy. At the end of every chapter you will find many exercises that explore additional aspects of
the material covered in the chapter. Some exercises rehearse what was learned, but many exercises
expand on the material and discuss topics not covered in the chapter.

Status of the book

The current draft only contains part I. Parts II and III are forthcoming. We hope you enjoy this
write-up. Please send us comments and let us know if you find typos or mistakes.

Citations: While the current draft is mostly complete, we still do not include citations and
references to the many works on which this book is based. Those will be coming soon and will be
presented in the Notes section at the end of every chapter.

Dan Boneh and Victor Shoup
August, 2015
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Chapter 2

Encryption

Roughly speaking, encryption is the problem of how two parties can communicate in secret in the
presence of an eavesdropper. The main goals of this chapter are to develop a meaningful and useful
definition of what we are trying to achieve, and to take some first steps in actually achieving it.

2.1 Introduction

Suppose Alice and Bob share a secret key k, and Alice wants to transmit a message m to Bob over
a network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop to solve this fundamental problem are
important and interesting, they do not by themselves solve all problems related to “secure commu-
nication.”

• The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

• The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

• The techniques do not provide a mechanism that allow Alice and Bob to come to share a
secret key in the first place. Maybe they are able to do this using some secure network (or
a physical, face-to-face meeting) at some point in time, while the message is sent at some
later time when Alice and Bob must communicate over an insecure network. However, with
an appropriate infrastructure in place, there are also protocols that allow Alice and Bob to
exchange a secret key even over an insecure network: such protocols are discussed in Chapters
20 and 21.
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2.2 Shannon ciphers and perfect security

2.2.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair E = (E, D) of functions.

• The function E (the encryption function) takes as input a key k and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c = E(k, m),

and we say that c is the encryption of m under k.

• The function D (the decryption function) takes as input a key k and a ciphertext c, and
produces a message m. That is,

m = D(k, c),

and we say that m is the decryption of c under k.

• We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k and all messages m, we have

D(k, E(k, m) ) = m.

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E : K ⇥M! C,

D : K ⇥ C !M.

Also, we shall say that E is defined over (K, M, C).
Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.

The idea is that Alice and Bob must somehow agree in advance of a key k 2 K. Assuming this is
done, then when Alice wants to send a message m 2M to Bob, she encrypts m under k, obtaining
the ciphertext c = E(k, m) 2 C, and then sends c to Bob via some communication network. Upon
receiving c, Bob decrypts c under k, and the correctness property ensures that D(k, c) is the same
as Alice’s original message m. For this to work, we have to assume that c is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
c while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1KB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.
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Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows
messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher E = (E, D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, E is defined over (K, M, C), where

K := M := C := {0, 1}L,

for some fixed parameter L. For a key k 2 {0, 1}L and a message m 2 {0, 1}L the encryption
function is defined as follows:

E(k, m) := k �m,

and for a key k 2 {0, 1}L and ciphertext c 2 {0, 1}L, the decryption function is defined as follows:

D(k, m) := k � c.

Here, “�” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors x, y, z 2 {0, 1}L, we have

x� y = y � x, x� (y � z) = (x� y)� z, x� 0L = x, and x� x = 0L.

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for E : for all k, m 2
{0, 1}L, we have

D(k, E(k, m) ) = D(k, k �m) = k � (k �m) = (k � k)�m = 0L �m = m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. 2

Example 2.2. A variable length one-time pad is a Shannon cipher E = (E, D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, E is defined over (K, M, C), where

K := {0, 1}L and M := C := {0, 1}L.

for some parameter L. Here, {0, 1}L denotes the set of all bit strings of length at most L (including
the empty string). For a key k 2 {0, 1}L and a message m 2 {0, 1}L of length `, the encryption
function is defined as follows:

E(k, m) := k[0 . . `� 1]�m,
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and for a key k 2 {0, 1}L and ciphertext c 2 {0, 1}L of length `, the decryption function is defined
as follows:

D(k, m) := k[0 . . `� 1]� c.

Here, k[0 . . ` � 1] denotes the truncation of k to its first ` bits. The reader may verify that the
correctness property holds for E . 2

Example 2.3. A substitution cipher is a Shannon cipher E = (E, D) of the following form. Let
⌃ be a finite alphabet of symbols (e.g., the letters A–Z, plus a space symbol,  ). The message space
M and the ciphertext space C are both sequences of symbols from ⌃ of some fixed length L:

M := C := ⌃L.

The key space K consists of all permutations on ⌃; that is, each k 2 K is a one-to-one function from
⌃ onto itself. Note that K is a very large set; indeed, |K| = |⌃|! (for |⌃| = 27, |K| ⇡ 1.09 · 1028).

Encryption of a message m 2 ⌃L under a key k 2 K (a permutation on ⌃) is defined as follows

E(k, m) :=
�

k(m[0]), k(m[1]), . . . , k(m[L� 1])
�

,

where m[i] denotes the ith entry of m (counting from zero), and k(m[i]) denotes the application
of the permutation k to the symbol m[i]. Thus, to encrypt m under k, we simply apply the
permutation k component-wise to the sequence m. Decryption of a ciphertext c 2 ⌃L under a key
k 2 K is defined as follows:

D(k, c) :=
�

k�1(c[0]), k�1(c[1]), . . . , k�1(c[L� 1])
�

.

Here, k�1 is the inverse permutation of k, and to decrypt c under k, we simply apply k�1 component-
wise to the sequence c. The correctness property is easily verified: for a message m 2 ⌃L and key
k 2 K, we have

D(k, E(k, m) ) = D(k, (k(m[0]), k(m[1]), . . . , k(m[L� 1]) )

= (k�1(k(m[0])), k�1(k(m[1])), . . . , k�1(k(m[L� 1])))

= (m[0], m[1], . . . , m[L� 1]) = m. 2

Example 2.4 (additive one-time pad). We may also define a “addition mod n” variation of
the one-time pad. This is a cipher E = (E, D), defined over (K, M, C), where K := M := C :=
{0, . . . , n� 1}, where n is a positive integer. Encryption and decryption are defined as follows:

E(k, m) := m + k mod n D(k, c) := ·c� k mod n.

The reader may easily verify that the correctness property holds for E . 2

2.2.2 Perfect security

So far, we have just defined the basic syntax and correctness requirements of a Shannon cipher.
Next, we address the question: what is a “secure” cipher? Intuitively, the answer is that a secure
cipher is one for which an encrypted message remains “well hidden,” even after seeing its encryp-
tion. However, turning this intuitive answer into one that is both mathematically meaningful and
practically relevant is a real challenge. Indeed, although ciphers have been used for centuries, it
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is only in the last few decades that mathematically acceptable definitions of security have been
developed.

In this section, we develop the mathematical notion of perfect security — this is the “gold
standard” for security (at least, when we are only worried about encrypting a single message and
do not care about integrity). We will also see that it is possible to achieve this level of security;
indeed, we will show that the one-time pad satisfies the definition. However, the one-time pad is
not very practical, in the sense that the keys must be as long as the messages: if Alice wants to
send a 1GB file to Bob, they must already share a 1GB key! Unfortunately, this cannot be avoided:
we will also prove that any perfectly secure cipher must have a key space at least as large as its
message space. This fact provides the motivation for developing a definition of security that is
weaker, but that is acceptable from a practical point of view, and which allows one to encrypt long
messages using short keys.

If Alice encrypts a message m under a key k, and an eavesdropping adversary obtains the
ciphertext c, Alice only has a hope of keeping m secret if the key k is hard to guess, and that
means, at the very least, that the key k should be chosen at random from a large key space. To
say that m is “well hidden” must at least mean that it is hard to completely determine m from
c, without knowledge of k; however, this is not really enough. Even though the adversary may
not know k, we assume that he does know the encryption algorithm and the distribution of k. In
fact, we will assume that when a message is encrypted, the key k is always chosen at random,
uniformly from among all keys in the key space. The adversary may also have some knowledge of
the message encrypted — because of circumstances, he may know that the set of possible messages
is quite small, and he may know something about how likely each possible message is. For example,
suppose he knows the message m is either m0 = "ATTACK AT DAWN" or m1 = "ATTACK AT DUSK",
and that based on the adversary’s available intelligence, Alice is equally likely to choose either one
of these two messages. This, without seeing the ciphertext c, the adversary would only have a
50% chance of guessing which message Alice sent. But we are assuming the adversary does know
c. Even with this knowledge, both messages may be possible; that is, there may exist keys k0
and k1 such that E(k0, m0) = c and E(k1, m1) = c, so he cannot be sure if m = m0 or m = m1.
However, he can still guess. Perhaps it is a property of the cipher that there are 800 keys k0 such
that E(k0, m0) = c, and 600 keys k1 such that E(k1, m1) = c. If that is the case, the adversary’s
best guess would be that m = m0. Indeed, the probability that this guess is correct is equal to
800/(800 + 600) ⇡ 57%, which is better than the 50% chance he would have without knowledge
of the ciphertext. Our formal definition of perfect security expressly rules out the possibility that
knowledge of the ciphertext increases the probability of guessing the encrypted message, or for that
matter, determining any property of the message whatsoever.

Without further ado, we formally define perfect security. In this definition, we will consider
a probabilistic experiment in which is key is drawn uniformly from the key space. We write k to
denote the random variable representing this random key. For a message m, E(k, m) is another
random variable, which represents the application of the encryption function to our random key
and the message m. Thus, every message m gives rise to a di↵erent random variable E(k, m).

Definition 2.1 (perfect security). Let E = (E, D) be a Shannon cipher defined over (K, M, C).
Consider a probabilistic experiment in which the random variable k is uniformly distributed over
K. If for all m0, m1 2M, and all c 2 C, we have

Pr[E(k, m0) = c] = Pr[E(k, m1) = c],
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then we say that E is a perfectly secure Shannon cipher.

There are a number of equivalent formulations of perfect security that we shall explore. We
state a couple of these here.

Theorem 2.1. Let E = (E, D) be a Shannon cipher defined over (K, M, C). The following are
equivalent:

(i) E is perfectly secure.

(ii) For every c 2 C, there exists N (possibly depending on c) such that for all m 2M, we have

|{k 2 K : E(k, m) = c}| = N.

(iii) If the random variable k is uniformly distributed over K, then each of the random variables
E(k, m), for m 2M, has the same distribution.

The proof of this is a simple calculation that we leave to the reader.
As promised, we give a proof that the one-time pad (see Example 2.1) is perfectly secure.

Theorem 2.2. The one-time pad is a perfectly secure Shannon cipher.

Proof. Suppose that the Shannon cipher E = (E, D) is a one-time pad, and is defined over (K, M, C),
where K := M := C := {0, 1}L. For any fixed message m 2 {0, 1}L and ciphertext c 2 {0, 1}L,
there is a unique key k 2 {0, 1}L satisfying the equation

k �m = c,

namely, k := m� c. Therefore, E satisfies condition (ii) in Theorem 2.1 (with N = 1 for each c). 2

Example 2.5. Consider again the variable length one-time pad, defined in Example 2.2. This
does not satisfy our definition of perfect security, since a ciphertext has the same length as the
corresponding plaintext. Indeed, let us choose an arbitrary string of length 1, call it m0, and an
arbitrary string of length 2, call it m1. In addition, suppose that and c is an arbitrary length 1
string, and that k is a random variable that is uniformly distributed over the key space. Then we
have

Pr[E(k, m0) = c] = 1/2 and Pr[E(k, m1) = c] = 0,

which provides a direct counter-example to Definition 2.1.
Intuitively, the variable length one-time pad cannot satisfy our definition of perfect security

simply because any ciphertext leaks the length of the corresponding plaintext. However, in some
sense (which we do not make precise right now), this is the only information leaked. It is perhaps
not clear whether this should be viewed as a problem with the cipher or with our definition of
perfect security. On the one hand, one can imagine scenarios where the length of a message may
vary greatly, and while we could always “pad” short messages to e↵ectively make all messages
equally long, this may be unacceptable from a practical point of view, as it is a terrible waste of
bandwidth. On the other hand, one must be aware of the fact that in certain applications, leaking
just the length of a message may be dangerous: if you are encrypting a “yes” or “no” answer to
a question, just the length of the obvious ASCII encoding of these strings leaks everything, so you
better pad “no” out to three characters. 2
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Example 2.6. Consider again the substitution cipher defined in Example 2.3. There are a couple
of di↵erent ways to see that this cipher is not perfectly secure.

For example, choose a pair of messages m0, m1 2 ⌃L such that the first two components of m0

are equal, yet the first two components of m1 are not equal; that is,

m0[0] = m0[1] and m1[0] 6= m1[1].

Then for each key k, which is a permutation on ⌃, if c = E(k, m0), then c[0] = c[1], while if
c = E(k, m1), then c[0] 6= c[1]. In particular, it follows that if k is uniformly distributed over the
key space, then the distributions of E(k, m0) and E(k, m1) will not be the same.

Even the weakness described in the previous paragraph may seem somewhat artificial. Another,
perhaps more realistic, type of attack on the substitution cipher works as follows. Suppose the
substitution cipher is used to encrypt email messages. As anyone knows, an email starts with a
“standard header,” such as "FROM". Suppose the ciphertext is c 2 ⌃L is intercepted by an adversary.
The secret key is actually a permutation k on ⌃. The adversary knows that

c[0 . . . 3] = (k(F), k(R), k(O), k(M)).

Thus, if the original message is m 2 ⌃L, the adversary can now locate all positions in m where
an F occurs, where an R occurs, where an O occurs, and where an M occurs. Based just on this
information, along with specific, contextual information about the message, together with general
information about letter frequencies, the adversary may be able to deduce quite a bit about the
original message. 2

Example 2.7. Consider the additive one-time pad, defined in Example 2.4. It is easy to verity
that this is perfectly secure. Indeed, it satisfies condition (ii) in Theorem 2.1 (with N = 1 for each
c). 2

The next two theorems develop two more alternative characterizations of perfect security. For
the first, suppose an eavesdropping adversary applies some predicate � to a ciphertext he has
obtained. The predicate � (which is a boolean-valued function on the ciphertext space) may be
something very simple, like the parity function (i.e., whether the number of 1 bits in the ciphertext
is even or odd), or it might be some more elaborate type of statistical test. Regardless of how clever
or complicated the predicate � is, perfect security guarantees that the value of this predicate on
the ciphertext reveals nothing about the message.

Theorem 2.3. Let E = (E, D) be a Shannon cipher defined over (K, M, C). Consider a probabilistic
experiment in which k is a random variable uniformly distributed over K. Then E is perfectly secure
if and only if for every predicate � on C, for all m0, m1 2M, we have

Pr[�(E(k, m0))] = Pr[�(E(k, m1))].

Proof. This is really just a simple calculation. On the one hand, suppose E is perfectly secure, and
let �, m0, and m1 be given. Let S := {c 2 C : �(c)}. Then we have

Pr[�(E(k, m0))] =
X

c2S
Pr[E(k, m0) = c] =

X

c2S
Pr[E(k, m1) = c] = Pr[�(E(k, m1))].

Here, we use the assumption that E is perfectly secure in establishing the second equality. On the
other hand, suppose E is not perfectly secure, so there exist m0, m1, and c such that

Pr[E(k, m0) = c] 6= Pr[E(k, m1) = c].

24



Defining � to be the predicate that is true for this particular c, and false for all other ciphertexts,
we see that

Pr[�(E(k, m0))] = Pr[E(k, m0) = c] 6= Pr[E(k, m1) = c] = Pr[�(E(k, m1))]. 2

The next theorem states in yet another way that perfect security guarantees that the ciphertext
reveals nothing about the message. Suppose that m is a random variable distributed over the
message space M. We do not assume that m is uniformly distributed over M. Now suppose k
a random variable uniformly distributed over the key space K, independently of m, and define
c := E(k,m), which is a random variable distributed over the ciphertext space C. The following
theorem says that perfect security guarantees that c and m are independent random variables.

One way of characterizing this independence is to say that for each ciphertext c 2 C that occurs
with nonzero probability, and each message m 2M, we have

Pr[m = m | c = c] = Pr[m = m].

Intuitively, this means that after seeing a ciphertext, we have no more information about the
message than we did before seeing the ciphertext.

Another way of characterizing this independence is to say that for each message m 2M that
occurs with nonzero probability, and each ciphertext c 2 C, we have

Pr[c = c | m = m] = Pr[c = c].

Intuitively, this means that the choice of message has no impact on the distribution of the ciphertext.
The restriction that m and k is sensible: in using any cipher, it is a very bad idea to choose

the key in a way that depends on the message, or vice versa.

Theorem 2.4. Let E = (E, D) be a Shannon cipher defined over (K, M, C). Consider a random
experiment in which k and m are random variables, such that

• k is uniformly distributed over K,

• m is distributed over M, and

• k and m are independent.

Define the random variable c := E(k,m). Then we have:

• if E is perfectly secure, then c and m are independent;

• conversely, if c and m are independent, and each message in M occurs with nonzero proba-
bility, then E is perfectly secure.

Proof. We define M⇤ to be the set of messages that occur with nonzero probability.
We begin with a simple observation. Consider any fixed m 2M⇤ and c 2 C. Then we have

Pr[c = c | m = m] = Pr[E(k, m) = c | m = m],

and since k and m are independent, so are E(k, m) and m, and hence

Pr[E(k, m) = c | m = m] = Pr[E(k, m) = c].
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Putting this all together, we have:

Pr[c = c | m = m] = Pr[E(k, m) = c]. (2.1)

We now prove the first implication. So assume that E is perfectly secure. We want to show that
c and m are independent. To to this, let m 2M⇤ and c 2 C be given. It will su�ce to show that

Pr[c = c | m = m] = Pr[c = c].

We have

Pr[c = c] =
X

m02M⇤

Pr[c = c | m = m0] Pr[m = m0] (by total probability)

=
X

m02M⇤

Pr[E(k, m0) = c] Pr[m = m0] (by (2.1))

=
X

m02M
Pr[E(k, m) = c] Pr[m = m0] (by the definition of perfect security)

= Pr[E(k, m) = c]
X

m02M⇤

Pr[m = m0]

= Pr[E(k, m) = c] (probabilities sum to 1)

= Pr[c = c | m = m] (again by (2.1))

This shows that c and m are independent.
That proves the first implication. For the second, we assume that c and m are independent,

and moreover, that every message occurs with nonzero probability (so M⇤ = M). We want to
show that E is perfectly secure, which means that for each m0, m1 2M, and each c 2 C, we have

Pr[E(k, m0) = c] = Pr[E(k, m1) = c]. (2.2)

But we have

Pr[E(k, m0) = c] = Pr[c = c | m = m0] (by (2.1))

= Pr[c = c] (by independence of c and m)

= Pr[c = c | m = m1] (again by independence of c and m)

= Pr[E(k, m1) = c] (again by (2.1)).

That shows that E is perfectly secure. 2

2.2.3 The bad news

We have saved the bad new for last. The next theorem shows that perfect security is such a powerful
notion that one can really do no better than the one-time pad: keys must be at least as long as
messages. As a result, it is almost impossible to use perfectly secure ciphers in practice: if Alice
wants to send Bob a 1GB video file, then Alice and Bob have to agree on a 1GB secret key in
advance.

Theorem 2.5 (Shannon’s theorem). Let E = (E, D) be a Shannon cipher defined over
(K, M, C). If E is perfectly secure, then |K| � |M|.
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Proof. Assume that |K| < |M|. We want to show that E is not perfectly secure. To this end, we
show that there exist messages m0 and m1, and a ciphertext c, such that

Pr[E(k, m0) = c] > 0, and (2.3)

Pr[E(k, m1) = c] = 0. (2.4)

Here, k is a random variable, uniformly distributed over K.
To do this, choose any message m0 2M, and any key k0 2 K. Let c := E(k0, m0). It is clear

that (2.3) holds.
Next, let

S := {D(k1, c) : k1 2 K}.

Clearly,
|S|  |K| < |M|,

and so we can choose a message m1 2M \ S.
To prove (2.4), we need to show that there is no key k1 such that E(k1, m1) = c. Assume to

the contrary that E(k1, m1) = c for some k1; then for this key k1, by the correctness property for
ciphers, we would have

D(k1, c) = D(k1, E(k1, m1) ) = m1,

which would imply that m1 belongs to S, which is not the case. That proves (2.4), and the theorem
follows. 2

2.3 Computational ciphers and semantic security

As we have seen in Shannon’s theorem (Theorem 2.5), the only way to achieve perfect security is
to have keys that are as long as messages. However, this is quite impractical: we would like to be
able to encrypt a long message (say, a document of several megabytes) using a short key (say, a few
hundred bits). The only way around Shannon’s theorem is to relax our security requirements. The
way we shall do this is to consider not all possible adversaries, but only computationally feasible
adversaries, that is, “real world” adversaries that must perform their calculations on real computers
using a reasonable amount of time and memory. This will lead to a weaker definition of security
called semantic security. Furthermore, our definition of security will be flexible enough to allow
ciphers with variable length message spaces to be considered secure so long as they do not leak any
useful information about an encrypted message to an adversary other than the length of message.
Also, since our focus is now on the “practical,” instead of the “mathematically possible,” we shall
also insist that the encryption and decryption functions are themselves e�cient algorithms, and
not just arbitrary functions.

2.3.1 Definition of a computational cipher

A computational cipher E = (E, D) is a pair of e�cient algorithms, E and D. The encryption
algorithm E takes as input a key k, along with a message m, and produces as output a ciphertext c.
The decryption algorithm D takes as input a key k, a ciphertext c, and outputs a message m. Keys
lie in some finite key space K, messages lie in a finite message space M, and ciphertexts lie in some
finite ciphertext space C. Just as for a Shannon cipher, we say that E is defined over (K, M, C).
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Although it is not really necessary for our purposes in this chapter, we will allow the encryption
function E to be a probabilistic algorithm (see Chapter D). This means that for fixed inputs k and
m, the output of E(k, m) may be one of many values. To emphasize the probabilistic nature of
this computation, we write

c R E(k, m)

to denote the process of executing E(k, m) and assigning the output to the program variable c. We
shall use this notation throughout the text whenever we use probabilistic algorithms. Similarly, we
write

k  R K
to denote the process of assigning to the program variable k a random, uniformly distributed
element of from the key space K. We shall use the analogous notation to sample uniformly from
any finite set.

We will not see any examples of probabilistic encryption algorithms in this chapter (we will see
our first examples of this in Chapter 5). Although one could allow the decryption algorithm to
be probabilistic, we will have no need for this, and so will only discuss ciphers with deterministic
decryption algorithms. However, it will be occasionally be convenient to allow the decryption
algorithm to return a special reject value (distinct from all messages), indicating some kind of error
occurred during the decryption process.

Since the encryption algorithm is probabilistic, for a given key k and message m, the encryption
algorithm may output one of many possible ciphertexts; however, each of these possible ciphertexts
should decrypt to m. We can state this correctness requirement more formally as follows: for
all keys k 2 K and messages m 2M, if we execute

c R E(k, m), m0  D(k, c),

then m = m0 with probability 1.

From now on, whenever we refer to a cipher, we shall mean a computational cipher,
as defined above. Moreover, if the encryption algorithm happens to be deterministic, then
we may call the cipher a deterministic cipher.

Observe that any deterministic cipher is a Shannon cipher; however, a computational cipher
need not be a Shannon cipher (if it has a probabilistic encryption algorithm), and a Shannon
cipher need not be a computational cipher (if its encryption or decryption operations have no
e�cient implementations).

Example 2.8. The one-time pad (see Example 2.1) and the variable length one-time pad (see
Example 2.2) are both deterministic ciphers, since their encryption and decryption operations may
be trivially implemented as e�cient, deterministic algorithms. The same holds for the substitution
cipher (see Example 2.3), provided the alphabet ⌃ is not too large. Indeed, in the obvious imple-
mentation, a key — which is a permutation on ⌃ — will be represented by an array indexed by ⌃,
and so we will require O(|⌃|) space just to store a key. This will only be practical for reasonably
sized ⌃. The additive one-time pad discussed in Example 2.4 is also a deterministic cipher, since
both encryption and decryption operations may be e�ciently implemented (if n is large, special
software to do arithmetic with large integers may be necessary). 2

28



2.3.2 Definition of semantic security

To motivate the definition of semantic security, consider a deterministic cipher E = (E, D), defined
over (K, M, C). Consider again the formulation of perfect security in Theorem 2.3. This says that
for all predicates � on the ciphertext space, and all messages m0, m1, we have

Pr[�(E(k, m0))] = Pr[�(E(k, m1))], (2.5)

where k is a random variable uniformly distributed over the key space K. Instead of insisting that
these probabilities are equal, we shall only require that they are very close; that is,

�

�

�

Pr[�(E(k, m0))]� Pr[�(E(k, m1))]
�

�

�

 ✏, (2.6)

for some very small, or negligible, value of ✏. By itself, this relaxation does not help very much
(see Exercise 2.5). However, instead of requiring that (2.6) holds for every possible �, m0, and
m1, we only require that (2.6) holds for all messages m0 and m1 that can be generated by some
e�cient algorithm, and all predicates � that can be computed by some e�cient algorithm (these
algorithms could be probabilistic). For example, suppose it were the case that using the best
possible algorithms for generating m0 and m1, and for testing some predicate �, and using (say)
10,000 computers in parallel for 10 years to perform these calculations, (2.6) holds for ✏ = 2�100.
While not perfectly secure, we might be willing to say that the cipher is secure for all practical
purposes.

Also, in defining semantic security, we address an issue raised in Example 2.5. In that example,
we saw that the variable length one-time pad did not satisfy the definition of perfect security.
However, we want our definition to be flexible enough so that ciphers like the variable length one-
time pad, which e↵ectively leak no information about an encrypted message other than its length,
may be considered secure as well.

Now the details. To precisely formulate the definition of semantic security, we shall describe an
attack game played between two parties: the challenger and an adversary. As we will see, the
challenger follows a very simple, fixed protocol. However, an adversary A may follow an arbitrary
(but still e�cient) protocol. The challenger and the adversary A send messages back and forth
to each other, as specified by their protocols, and at the end of the game, A outputs some value.
Actually, our attack game for defining semantic security comprises two alternative “sub-games,”
or “experiments” — in both experiments, the adversary follows the same protocol; however, the
challenger’s behavior is slightly di↵erent in the two experiments. The attack game also defines a
probability space, and this in turn defines the adversary’s advantage, which measures the di↵erence
between the probabilities of two events in this probability space.

Attack Game 2.1 (semantic security). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For
b = 0, 1, we define

Experiment b:

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes k  R K, c R E(k, mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.
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(Experiment b)

c
c

R E(k, mb)

Figure 2.1: Experiment b of Attack Game 2.1

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s semantic
security advantage with respect to E as

SSadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Note that in the above game, the events W0 and W1 are defined with respect to the probability
space determined by the random choice of k, the random choices made (if any) by the encryption
algorithm, and the random choices made (if any) by the adversary. The value SSadv[A, E ] is a
number between 0 and 1.

See Fig. 2.1 for a schematic diagram of Attack Game 2.1. As indicated in the diagram, A’s
“output” is really just a final message to the challenger.

Definition 2.2 (semantic security). A cipher E is semantically secure if for all e�cient
adversaries A, the value SSadv[A, E ] is negligible.

As a formal definition, this is not quite complete, as we have yet to define what we mean by
“messages of the same length”, “e�cient adversaries”, and “negligible”. We will come back to this
shortly.

Let us relate this formal definition to the discussion preceding it. Suppose that the adversary
A in Attack Game 2.1 is deterministic. First, the adversary computes in a deterministic fashion
messages m0, m1, and then evaluates a predicate � on the ciphertext c, outputting 1 if true and
0 if false. Semantic security says that the value ✏ in (2.6) is negligible. In the case where A is
probabilistic, we can view A as being structured as follows: it generates a random value r from

some appropriate set, and deterministically computes messages m(r)
0 , m(r)

1 , which depend on r, and
evaluates a predicate �(r) on c, which also depends on r. Here, semantic security says that the value

✏ in (2.6), with m0, m1, � replaced by m(r)
0 , m(r)

1 , �(r), is negligible — but where now the probability
is with respect to a randomly chosen key and a randomly chosen value of r.

Remark 2.1. Let us now say a few words about the requirement that the messages m0 and m1

computed by the adversary Attack Game 2.1 be of the same length.

• First, the notion of the “length” of a message is specific to the particular message space M;
in other words, in specifying a message space, one must specify a rule that associates a length
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(which is a non-negative integer) with any given message. For most concrete message spaces,
this will be clear: for example, for the message space {0, 1}L (as in Example 2.2), the length
of a message m 2 {0, 1}L is simply its length, |m|, as a bit string. However, to make our
definition somewhat general, we leave the notion of length as an abstraction. Indeed, some
message spaces may have no particular notion of length, in which case all messages may be
viewed as having length 0.

• Second, the requirement that m0 and m1 be of the same length means that the adversary is not
deemed to have broken the system just because he can e↵ectively distinguish an encryption
of a message of one length from an encryption of a message of a di↵erent length. This is how
our formal definition captures the notion that an encryption of a message is allowed to leak
the length of the message (but nothing else).

We already discussed in Example 2.5 how in certain applications, leaking the just length of
the message can be catastrophic. However, since there is no general solution to this problem,
most real-world encryption schemes (for example, TLS) do not make any attempt at all to
hide the length of the message. This can lead to real attacks. For example, Chen et al. [20]
show that the lengths of encrypted messages can reveal considerable information about private
data that a user supplies to a cloud application. They use an online tax filing system as their
example, but other works show attacks of this type on many other systems. 2

Example 2.9. Let E be a deterministic cipher that is perfectly secure. Then it is easy to see that
for every adversary A (e�cient or not), we have SSadv[A, E ] = 0. This follows almost immediately
from Theorem 2.3 (the only slight complication is that our adversary A in Attack Game 2.1 may
be probabilistic, but this is easily dealt with). In particular, E is semantically secure. Thus, if E is
the one-time pad (see Example 2.1), we have SSadv[A, E ] = 0 for all adversaries A; in particular,
the one-time pad is semantically secure. Because the definition of semantic security is a bit more
forgiving with regard to variable length message spaces, it is also easy to see that if E is the variable
length one-time pad (see Example 2.2), then SSadv[A, E ] = 0 for all adversaries A; in particular,
the variable length one-time pad is also semantically secure. 2

We need to say a few words about the terms “e�cient” and “negligible”. Below in Section 2.4
we will fill in the remaining details (they are somewhat tedious, and not really very enlightening).
Intuitively, negligible means so small as to be “zero for all practical purposes”: think of a number
like 2�100 — if the probability that you spontaneously combust in the next year is 2�100, then you
would not worry about such an event occurring any more than you would an event that occurred
with probability 0. Also, an e�cient adversary is one that runs ins a“reasonable” amount time.

We introduce two other terms:

• A value N is called super-poly is 1/N is negligible.

• A poly-bounded value which intuitively a reasonably sized number — in particular, we can
say that the running time of any e�cient adversary is a poly-bounded value.

Fact 2.6. If ✏ and ✏0 are negligible values, and Q and Q0 are poly-bounded values, then:

(i) ✏ + ✏0 is a negligible value,

(ii) Q + Q0 and Q · Q0 are poly-bounded values, and
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(iii) Q · ✏ is a negligible value.

For now, the reader can just take these facts as axioms. Instead of dwelling on these technical
issues, we discuss an example that illustrates how one typically uses this definition in analyzing the
security of a larger system that uses a semantically secure cipher.

2.3.3 Connections to weaker notions of security

Message recovery attacks

Intuitively, in a message recovery attack, an adversary is given an encryption of a random message,
and is able to recover the message from the ciphertext with probability significantly better than
random guessing, that is, probability 1/|M|. Of course, any reasonable notion of security should
rule out such an attack, and indeed, semantic security does.

While this may seem intuitively obvious, we give a formal proof of this. One of our motivations
for doing this is to illustrate in detail the notion of a security reduction, which is the main technique
used to reason about the security of systems. Basically, the proof will argue that any e�cient
adversary A that can e↵ectively mount a message recovery attack on E can be used to build an
e�cient adversary B that breaks the semantic security of E ; since semantic security implies that no
such B exists, we may conclude that no such A exists.

To formulate this proof in more detail, we need a formal definition of a message recovery
attack. As before, this is done by giving attack game, which is a protocol between a challenger and
an adversary.

Attack Game 2.2 (message recovery). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, the attack game proceeds as follows:

• The challenger computes m R M, k  R K, c R E(k, m), and sends c to the adversary.

• The adversary outputs a message m̂ 2M.

Let W be the event that m̂ = m. We say that A wins the game in this case, and we define A’s
message recovery advantage with respect to E as

MRadv[A, E ] :=
�

�Pr[W ]� 1/|M|��. 2

Definition 2.3 (security against message recovery). A cipher E is secure against message
recovery if for all e�cient adversaries A, the value MRadv[A, E ] is negligible.

Theorem 2.7. Let E = (E, D) be a cipher defined over (K, M, C). If E is semantically secure then
E is secure against message recovery.

Proof. Assume that E is semantically secure. Our goal is to show that E is secure against message
recovery.

To prove that E is secure against message recovery, we have to show that every e�cient ad-
versary A has negligible advantage in Attack Game 2.2. To show this, we let an arbitrary but
e�cient adversary A be given, and our goal now is to show that A’s message recovery advantage,
MRadv[A, E ], is negligible. Let p denote the probability that A wins the message recovery game,
so that

MRadv[A, E ] =
�

�p� 1/|M|��.
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We shall show how to construct an e�cient adversary B whose semantic security advantage in
Attack Game 2.1 is related to A’s message recovery advantage as follows:

MRadv[A, E ]  SSadv[B, E ]. (2.7)

Since B is e�cient, and since we are assume E is semantically secure, the right-hand side of (2.7)
is negligible, and so we conclude that MRadv[A, E ] is negligible.

So all that remains to complete the proof is to show how to construct an e�cient B that satisfies
(2.7). The idea is to use A as a “black box” — we do not have to understand the inner workings
of A as at all.

Here is how B works. Adversary B generates two random messages, m0 and m1, and sends
these to its own SS challenger. This challenger sends B a ciphertext c, which B forwards to A, as if
it were coming from A’s MR challenger. When A outputs a message m̂, our adversary B compares
m0 to m̂, and outputs b̂ = 1 if m0 = m̂, and b̂ = 1 otherwise.

That completes the description of B, which is illustrated in Fig. ??.
Note that the running time of B is essentially the same as that of A. We now analyze the B’s

SS advantage, and relate this to A’s MR advantage.
For b = 0, 1, let pb be the probability that B outputs 1 if B’s SS challenger encrypts mb. So by

definition
SSadv[B, E ] = |p1 � p0|.

On the one hand, when c is an encryption of m0, the probability p0 is precisely equal to A’s
probability of winning the message recovery game, so p0 = p. On the other hand, when c is an
encryption of m1, the adversary A’s output is independent of m0, and so p1 = 1/|M|. It follows
that

SSadv[B, E ] = |p1 � p0| =
�

�1/|M|� p
�

� = MRadv[A, E ].

This proves (2.7). In fact, equality holds in (2.7), but that is not essential to the proof. 2

The reader should make sure that he or she understands the logic of this proof, as this type of
proof will be used over and over again throughout the book. We shall review the important parts
of the proof here, and give another way of thinking about it.

The core of the proof was establishing the following fact: for every e�cient MR adversary A
that attacks E as in Attack Game 2.2, there exists an e�cient SS adversary B that attacks E as in
Attack Game 2.1 such that

MRadv[A, E ]  SSadv[B, E ]. (2.8)

We are trying to prove that if E is semantically secure, then E is secure against message recovery.
In the above proof, we argued that if E is semantically secure, then the right-hand side of (2.8)
must be negligible, and hence so must the left-hand side; since this holds for all e�cient A, we
conclude that E is secure against message recovery.

Another way to approach the proof of the theorem is to prove the contrapositive: if E is not
secure against message recovery, then E is not semantically secure. So, let us assume that E is not
secure against message recovery. This means there exists an e�cient adversary A whose message
recovery advantage is non-negligible. Using A we build an e�cient adversary B that satisfies (2.8).
By assumption, MRadv[A, E ] is non-negligible, and (2.8) implies that SSadv[B, E ] is non-negligible.
From this, we conclude that E is not semantically secure.
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Said even more briefly: to prove that semantic security implies security against message recovery,
we show how to turn an e�cient adversary that breaks message recovery into an e�cient adversary
that breaks semantic security.

We also stress that the adversary B constructed in the proof just uses A as a “black box.” In
fact, almost all of the constructions we shall see are of this type: B is essentially just a wrapper
around A, consisting of some simple and e�cient “interface layer” between B’s challenger and a
single running instance of A. Ideally, we want the computational complexity of the interface layer
to not depend on the computational complexity of A; however, some dependence is unavoidable:
if an attack game allows A to make multiple queries to its challenger, the more queries A makes,
the more work must be performed by the interface layer, but this work should just depend on the
number of such queries and not on the running time of A.

Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an e�cient interface interacting with A. The salient properties are:

• If B is an elementary wrapper around A, and A is e�cient, then B is e�cient.

• If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around A.

These notions are formalized in Section 2.4 (but again, they are extremely tedious).

Computing individual bits of a message

If an encryption scheme is secure, not only should it be hard to recover the whole message, but it
should be hard to compute any partial information about the message.

We will not prove a completely general theorem here, but rather, consider a specific example.
Suppose E = (E, D) is a cipher defined over (K, M, C), where M = {0, 1}L. For m 2 M, we

define parity(m) to be 1 if the number of 1’s in m is odd, and 0 otherwise. Equivalently, parity(m)
is the exclusive-OR of all the individual bits of m.

We will show that if E is semantically secure, then given an encryption c of a random message
m, it is hard to predict parity(m). Now, since parity(m) is a single bit, any adversary can predict
this value correctly with probability 1/2 just by random guessing. But what we want to show is
that no e�cient adversary can do significantly better than random guessing.

As a warm up, suppose there were an e�cient adversary A that could predict parity(m) with
probability 1. This means that for every message m, every key k, and every encryption c of m,
when we give A the ciphertext c, it outputs the parity of m. So we could use A to build an SS
adversary B that works as follows. Our adversary chooses two messages, m0 and m1, arbitrarily,
but with parity(m0) = 0 and parity(m1) = 1. Then it hands these two messages to its own SS
challenger, obtaining a ciphertext c, which it then forwards to it A. After receiving c, adversary
A outputs a bit b̂, and B outputs this same bit b̂ as its own output. It is easy to see that B’s SS
advantage is precisely 1: when its SS challenger encrypts m0, it always outputs 0, and when its SS
challenger encrypts m1, it always outputs 1.

This shows that if E is semantically secure, there is no e�cient adversary that can predict
parity with probability 1. However, we can say even more: if E is semantically secure, there is no
e�cient adversary that can predict parity with probability significantly better than 1/2. To make
this precise, we give an attack game:
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Attack Game 2.3 (parity prediction). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, the attack game proceeds as follows:

• The challenger computes m R M, k  R K, c R E(k, m), and sends c to the adversary.

• The adversary outputs b̂ 2 {0, 1}.

Let W be the event that b̂ = parity(m). We define A’s message recovery advantage with
respect to E as

Parityadv[A, E ] :=
�

�

�

Pr[W ]� 1/2
�

�

�

. 2

Definition 2.4 (parity prediction). A cipher E is secure against parity prediction if for all
e�cient adversaries A, the value Parityadv[A, E ] is negligible.

Theorem 2.8. Let E = (E, D) be a cipher defined over (K, M, C), and M = {0, 1}L. If E is
semantically secure, then E is secure against parity prediction.

Proof. As in the proof of Theorem 2.7, we give a proof by reduction. In particular, we will show
that for every parity prediction adversary A that attacks E as in Attack Game 2.3, there exists an
SS adversary B that attacks E as in Attack Game 2.1, where B is an elementary wrapper around
A, such that

Parityadv[A, E ] =
1

2
· SSadv[B, E ].

Let A be a parity prediction adversary that predicts parity with probability 1/2 + ✏, so
Parityadv[A, E ] = |✏|.

Here is how we construct our SS adversary B.
Our adversary B generates a random message m0, and sets m1  m0 � (0L�1 k 1); that is, m1

is that same as m0, except that the last bit is flipped. In particularly, m0 and m1 have opposite
parity.

Our adversary B sends the pair m0, m1 to its own SS challenger, receives a ciphertext c from
that challenger, and forwards c to A. When A outputs a bit b̂, our adversary B outputs 1 if
b̂ = parity(m0), and outputs 0, otherwise.

For b = 0, 1, let pb be the probability that B outputs 1 if B’s SS challenger encrypts mb. So by
definition

SSadv[B, E ] = |p1 � p0|.
We claim that p0 = 1/2 + ✏ and p1 = 1/2 � ✏. This because regardless of whether m0 or

m1 is encrypted, the distribution of mb is uniform over M, and so in case b = 0, our parity
predictor A will output parity(m0) with probability 1/2 + ✏, and when b = 1, our parity predictor
A with output parity(m1) with probability 1/2 + ✏, and so outputs parity(m0) with probability
1� (1/2 + ✏) = 1/2� ✏.

Therefore,
SSadv[B, E ] = |p1 � p0| = 2|✏| = 2 · Parityadv[A, E ],

which proves the theorem. 2

We have shown that if an adversary can e↵ectively predict the parity of a message, then it can
be used to break semantic security. Conversely, it turns out that if an adversary can break semantic
security, he can e↵ectively predict some predicate of the message (see Exercise 3.17).
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2.3.4 Consequences of semantic security

In this section, we examine the consequences of semantic security in the context of a specific
example, namely, electronic gambling. The specific details of the example are not so important, but
the example illustrates how one typically uses the assumption of semantic security in applications.

Consider the following extremely simplified version of roulette, which is a game between the
house and a player. The player gives the house 1 dollar. He may place one of two kinds of bets:

• “high or low,” or

• “even or odd.”

After placing his bet, the house chooses a random number r 2 {0, 1, . . . , 36}. The player wins if
r 6= 0, and if

• he bet “high” and r > 18,

• he bet “low” and r  18,

• he bet “even” and r is even,

• he bet “odd” and r is odd.

If the player wins, the house pays him 2 dollars (for a net win of 1 dollar), and if the player
looses, the house pays nothing (for a net loss of 1 dollar). Clearly, the house has a small, but not
insignificant advantage in this game: the probability that the player wins is 18/37 ⇡ 48.65%.

Now suppose that this game is played over the Internet. Also, suppose that for various technical
reasons, the house publishes an encryption of r before the player places his bet (perhaps to be
decrypted by some regulatory agency that shares a key with the house). The player is free to analyze
this encryption before placing his bet, and of course, by doing so, the player could conceivably
increase his chances of winning. However, if the cipher is any good, the player’s chances should not
increase by much. Let us prove this, assuming r is encrypted using a semantically secure cipher
E = (E, D), defined over (K, M, C), where M = {0, 1, . . . , 36} (we shall view all messages in M
as having the same length in this example). Also, from now in, let us call the player A, to stress
the adversarial nature of the player, and assume that A’s strategy can be modeled as an e�cient
algorithm. The game is illustrated in Fig. 2.2. Here, bet denotes one of “high,” “low,” “even,”
“odd.” Player A sends bet to the house, who evaluates the function W (r, bet), which is 1 if bet is a
winning bet with respect to r, and 0 otherwise. Let us define

IRadv[A] :=
�

�Pr[W (r, bet) = 1]� 18/37
�

�.

Our goal is to prove the following theorem.

Theorem 2.9. If E is semantically secure, then for every e�cient player A, the quantity IRadv[A]
is negligible.

As we did in Section 2.3.3, we prove this by reduction. More concretely, we shall show that for
every player A, there exists an SS adversary B, where B is an elementary wrapper around A, such
that

IRadv[A] = SSadv[B, E ]. (2.9)
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Figure 2.2: Internet roulette

Thus, if there were an e�cient player A with a non-negligible advantage, we would obtain an
e�cient SS adversary B that breaks the semantic security of E , which we are assuming is impossible.
Therefore, there is no such A.

To motivate and analyze our new adversary B, consider an “idealized” version of Internet
roulette, in which instead of publishing an encryption of the actual value r, the house instead
publishes an encryption of a “dummy”value, say 0. The logic of the ideal Internet roulette game is
illustrated in Fig. 2.3. Note, however, that in the ideal Internet roulette game, the house still uses
the actual value of r to determine the outcome of the game. Let p0 be the probability that A wins
at Internet roulette, and let p1 be the probability that A wins at ideal Internet roulette.

Our adversary B is designed to play in Attack Game 2.1 so that if b̂ denotes B’s output in that
game, then we have:

• if B is placed in Experiment 0, then Pr[b̂ = 1] = p0;

• if B is placed in Experiment 1, then Pr[b̂ = 1] = p1.

The logic of adversary B is illustrated in Fig. 2.4. It is clear by construction that B satisfies the
properties claimed above, and so in particular,

SSadv[B, E ] = |p1 � p0|. (2.10)

Now, consider the probability p1 that A wins at ideal Internet roulette. No matter how clever
A’s strategy is, he wins with probability 18/37, since in this ideal Internet roulette game, the value
of bet is computed from c, which is statistically independent of the value of r. That is, ideal Internet
roulette is equivalent to physical roulette. Therefore,

IRadv[A] = |p1 � p0|. (2.11)

Combining (2.10) and (2.11), we obtain (2.9).
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Figure 2.3: ideal Internet roulette
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Figure 2.4: The SS adversary B in Attack Game 2.1
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The approach we have used to analyze Internet roulette is one that we will see again and again.
The basic idea is to replace a system component by an idealized version of that component, and
then analyze the behavior of this new, idealized version of the system.

Another lesson to take away from the above example is that in reasoning about the security of
a system, what we view as “the adversary” depends on what we are trying to do. In the above
analysis, we cobbled together a new adversary B out of several components: one component was
the original adversary A, while other components were scavenged from other parts of the system
(the algorithm of “the house,” in this example). This will be very typical in our security analyses
throughout this text. Intuitively, if we imagine a diagram of the system, at di↵erent points in the
security analysis, we will draw a circle around di↵erent components of the system to identify what
we consider to be “the adversary” at that point in the analysis.

2.3.5 Bit guessing: an alternative characterization of semantic security

The example in Section 2.3.4 was a typical example of how one could use the definition of semantic
security to analyze the security properties of a larger system that makes use of a semantically
secure cipher. However, there is another characterization of semantic security that is typically more
convenient to work with when one is trying to prove that a given cipher satisfies the definition. In
this alternative characterization, we define a new attack game. The role played by the adversary
is exactly the same as before. However, instead of having two di↵erent experiments, there is just
a single experiment. In this bit-guessing version of the attack game, the challenger chooses
b 2 {0, 1} at random and runs Experiment b of Attack Game 2.1; it is the adversary’s goal to guess
the bit b with probability significantly better than 1/2. Here are the details:

Attack Game 2.4 (semantic security: bit-guessing version). For a given cipher E = (E, D),
defined over (K, M, C), and for a given adversary A, the attack game runs as follows:

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes b R {0, 1}, k  R K, c R E(k, mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

We say that A wins the game if b̂ = b. 2

Fig. 2.5 illustrates Attack Game 2.4. Note that in this game, the event that the A wins the
game is defined with respect to the probability space determined by the random choice of b and k,
the random choices made (if any) of the encryption algorithm, and the random choices made (if
any) by the adversary.

Of course, any adversary can win the game with probability 1/2, simply by ignoring c completely
and choosing b̂ at random (or alternatively, always choosing b̂ to be 0, or always choosing it to be
1). What we are interested in is how much better than random guessing an adversary can do. If
W denotes the event that the adversary wins the bit-guessing version of the attack game, then we
are interested in the quantity |Pr[W ]� 1/2|, which we denote by SSadv⇤[A, E ]. Then we have:

Theorem 2.10. For every cipher E and every adversary A, we have

SSadv[A, E ] = 2 · SSadv⇤[A, E ].
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Figure 2.5: Attack Game 2.4

Proof. This is just a simple calculation. Let p0 be the probability that the adversary outputs 1 in
Experiment 0 of Attack Game 2.1, and let p1 be the probability that the adversary outputs 1 in
Experiment 1 of Attack Game 2.1.

Now consider Attack Game 2.4. From now on, all events and probabilities are with respect to
this game. If we condition on the event that b = 0, then in this conditional probability space, the
values of k, as well as the random choices made by the encryption algorithm and the adversary,
are distributed in exactly the same way as the corresponding values in Experiment 0 of Attack
Game 2.1. Therefore, if b̂ is the output of the adversary in Attack Game 2.4, we have

Pr[b̂ = 1 | b = 0] = p0.

By a similar argument, we see that

Pr[b̂ = 1 | b = 1] = p1.

So we have

Pr[b̂ = b] = Pr[b̂ = b | b = 0] Pr[b = 0] + Pr[b̂ = b | b = 1] Pr[b = 1]

= Pr[b̂ = 0 | b = 0] · 1
2 + Pr[b̂ = 1 | b = 1] · 1

2

= 1
2

⇣

1� Pr[b̂ = 1 | b = 0] + Pr[b̂ = 1 | b = 1]
⌘

= 1
2(1� p0 + p1).

Therefore,

SSadv⇤[A, E ] =
�

�

�

Pr[b̂ = b]� 1
2

�

�

�

= 1
2 |p1 � p0| = 1

2 · SSadv[A, E ].

That proves the theorem. 2

Just as it is convenient to refer SSadv[A, E ] as A’s “SS advantage,” we shall refer to SSadv⇤[A, E ]
as A’s “bit-guessing SS advantage.”
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A generalization

As it turns out, the above situation is quite generic. Although we do not need it in this chapter,
for future reference we indicate here how the above situation generalizes. There will be a number
of situations we shall encounter where some particular security property, call it “X,” for some
of cryptographic system, call it “S,” can be defined in terms of an attack game involving two
experiments, Experiment 0 and Experiment 1, where the adversary A’s protocol is the same in
both experiments, while that of the challenger is di↵erent. For b = 0, 1, we define Wb to be the
event that A outputs 1 in Experiment b, and we define

Xadv[A, S] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

to be A’s “X advantage.” Just as above, we can always define a “bit-guessing” version of the attack
game, in which the challenger chooses b 2 {0, 1} at random, and then runs Experiment b as its
protocol. If W is the event that the adversary’s output is equal to b, then we define

Xadv⇤[A, S] :=
�

�

�

Pr[W ]� 1/2
�

�

�

to be A’s “bit-guessing X advantage.”
Using exactly the same calculation as in the proof of Theorem 2.10, we have

Xadv[A, S] = 2 · Xadv⇤[A, S]. (2.12)

2.4 Mathematical details

Up until now, we have used the terms e�cient and negligible rather loosely, without a formal
mathematical definition:

• we required that a computational cipher have e�cient encryption and decryption algorithms;

• for a semantically secure cipher, we required that any e�cient adversary have a negligible
advantage in Attack Game 2.1.

The goal of this section is to provide precise mathematical definitions for these terms. While
these definitions lead to a satisfying theoretical framework for the study of cryptography as a
mathematical discipline, we should warn the reader:

• the definitions are rather complicated, requiring an unfortunate amount of notation; and

• the definitions model our intuitive understanding of these terms only very crudely.

We stress that the reader may safely skip this section without su↵ering a significant loss in under-
standing. Before marching headlong into the formal definitions, let us remind the reader of what
we are trying to capture in these definitions.

• First, when we speak of an e�cient encryption or decryption algorithm, we usually mean one
that runs very quickly, encrypting data at a rate of, say, 10–100 computer cycles per byte of
data.
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• Second, when we speak of an e�cient adversary, we usually mean an algorithm that runs in
some large, but still feasible amount of time (and other resources). Typically, one assumes
that an adversary that is trying to break a cryptosystem is willing to expend many more
resources than a user of the cryptosystem. Thus, 10,000 computers running in parallel for
10 years may be viewed as an upper limit on what is feasibly computable by a determined,
patient, and financially well-o↵ adversary. However, in some settings, like the Internet roulette
example in Section 2.3.4, the adversary may have a much more limited amount of time to
perform its computations before they become irrelevant.

• Third, when we speak of an adversary’s advantage as being negligible, we mean that it is so
small that it may as well be regarded as being equal to zero for all practical purposes. As
we saw in the Internet roulette example, if no e�cient adversary has an advantage better
than 2�100 in Attack Game 2.1, then no player can in practice improve his odds at winning
Internet roulette by more than 2�100 relative to physical roulette.

Even though our intuitive understanding of the term e�cient depends on the context, our
formal definition will not make any such distinction. Indeed, we shall adopt the computational
complexity theorist’s habit of equating the notion of an e�cient algorithm with that of a (proba-
bilistic) polynomial-time algorithm. For better and for worse, this gives us a formal framework that
is independent of the specific details of any particular model of computation.

2.4.1 Negligible, super-poly, and poly-bounded functions

We begin by defining the notions of negligible, super-poly, and poly-bounded functions.
Intuitively, a negligible function f : Z�0 ! R is one that not only tends to zero as n!1, but

does so faster than the inverse of any polynomial.

Definition 2.5. A function f : Z�1 ! R is called negligible if for all c 2 R>0 there exists
n0 2 Z�1 such that for all integers n � n0, we have |f(n)| < 1/nc.

An alternative characterization of a negligible function, which is perhaps easier to work with,
is the following:

Theorem 2.11. A function f : Z�1 ! R is negligible if and only if for all c > 0, we have

lim
n!1 f(n)nc = 0.

Proof. Exercise. 2

Example 2.10. Some examples of negligible functions:

2�n, 2�
p
n, n� logn.

Some examples of non-negligible functions:

1

1000n4 + n2 log n
,

1

n100
. 2

Once we have the term “negligible” formally defined, defining “super-poly” is easy:

Definition 2.6. A function f : Z�1 ! R is called super-poly if 1/f is negligible.
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Essentially, a poly-bounded function f : Z�1 ! R is one that is bounded (in absolute value) by
some polynomial. Formally:

Definition 2.7. A function f : Z�1 ! R is called poly-bounded, if there exists c, d 2 R>0 such
that for all integers n � 0, we have |f(n)|  nc + d.

Note that if f is a poly-bounded function, then 1/f is definitely not a negligible function.
However, as the following example illustrates, one must take care not to draw erroneous inferences.

Example 2.11. Define f : Z�1 ! R so that f(n) = 1/n for all even integers n and f(n) = 2�n

for all odd integers n. Then f is not negligible, and 1/f is neither poly-bounded nor super-poly. 2

2.4.2 Computational ciphers: the formalities

Now the formalities. We begin by admitting a lie: when we said a computational cipher E = (E, D)
is defined over (K, M, C), where K is the key space, M is the message space, and C is the ciphertext
space, and with each of these spaces being finite sets, we were not telling the whole truth. In the
mathematical model (though not always in real-world systems), we associate with E families of key,
message, and ciphertext spaces, indexed by

• a security parameter, which is a positive integer, and is denoted by �, and

• a system parameter, which is a bit string, and is denoted by ⇤.

Thus, instead of just finite sets K, M, and C, we have families of finite sets

{K�,⇤}�,⇤, {M�,⇤}�,⇤, and {C�,⇤}�,⇤,

which for the purposes of this definition, we view as sets of bit strings (which may represent
mathematical objects by way of some canonical encoding functions).

The idea is that when the cipher E is deployed, the security parameter � is fixed to some value.
Generally speaking, larger values of � imply higher levels of security (i.e., resistance against adver-
saries with more computational resources), but also larger key sizes, as well as slower encryption
and decryption speeds. Thus, the security parameter is like a “dial” we can turn, setting a trade-o↵
between security and e�ciency.

Once � is chosen, a system parameter ⇤ is generated using an algorithm specific to the cipher.
The idea is that the system parameter ⇤ (together with �) gives a detailed description of a fixed
instance of the cipher, with

(K, M, C) = (K�,⇤, M�,⇤, C�,⇤).

This one, fixed instance may be deployed in a larger system and used by many parties — the values
of � and ⇤ are public and known to everyone (including the adversary).

Example 2.12. Consider the additive one-time pad discussed in Example 2.4. This cipher was
described in terms of a modulus n. To deploy such a cipher, a suitable modulus n is generated,
and is made public (possibly just “hardwired” into the software that implements the cipher). The
modulus n is the system parameter for this cipher. Each specific value of the security parameter
determines the length, in bits, of n. The value n itself is generated by some algorithm that may be
probabilistic and whose output distribution may depend on the intended application. For example,
we may want to insist that n is a prime in some applications. 2
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Before going further, we define the notion of an e�cient algorithm. For the purposes of this
definition, we shall only consider algorithms A that take as input a security parameter �, as well as
other parameters whose total length is bounded by some fixed polynomial in �. Basically, we want
to say that the running time of A is bounded by a polynomial in �, but things are complicated if
A is probabilistic:

Definition 2.8 (e�cient algorithm). Let A be a an algorithm (possibly probabilistic) that takes
as input a security parameter � 2 Z�1, as well as other parameters encoded as a bit string x 2
{0, 1}p(�) for some fixed polynomial p. We call A an e�cient algorithm if there exist a poly-
bounded function t and a negligible function ✏ such that for all � 2 Z�1, and all x 2 {0, 1}p(�),
the probability that the running time of A on input (�, x) exceeds t(�) is at most ✏(�).

We stress that the probability in the above definition is with respect to the coin tosses of A:
this bound on the probability must hold for all possible inputs x.1

Here is a formal definition that captures the basic requirements of systems that are parameter-
ized by a security and system parameter, and introduces some more terminology:

Definition 2.9. A system parameterization is an e�cient probabilistic algorithm P that given
a security parameter � 2 Z�1 as input, outputs a bit string ⇤, called a system parameter, whose
length is always bounded by a polynomial in �.

• A collection S = {S�,⇤}�,⇤ of finite sets of bits strings, where � runs over Z�1 and ⇤ runs over
Supp(P (�)), is called a family of spaces with system parameterization P , provided the
lengths of all the strings in each of the sets S�,⇤ are bounded by some polynomial p in �.

• We say that S is e�ciently recognizable if there is an e�cient deterministic algorithm
that on input � 2 Z�1, ⇤ 2 Supp(P (�)), and s 2 {0, 1}p(�), determines if s 2 S�,⇤.

• We say that S is e�ciently sampleable if there is an e�cient probabilistic algorithm that
on input � 2 Z�1 and ⇤ 2 Supp(P (�)), outputs an element uniformly distributed over S�,⇤.

• We say that S has an e↵ective length function if there is an e�cient deterministic
algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), and s 2 S�,⇤, outputs a non-negative
integer, called the length of s.

We can now state the complete, formal definition of a computational cipher:

Definition 2.10 (computational cipher). A computational cipher consists of a pair of algo-
rithms E and D, along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and C = {C�,⇤}�,⇤,

1By not insisting that a probabilistic algorithm halts in a specified time bound with probability 1, we give ourselves
a little “wiggle room,” which allows us to easily do certain types of random sampling procedure that have no a priori

running time bound, but are very unlikely to run for too long (e.g., think of flipping a coin until it comes up “heads”).
An alternative approach would be to bound the expected running time, but this turns out to be somewhat problematic
for technical reasons.

Note that this definition of an e�cient algorithm does not require that the algorithm halt with probability 1 on
all inputs. An algorithm that with probability 2�� entered an infinite loop would satisfy the definition, even though
it does not halt with probability 1. These issues are rather orthogonal. In general, we shall only consider algorithms
that halt with probability 1 on all inputs: this can more naturally be seen as a requirement on the output distribution
of the algorithm, rather than on its running time.
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such that

1. K, M, and C are e�ciently recognizable.

2. K is e�ciently sampleable.

3. M has an e↵ective length function.

4. Algorithm E is an e�cient probabilistic algorithm that on input �, ⇤, k, m, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, and m 2M�,⇤, always outputs an element of C�,⇤.

5. Algorithm D is an e�cient deterministic algorithm that on input �, ⇤, k, c, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, and c 2 C�,⇤, outputs either an element of M�,⇤, or a special
symbol reject /2M�,⇤.

6. For all �, ⇤, k, m, c, where � 2 Z�1, ⇤ 2 Supp(P (�)), k 2 K�,⇤, m 2 M�,⇤, and c 2
Supp(E(�, ⇤; k, m)), we have D(�, ⇤; k, c) = m.

Note that in the above definition, the encryption and decryption algorithms take � and ⇤
as auxiliary inputs. So as to be somewhat consistent with the notation already introduced in
Section 2.3.1, we write this as E(�, ⇤; · · · ) and D(�, ⇤; · · · ).
Example 2.13. Consider the additive one-time pad (see Example 2.12). In our formal framework,
the security parameter � determines the bit length L(�) of the modulus n, which is the system
parameter. The system parameter generation algorithm takes as input � and generates a modulus
n of length L(�). The function L(·) should be polynomially bounded. With this assumption, it is
clear that the system parameter generation algorithm satisfies its requirements. The requirements
on the key, message, and ciphertext spaces are also satisfied:

1. Elements of these spaces have polynomially bounded lengths: this again follows from our
assumption that L(·) is polynomially bounded.

2. The key space is e�ciently sampleable: just choose k  R {0, . . . , n� 1}.

3. The key, message, and ciphertext spaces are e�ciently recognizable: just test if a bit string s
is the binary encoding of an integer between 0 and n� 1.

4. The message space also has an e↵ective length function: just output (say) 0. 2

We note that some ciphers (for example the one-time pad) may not need a system parameter.
In this case, we can just pretend that the system parameter is, say, the empty string. We also note
that some ciphers do not really have a security parameter either; indeed, many industry-standard
ciphers simply come ready-made with a fixed key size, with no security parameter that can be
tuned. This is simply mismatch between theory and practice — that is just the way it is.

That completes our formal mathematical description of a computational cipher, in all its glo-
rious detail.2 The reader should hopefully appreciate that while these formalities may allow us

2Note that the definition of a Shannon cipher in Section 2.2.1 remains unchanged. The claim made at the end of
Section 2.3.1 that any deterministic computational cipher is also a Shannon cipher needs to be properly interpreted:
for each � and ⇤, we get a Shannon cipher defined over (K�,⇤,M�,⇤, C�,⇤).
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to make mathematically precise and meaningful statements, they are not very enlightening, and
mostly serve to obscure what is really going on. Therefore, in the main body of the text, we will
continue to discuss ciphers using the simplified terminology and notation of Section 2.3.1, with the
understanding that all statements made have a proper and natural interpretation in the formal
framework discussed in this section. This will be a pattern that is repeated in the sequel: we shall
mainly discuss various types of cryptographic schemes using a simplified terminology, without men-
tion of security parameters and system parameters — these mathematical details will be discussed
in a separate section, but will generally follow the same general pattern established here.

2.4.3 E�cient adversaries and attack games

In defining the notion of semantic security, we have to define what we mean by an e�cient adversary.
Since this concept will be used extensively throughout the text, we present a more general framework
here.

For any type of cryptographic scheme, security will be defined using an attack game, played
between an adversary A and a challenger: A follows an arbitrary protocol, while the challenger
follows some simple, fixed protocol determined by the cryptographic scheme and the notion of
security under discussion. Furthermore, both adversary and challenger take as input a common
security parameter �, and the challenger starts the game by computing a corresponding system
parameter ⇤, and sending this to the adversary.

To model these types of interactions, we introduce the notion of an interactive machine.
Before such a machine M starts, it always gets the security parameter � written in a special bu↵er,
and the rest of its internal state is initialized to some default value. Machine M has two other
special bu↵ers: an incoming message bu↵er and an outgoing message bu↵er. Machine M may be
invoked many times: each invocation starts when M ’s external environment writes a string to M ’s
incoming message bu↵er; M reads the message, performs some computation, updates its internal
state, and writes a string on its outgoing message bu↵er, ending the invocation, and the outgoing
message is passed to the environment. Thus, M interacts with its environment via a simple message
passing system. We assume that M may indicate that it has halted by including some signal in its
last outgoing message, and M will essentially ignore any further attempts to invoke it.

We shall assume messages to and from the machine M are restricted to be of constant length.
This is not a real restriction: we can always simulate the transmission of one long message by
sending many shorter ones. However, making a restriction of this type simplifies some of the
technicalities. We assume this restriction from now on, for adversaries as well as for any other type
of interactive machine.

For any given environment, we can measure the total running time of M by counting the
number of steps it performs across all invocations until it signals that it has halted. This running
time depends not only on M and its random choices, but also on the environment in which M
runs.3

Definition 2.11 (e�cient interactive machine). We say that M is an e�cient interactive
machine if there exist a poly-bounded function t and a negligible function ✏, such that for all
environments (not even computationally bounded ones), the probability that the total running time

3Analogous to the discussion in footnote 1 on page 44, our definition of an e�cient interactive machine will not
require that it halts with probability 1 for all environments. This is an orthogonal issue, but it will be an implicit
requirement of any machines we consider.
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of M exceeds t(�) is at most ✏(�).

We naturally model an adversary as an interactive machine. An e�cient adversary is simply
an e�cient interactive machine.

We can connect two interactive machines together, say M 0 and M , to create a new interactive
machine M 00 = hM 0, Mi. Messages from the environment to M 00 always get routed to M 0. The
machine M 0 may send a message to the environment, or to M ; in the latter case, the message sent
by M gets sent to M 0. We assume that if M halts, then M 0 does not send it any more messages.
See Fig. ??.

Thus, when M 00 is invoked, its incoming message is routed to M 0, and then M 0 and M may
interact some number of times, and then the invocation of M 00 ends when M 0 sends a message to
the environment. We call M 0 the “open” machine (which interacts with the outside world), and M
the “closed” machine (which interacts only with M 0).

Naturally, we can model the interaction of a challenger and an adversary by connecting two
such machines together as above: the challenger becomes the open machine, and the adversary
becomes the closed machine.

In our security reductions, we typically show how to use an adversary A that breaks some system
to build an adversary B that breaks some other system. The essential property that we want is
that if A is e�cient, then so is B. However, our reductions are almost always of a very special form,
where B is a wrapper around A, consisting of some simple and e�cient “interface layer” between
B’s challenger and a single running instance of A. Ideally, we want the computational complexity of
the interface layer to not depend on the computational complexity of A; however, some dependence
is unavoidable: the more queries A makes to its challenger, the more work must be performed by
the interface layer, but this work should just depend on the number of such queries and not on the
running time of A.

To formalize this, we build B as a composed machine hM 0, Mi, where M 0 represents the interface
layer (the “open” machine), and M represents the instance of A (the “closed” machine). This leads
us to the following definition.

Definition 2.12 (elementary wrapper). An interactive machine M 0 is called an e�cient
interface if there exists a poly-bounded function t and a negligible function ✏, such that for all
M (not necessarily computationally bounded), when we execute the composed machine hM 0, Mi in
an arbitrary environment (again, not necessarily computationally bounded), the following property
holds:

at every point in the execution of hM 0, Mi, if I is the number of interactions between
M 0 and M up to at that point, and T is the total running time of M 0 up to that point,
then the probability that T > t(� + I) is at most ✏(�).

If M 0 is an e�cient interface, and M is any machine, then we say hM 0, Mi is an elementary
wrapper around M .

Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an e�cient interface interacting with A. Our definitions were designed to
work well together. The salient properties are:

• If B is an elementary wrapper around A, and A is e�cient, then B is e�cient.
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• If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around A.

Also note that in our attack games, the challenger is typically satisfies our definition of an
e�cient interface. For such a challenger and any e�cient adversary A, we can view their entire
interaction as a that of a single, e�cient machine.

2.4.4 Semantic security: the formalities

In defining any type of security, we will define the adversary’s advantage in the attack game as a
function Adv(�). This will be defined in terms of probabilities of certain events in the attack game:
for each value of � we get a di↵erent probability space, determined by the random choices of the
challenger, and the random choices made the adversary. Security will mean that for every e�cient
adversary, the function Adv(·) is negligible.

Turning now to the specific situation of semantic security of a cipher, in Attack Game 2.1, we
defined the value SSadv[A, E ]. This value is actually a function of the security parameter �. The
proper interpretation of Definition 2.3 is that E is secure if for all e�cient adversaries A (modeled as
an interactive machine, as described above), the function SSadv[A, E ](�) in the security parameter
� is negligible (as defined in Definition 2.5). Recall that both challenger and adversary receive �
as a common input. Control begins with the challenger, who sends the system parameter to the
adversary. The adversary then sends its query to the challenger, which consists of two plaintexts,
who responds with a ciphertext. Finally, the adversary outputs a bit (technically, in our formal
machine model, this “output” is a message sent to the challenger, and then the challenger halts).
The value of SSadv[A, E ](�) is determined by the random choices of the challenger (including the
choice of system parameter) and the random choices of the adversary. See Fig. 2.6 for a complete
picture of Attack Game 2.1.

Also, in Attack Game 2.1, the requirement that the two messages presented by the adversary
have the same length means that the length function provided in part 3 of Definition 2.10 evaluates
to the same value on the two messages.

It is perhaps useful to see what it means for a cipher E to be insecure according to this formal
definition. This means that there exists an adversary A such that SSadv[A, E ] is a non-negligible
function in the security parameter. This means that SSadv[A, E ](�) � 1/�c for some c > 0 and for
infinitely many values of the security parameter �. So this does not mean that A can “break” E
for all values of the security parameter, but only infinitely many values of the security parameter.

In the main body of the text, we shall mainly ignore security parameters, system parameters,
and the like, but it will always be understood that all of our “shorthand” has a precise mathematical
interpretation. In particular, we will often refer to certain values v as be negligible (resp., poly-
bounded), which really means that v is a negligible (resp., poly-bounded) function of the security
parameter.

2.5 A fun application: anonymous routing

Our friend Alice wants to send a message m to Bob, but she does not want Bob or anyone else to
know that the message m is from Alice. For example, Bob might be running a public discussion
forum and Alice wants to post a comment anonymously on the forum. Posting anonymously lets
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Figure 2.6: The fully detailed version of Attack Game 2.1

Alice discuss health issues or other matters without identifying herself. In this section we will
assume Alice only wants to post a single message to the forum.

One option is for Alice to choose a proxy, Carol, send m to Carol, and ask Carol to forward
the message to Bob. This clearly does not provide anonymity for Alice since anyone watching the
network will see that m was sent from Alice to Carol and from Carol to Bob. By tracing the path
of m through the network anyone can see that the post came from Alice.

A better approach is for Alice to establish a shared key k with Carol and send c := E(k, m) to
Carol where E = (E, D) is a semantically secure cipher. Carol decrypts c and forwards m to Bob.
Now, someone watching the network will see one message sent from Alice to Carol and a di↵erent
message sent from Carol to Bob. Nevertheless, this method still does not ensure anonymity for
Alice: if on a particular day the only message that Carol receives is the one from Alice and the only
message she sends goes to Bob then an observer can link the two and still learn that the posted
message came from Alice.

We solve this problem by having Carol provide a mixing service, that is, a service that mixes
incoming messages from many di↵erent parties A1, . . . , An. For i = 1, . . . , n, Carol establishes
a secret key ki with party Ai and each party Ai sends to Carol an encrypted message ci :=
E
�

ki, hdestinationi, mii
�

. Carol collects all n incoming ciphertexts, decrypts each of them with
the correct key, and forwards the resulting plaintexts in some random order to their destinations.
Now an observer examining Carol’s tra�c sees n messages going in and n messages going out, but
cannot tell which message was sent where. Alice’s message is one of the n messages sent out by
Carol, but the observer cannot tell which one. We say that Alice’s anonymity set is of size n.

The remaining problem is that Carol can still tell that Alice is the one who posted a specific
message on the discussion forum. To eliminate this final risk Alice uses multiple mixing services,
say, Carol and David. She establishes a secret key kc with Carol and a secret key kd with David.
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Figure 2.7: An example onion routing using two mixes

To send her message to Bob she constructs the following nested ciphertext c2:

c2 := E
�

kc, E(kd, m)
�

. (2.13)

For completeness Alice may want to embed routing information inside the ciphertext so that c2 is
actually constructed as:

c2 := E
�

kc, hDavid, c1i
�

where c1 := E
�

kd, hBob, mi
�

.

Next, Alice sends c2 to Carol. Carol decrypts c2 and obtains the plaintext hDavid, c1i which tells
her to send c1 to David. David decrypts c1 and obtains the plaintext hBob, mi which tells him to
send m to Bob. This process of decrypting a nested ciphertext, illustrated in Fig. 2.7, is similar to
peeling an onion one layer at a time. For this reason this routing procedure is often called onion
routing.

Now even if Carol observes all network tra�c she cannot tell with certainty who posted a
particular message on Bob’s forum. The same holds for David. However, if Carol and David
collude they can figure it out. For this reason Alice may want to route her message through more
than two mixes. As long as one of the mixes does not collude with the others, Alice’s anonymity
will be preserved.

Security of nested encryption. To preserve Alice’s anonymity it is necessary that Carol, who
knows kc, learn no information about m from the nested ciphertext c2 in (2.13). Otherwise, Carol
could potentially use the information she learns about m from c2 to link Alice to her post on Bob’s
discussion forum. For example, suppose Carol could learn the first few characters of m from c2 and
later find that there is only one post on Bob’s forum starting with those characters. Carol could
then link the entire post to Alice because she knows that c2 came from Alice.

The same holds for David: it had better be the case that David, who knows kd, can learn no
information about m from the nested ciphertext c2 in (2.13).

Let us argue that if E is semantically secure then no e�cient adversary can learn any information
about m given c2 and one of kc or kd.

More generally, for a cipher E = (E, D) defined over (K, M, C) let us define the n-way nested
cipher En = (En, Dn) as

En
�

(k0, . . . , kn�1), m
�

= E
�

kn�1, E(kn�2, · · · E(k0, m) · · · )� .

Decryption applies the keys in the reverse order:

Dn
�

(k0, . . . , kn�1), c
�

= D
�

k0, D(k1, · · · D(kn�1, c) · · · )� .

Our goal is to show that if E is semantically secure then En is semantically secure even if the adver-
sary is given all but one of the keys k0, . . . , kn�1. To make this precise, we define two experiments,
Experiment 0 and Experiment 1, where for b = 0, 1, Experiment b is:
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• The adversary gives the challenger (m0, m1, d) where m0, m1 2M are equal length messages
and 0  d < n.

• The challenger chooses n keys k0, . . . , kn�1  R K and computes c  R En
�

(k0, . . . , kn�1), mb

�

.
It sends c to the adversary along with all keys k0, . . . , kn�1, but excluding the key kd.

• The adversary outputs a bit b̂ 2 {0, 1}.

This game captures the fact that the adversary sees all keys k0, . . . , kn�1 except for kd and tries to
break semantic security.

We define the adversary’s advantage, NE(n)adv[A, E ], as in the definition of semantic security:

NE(n)adv[A, E ] =
�

�Pr[W0]� Pr[W1]
�

�

where Wb is the event that A outputs 1 in Experiment b, for b = 0, 1. We say that E is semantically
secure for n-way nesting if NE(n)adv[A, E ] is negligible.

Theorem 2.12. For every constant n > 0, if E = (E, D) is semantically secure then E is seman-
tically secure for n-way nesting.

In particular, for every n-way nested adversary A attacking En, there exists a semantic security
adversary B attacking E, where B is an elementary wrapper around A, such that

NE(n)adv[A, E ] = SSadv[B, E ] .

The proof of this theorem is a good exercise in security reductions. We leave it for Exercise 2.15.

2.6 Notes

The one time pad is due to Gilbert Vernam in 1917, although there is evidence that it was discovered
earlier [9].

Citations to the literature to be added.

2.7 Exercises

2.1 (multiplicative one-time pad). We may also define a “multiplication mod p” variation of
the one-time pad. This is a cipher E = (E, D), defined over (K, M, C), where K := M := C :=
{1, . . . , p� 1}, where p is a prime. Encryption and decryption are defined as follows:

E(k, m) := k · m mod p D(k, c) := k�1 · c mod p.

Here, k�1 denotes the multiplicative inverse of k modulo p. Verify the correctness property for this
cipher and prove that it is perfectly secure.

2.2. Consider a variant of the substitution cipher E = (E, D) defined in Example 2.3 where every
symbol of the message is encrypted using an independent permutation. That is, let M = C = ⌃L

for some a finite alphabet of symbols ⌃ and some L. Let the key space be K = SL where S is the
set of all permutations on ⌃. The encryption algorithm E(k, m) is defined as

E(k, m) :=
�

k[0](m[0]), k[1](m[1]), . . . , k[L� 1](m[L� 1])
�

Show that E is perfectly secure.
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2.3. Let E = (E, D) be a perfectly secure cipher defined over (K, M, C) where K = M. Let
E 0 = (E0, D0) be a cipher where encryption is defined as E0((k1, k2), m) :=

�

E(k1, k2), E(k2, m)
�

.
Show that E 0 is perfectly secure.

2.4. Consider a variant of the one time pad with message space {0, 1}L where the key space K
is restricted to all L-bit strings with an even number of 1’s. Give an e�cient adversary whose
semantic security advantage is 1.

2.5. This exercise generalizes Shannon’s theorem (Theorem 2.5). Let E be a cipher defined over
(K, M, C). Suppose that SSadv[A, E ]  ✏ for all adversaries A, even including computationally
unbounded ones. Show that |K| � (1� ✏)|M|.
2.6. This exercise develops a converse of sorts for the previous exercise. For j = 0, . . . , L � 1, let
✏ = 1/2j . Consider the L-bit one-time pad variant E defined over (K, M, C) where M = C = {0, 1}L.
The key space K is restricted to all L-bit strings whose first L � j bits are not all zero, so that
|K| = (1� ✏)|M|. Show that:

(a) there is an e�cient adversary A such that SSadv[A, E ] = ✏/(1� ✏);

(b) for all adversaries A, even including computationally unbounded ones, SSadv[A, E ]  ✏/(1�✏).

Note: since the advantage of A in part (a) is non-zero, the cipher E cannot be perfectly secure.

2.7. In this exercise, you are asked to prove in detail the claims made in Example 2.9. Namely,
show that if E is a deterministic cipher that is perfectly secure, then SSadv[A, E ] = 0 for every
adversary A (bearing in mind that A may be probabilistic); also show that if E is the variable
length one-time pad, then SSadv[A, E ] = 0 for all adversaries A.

2.8. In Section 2.3.4, we argued that if value r is encrypted using a semantically secure cipher, then
a player’s odds of winning at Internet roulette are very close to those of real roulette. However, our
“roulette” game was quite simple. Suppose that we have a more involved game, where di↵erent
outcomes may result in di↵erent winnings. The rules are not so important, but assume that the
rules are easy to evaluate (given a bet and the number r) and that every bet results in a payout of
0, 1, . . . , n dollars, where n is poly-bounded. Let µ be the expected winnings in an optimal strategy
for a real version of this game (with no encryption). Let µ0 be the expected winnings of some
(e�cient) player in an Internet version of this game (with encryption). Show that µ  µ0+ ✏, where
✏ is negligible, assuming the cipher is semantically secure.

Hint: you may want to use the fact that if X is a random variable taking values in the set
{0, 1, . . . , n}, the expected value of X is equal to

Pn
i=1 Pr[X � i].

2.9. Prove Fact 2.6, using the formal definitions in Section 2.4.

2.10. Let E = (E, D) be a semantically secure cipher defined over (K, M, C), where M = C =
{0, 1}L. Which of the following encryption algorithms yields a semantically secure scheme? Either
give an attack or provide a security proof via an explicit reduction.

(a) E0(k, m) = 0 k E(k, m)

(b) E0(k, m) = E(k, m) k parity(m)

(c) E0(k, m) = reverse(E(k, m))
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(d) E0(k, m) = E(k, reverse(m))

Here, for a bit string s, parity(s) is 1 if the number of 1’s in s is odd, and 0 otherwise; also,
reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.

2.11 (Key recovery attacks). Let E = (E, D) be a cipher defined over (K, M, C). A key recovery
attack is modeled by the following game between a challenger and an adversary A: the challenger
chooses a random key k in K, a random message m in M, computes c R E(k, m), and sends (m, c)
to A. In response A outputs a guess k̂ in K. We say that A wins the game if D(k̂, c) = m and define
KRadv[A, E ] to be the probability that A wins the game. As usual, we say that E is secure against
key recovery attacks if for all e�cient adversaries A the advantage KRadv[A, E ] is negligible.

(a) Show that the one-time pad is not secure against key recovery attacks.

(b) Show that if E is semantically secure and ✏ = |K|/|M| is negligible, then E is secure against key
recovery attacks. In particular, show that for every e�cient key-recovery adversary A there
is an e�cient semantic security adversary B, where B is an elementary wrapper around A,
such that

KRadv[A, E ]  SSadv[B, E ] + ✏

Hint: Your semantic security adversary B will output 1 with probability KRadv[A, E ] in the
semantic security Experiment 0 and output 1 with probability at most ✏ in Experiment 1.
Deduce from this a lower bound on SSadv[B, E ] in terms of ✏ and KRadv[A, E ] from which
the result follows.

(c) Deduce from part (b) that if E is semantically secure and |M| is super-poly then |K| cannot
be poly-bounded.
Note: |K| can be poly-bounded when |M| is poly-bounded, as in the one-time pad.

2.12. In Section 2.3.3 we developed the notion of security against message recovery. Construct a
cipher that is secure against message recovery, but is not semantically secure.

2.13 (Advantage calculations in simple settings). Consider the following two experiments
Experiment 0 and Experiment 1:

• In Experiment 0 the challenger flips a fair coin (probability 1/2 for HEADS and 1/2 for
TAILS) and sends the result to the adversary A.

• In Experiment 1 the challenger always sends TAILS to the adversary.

The adversary’s goal is to distinguish these two experiments: at the end of each experiment the
adversary outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0, 1 let Wb

be the event that in experiment b the adversary output 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

�

�Pr[W0]� Pr[W1]
�

� 2 [0, 1] .

If the advantage is negligible for all e�cient adversaries then we say that the two experiments are
indistinguishable.

(a) Calculate the advantage of each of the following adversaries:
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(i) A1: Always output 1.

(ii) A2: Ignore the result reported by the challenger, and randomly output 0 or 1 with even
probability.

(iii) A3: Output 1 if HEADS was received from the challenger, else output 0.

(iv) A4: Output 0 if HEADS was received from the challenger, else output 1.

(v) A5: If HEADS was received, output 1. If TAILS was received, randomly output 0 or 1
with even probability.

(b) What is the maximum advantage possible in distinguishing these two experiments? Explain
why.

2.14. Consider the following cipher (E, D) defined over (K, M, C) where C = M = {0, 1}` and K
is the set of all `! permutations of the set {0, . . . , ` � 1}. For a key k 2 K and message m 2 M
define E(k, m) to be result of permuting the bits of m using the permutation k, namely E(k, m) =
m[k(0)]...m[k(` � 1)]. Show that this cipher is not semantically secure by showing an adversary
that achieves advantage 1.

2.15 (Nested encryption). For a cipher E = (E, D) define the nested cipher E 0 = (E0, D0) as

E0�(k0, k1), m
�

= E
�

k1, E(k0, m)
�

and D0�(k0, k1), c
�

= D(k0, D(k1, c)) .

Our goal is to show that if E is semantically secure then E 0 is semantically secure even if the
adversary is given one of the keys k0 or k1.

(a) Consider the following semantic security experiments, Experiments 0 and 1: in Experi-
ment b, for b = 0, 1, the adversary generates two messages m0 and m1 and gets back k1 and
E0�(k0, k1), mb). The adversary outputs b̂ in {0, 1} and we define its advantage, NEadv[A, E ]
as in the usual the definition of semantic security. Show that for every nested encryption
adversary A attacking E 0, there exists a semantic security adversary B attacking E , where B
is an elementary wrapper around A, such that

NEadv[A, E ] = SSadv[B, E ] .

Draw a diagram with A on the right, B in the middle, and B’s challenger on the left. Show
the message flow between these three parties that takes place in your proof of security.

(b) Repeat part (a), but now when the adversary gets back k0 (instead of k1) and E0�(k0, k1), mb)
in Experiments 0 and 1. Draw a diagram describing the message flow in your proof of security
as you did in part (a).

This problem comes up in the context of anonymous routing on the Internet as discussed in Sec-
tion 2.5.

2.16 (Self referential encryption). Let us show that encrypting a key under itself can be
dangerous. Let E be a semantically secure cipher defined over (K, M, C), where K ✓ M, and let
k  R K. A ciphertext c⇤ := E(k, k), namely encrypting k using k, is called a self referential
encryption.
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(a) Construct a cipher Ẽ = (Ẽ, D̃) derived from E such that Ẽ is semantically secure, but becomes
insecure if the adversary is given Ẽ(k, k). You have just shown that semantic security does
not imply security when one encrypts one’s key.

(b) Construct a cipher Ê = (Ê, D̂) derived from E such that Ê is semantically and remains
semantically secure (provably) even if the adversary is given Ê(k, k). To prove that Ê is
semantically secure, you should show the following: for every adversary A that attacks Ê ,
there exists and adversary B that attacks E such that (i) the running time B is about the
same as that of A, and (ii) SSadv[A, Ê ]  SSadv[B, E ].

2.17 (Comparison protocols). Suppose Alice has a secret number a and Bob has a secret
number b where both numbers are in {0, . . . , n} for some small n, say n = 1000. They wish to run
a protocol that will reveal to Alice if a = b. However, if a 6= b Alice will learn nothing else about
b. Either way, Bob will learn nothing about a. Perhaps these values represent their votes in an
election and they wish to test if they voted for the same candidates. To do so, they fix a prime
p > n and use the additive one-time pad modulo p (see Example 2.4). They also enlist the help
of a third party, Carol, that should learn nothing about a and b from the protocol. Bob begins
by choosing three random values k0, k1 in Zp and r 2 Z⇤

p. Bob sends k0, k1 to Alice and r and
s := k0 + r(b + k1) in Zp to Carol. Next Alice sends u := k1 + a in Zp to Carol and Carol responds
to Alice with v := s� ru in Zp.

(a) Show that v � k0 = r(b� a) in Zp and deduce that v � k0 = 0 if and only if a = b. Therefore
Alice learns if a = b by testing if v � k0 = 0.

(b) Security: Bob clearly receives no information from this protocol. Carol learns the quantities
r, s, u. Use the security of the modular one-time pad to argue that these quantities are
independent of a and b (the previous exercise may be helpful). Therefore, Carol learns
nothing about a and b. Finally, Alice learns the quantities k0, k1, v. Use the security of the
multiplicative one-time pad from Exercise 2.1 to argue that when a 6= b the quantity v is
independent of b � a. Therefore Alice learns nothing else about b. Note that this security
analysis assumes that Carol does not collude with either Alice or Bob.

2.18. Two standards committee proposes to save bandwidth by combining compression (such as
the Lempel-Ziv algorithm used in the zip and gzip programs) with encryption. Both committees
plan on using the variable length one time pad for encryption.

• One committee proposes to compress messages before encrypting them. Explain why this is
a bad idea. Hint: recall that compression can significantly shrink the size of some messages
while having little impact on the length of other messages.

• The other committee proposes to compress ciphertexts after encryption. Explain why this is
a bad idea.

Over the years many problems have surfaced when combining encryption and compression. The
CRIME [60] and BREACH [56] attacks are good representative examples.

2.19 (Voting protocols). This exercise develops a simple voting protocol based on the additive
one-time pad (Example 2.4). Suppose we have t voters and a counting center. Each voter is going
to vote 0 or 1, and the counting center is going to tally the votes and broadcast the total sum S.
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However, they will use a protocol that guarantees that no party (voter or counting center) learns
anything other than S (but we shall assume that each party faithfully follows the protocol).

The protocol works as follows. Let n > t be an integer. The counting center generates an
encryption of 0: c0  R {0, . . . , n � 1}, and passes c0 to voter 1. Voter 1 adds his vote v1 to c0,
computing c1  c0 + v1 mod n, and passes c1 to voter 2. This continues, with each voter i adding
vi to ci�1, computing ci  ci�1 + vi mod n, and passing ci to voter i+1, except that voter t passes
ct to the counting center. The counting center computes the total sum as S  ct � c0 mod n, and
broadcasts S to all the voters.

(a) Show that the protocol correctly computes the total sum.

(b) Show that the protocol is perfectly secure in the following sense. For voter i = 1, . . . , t, define
View i := (S, ci�1), which represents the “view” of voter i. We also define View0 := (c0, ct),
which represents the “view” of the counting center. Show that for each i = 0, . . . , t and
S = 0, . . . , t, the following holds:

as the choice of votes v1, . . . , vt varies, subject to the restrictions that each vj 2
{0, 1} and

Pt
j=1 vj = S, the distribution of View i remains the same.

(c) Show that if two voters i, j collude, they can determine the vote of a third voter k. You are
free to choose the indices i, j, k.

2.20 (Two-way split keys). Let E = (E, D) be a semantically secure cipher defined over
(K, M, C) where K = {0, 1}d. Suppose we wish to split the ability to decrypt ciphertexts across
two parties, Alice and Bob, so that both parties are needed to decrypt ciphertexts. For a random
key k in K choose a random r in K and define ka := r and kb := k � r. Now if Alice and Bob get
together they can decrypt a ciphertext c by first reconstructing the key k as k = ka � kb and then
computing D(k, c). Our goal is to show that neither Alice nor Bob can decrypt ciphertexts on their
own.

(a) Formulate a security notion that captures the advantage that an adversary has in break-
ing semantic security given Bob’s key kb. Denote this 2-way key splitting advantage by
2KSadv[A, E ].

(b) Show that for every 2-way key splitting adversary A there is a semantic security adversary B
such that 2KSadv[A, E ] = SSadv[B, E ].

2.21 (Simple secret sharing). Let E = (E, D) be a semantically secure cipher with key space
K = {0, 1}L. A bank wishes to split a decryption key k 2 {0, 1}L into three shares p0, p1, and p2
so that two of the three shares are needed for decryption. Each share can be given to a di↵erent
executive and two of the three must contribute their shares for decryption to proceed. This way,
decryption can proceed even if one of the executives is out sick, but at least two executives are
needed for decryption.

(a) To do so the bank generates two random pairs (k0, k0
0) and (k1, k0

1) so that k0�k0
0 = k1�k0

1 = k.
How should the bank assign shares so that any two shares enable decryption using k, but no
single share can decrypt?
Hint: the first executive will be given the share p0 = (k0, k1).
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(b) Generalize the scheme from part (a) so that 3-out-of-5 shares are needed for decryption.
Reconstituting the key only uses XOR of key shares.

(c) More generally, we can design a t-out-of-n system this way for any t < n. How does the size
of each share scale with t?

2.22 (Bias correction). Consider again the bit-guessing version of the semantic security attack
game (i.e., Attack Game 2.4). Suppose an e�cient adversary A wins the game (i.e., guesses the
hidden bit b) with probability 1/2 + ✏, where ✏ is non-negligible. Note that ✏ could be positive or
negative (the definition of negligible works on absolute values). Our goal is to show that there is
another e�cient adversary B that wins the game with probability 1/2+✏0, where ✏0 is non-negligible
and positive.

(a) Consider the following adversary B that uses A as a subroutine in Attack Game 2.4 in the
following two-stage attack. In the first stage, B plays challenger to A, but B generates its
own hidden bit b0, its own key k0, and eventually A outputs its guess-bit b̂0. Note that in
this stage, B’s challenger in Attack Game 2.4 is not involved at all. In the second stage, B
restarts A, and lets A interact with the “real” challenger in Attack Game 2.4, and eventually
A outputs a guess-bit b̂. When this happens, B outputs b̂� b̂0 � b0. Note that this run of A
is completely independent of the first — the coins of A and also the system parameters are
generated independently in these two runs.

Show that B wins Attack Game 2.4 with probability 1/2 + 2✏2.

(b) One might be tempted to argue as follows. Just construct an adversary B that runs A, and
when A outputs b̂, adversary B outputs b̂ � 1. Now, we do not know if ✏ is positive or
negative. If it is positive, then A satisfies are requirements. If it is negative, then B satisfies
our requirements. Although we do not know which one of these two adversaries satisfies our
requirements, we know that one of them definitely does, and so existence is proved.

What is wrong with this argument? The explanation requires an understanding of the math-
ematical details regarding security parameters (see Section 2.4).

(c) Can you come up with another e�cient adversary B0 that wins the bit-guessing game with
probability at least 1 + |✏|/2? Your adversary B0 will be less e�cient than B.
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Chapter 3

Stream ciphers

In the previous chapter, we introduced the notions of perfectly secure encryption and semantically
secure encryption. The problem with perfect security is that to achieve it, one must use very long
keys. Semantic security was introduced as a weaker notion of security that would perhaps allow
us to build secure ciphers that use reasonably short keys; however, we have not yet produced any
such ciphers. This chapter studies one type of cipher that does this: the stream cipher.

3.1 Pseudo-random generators

Recall the one-time pad. Here, keys, messages, and ciphertexts are all L-bit strings. However, we
would like to use a key that is much shorter. So the idea is to instead use a short, `-bit “seed” s as
the encryption key, where ` is much smaller than L, and to “stretch” this seed into a longer, L-bit
string that is used to mask the message (and unmask the ciphertext). The string s is stretched
using some e�cient, deterministic algorithm G that maps `-bit strings to L-bit strings. Thus, the
key space for this modified one-time pad is {0, 1}`, while the message and ciphertext spaces are
{0, 1}L. For s 2 {0, 1}` and m, c 2 {0, 1}L, encryption and decryption are defined as follows:

E(s, m) := G(s)�m and D(s, c) := G(s)� c.

This modified one-time pad is called a stream cipher, and the function G is called a pseudo-
random generator.

If ` < L, then by Shannon’s Theorem, this stream cipher cannot achieve perfect security;
however, if G satisfies an appropriate security property, then this cipher is semantically secure.
Suppose s is a random `-bit string and r is a random L-bit string. Intuitively, if an adversary cannot
e↵ectively tell the di↵erence between G(s) and r, then he should not be able to tell the di↵erence
between this stream cipher and a one-time pad; moreover, since the latter cipher is semantically
secure, so should be the former. To make this reasoning rigorous, we need to formalize the notion
that an adversary cannot “e↵ectively tell the di↵erence between G(s) and r.”

An algorithm that is used to distinguish a pseudo-random string G(s) from a truly random
string r is called a statistical test. It takes a string as input, and outputs 0 or 1. Such a test
is called e↵ective if the probability that it outputs 1 on a pseudo-random input is significantly
di↵erent than the probability that it outputs 1 on a truly random input. Even a relatively small
di↵erence in probabilities, say 1%, is considered significant; indeed, even with a 1% di↵erence, if
we can obtain a few hundred independent samples, which are either all pseudo-random or all truly
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random, then we will be able to infer with high confidence whether we are looking at pseudo-random
strings or at truly random strings. However, a non-zero but negligible di↵erence in probabilities,
say 2�100, is not helpful.

How might one go about designing an e↵ective statistical test? One basic approach is the
following: given an L-bit string, calculate some statistic, and then see if this statistic di↵ers greatly
from what one would expect if the string were truly random.

For example, a very simple statistic that is easy to compute is the number k of 1’s appearing
in the string. For a truly random string, we would expect k ⇡ L/2. If the PRG G had some
bias towards either 0-bits or 1-bits, we could e↵ectively detect this with a statistical test that,
say, outputs 1 if |k � 0.5L| < 0.01L, and otherwise outputs 0. This statistical test would be quite
e↵ective if the PRG G did indeed have some significant bias towards either 0 or 1.

The test in the previous example can be strengthened by considering not just individual bits,
but pairs of bits. One could break the L-bit string up into ⇡ L/2 bit pairs, and count the number
k00 of pairs 00, the number k01 of pairs 01, the number k10 of pairs 10, and the number k11 of pairs
11. For a truly random string, one would expect each of these numbers to be ⇡ L/2 · 1/4 = L/8.
Thus, a natural statistical test would be one that tests if the distance from L/8 of each of these
numbers is less than some specified bound. Alternatively, one could sum up the squares of these
distances, and test whether this sum is less than some specified bound — this is the classical �-
squared test from statistics. Obviously, this idea generalizes from pairs of bits to tuples of any
length.

There are many other simple statistics one might check. However, simple tests such as these do
not tend to exploit deeper mathematical properties of the algorithm G that a malicious adversary
may be able to exploit in designing a statistical test specifically geared towards G. For example,
there are PRG’s for which the simple tests in the previous two paragraphs are completely ine↵ective,
but yet are completely predictable, given su�ciently many output bits; that is, given a prefix of
G(s) of su�cient length, the adversary can compute all the remaining bits of G(s), or perhaps even
compute the seed s itself.

Our definition of security for a PRG formalizes the notion there should be no e↵ective (and
e�ciently computable) statistical test.

3.1.1 Definition of a pseudo-random generator

A pseudo-random generator, or PRG for short, is an e�cient, deterministic algorithm G that,
given as input a seed s, computes an output r. The seed s comes from a finite seed space S and
the output r belongs to a finite output space R. Typically, S and R are sets of bit strings of some
prescribed length (for example, in the discussion above, we had S = {0, 1}` and R = {0, 1}L). We
say that G is a PRG defined over (S, R).

Our definition of security for a PRG captures the intuitive notion that if s is chosen at random
from S and r is chosen at random from R, then no e�cient adversary can e↵ectively tell the
di↵erence between G(s) and r: the two are computationally indistinguishable. The definition
is formulated as an attack game.

Attack Game 3.1 (PRG). For a given PRG G, defined over (S, R), and for a given adversary
A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger computes r 2 R as follows:
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Challenger A

b̂ 2 {0, 1}

(Experiment 0)

s
R S

r  G(s) r

Challenger A

b̂ 2 {0, 1}

r

(Experiment 1)

r
R R

Figure 3.1: Experiments 0 and 1 of Attack Game 3.1

– if b = 0: s R S, r  G(s);

– if b = 1: r  R R.

and sends r to the adversary.

• Given r, the adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to G as

PRGadv[A, G] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

The attack game is illustrated in Fig. 3.1.

Definition 3.1 (secure PRG). A PRG G is secure if the value PRGadv[A, G] is negligible for
all e�cient adversaries A.

As discussed in Section 2.3.5, Attack Game 3.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
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PRGadv⇤[A, G] as |Pr[b̂ = b] � 1/2|. The general result of Section 2.3.5 applies here as well:
PRGadv[A, G] = 2 · PRGadv⇤[A, G].

We also note that a PRG can only be secure if the cardinality of the seed space is super-poly
(see Exercise 3.6).

3.1.2 Mathematical details

Just as in Section 2.4, we give here more of the mathematical details pertaining to PRGs. Just like
Section 2.4, this section may be safely skipped on first reading with very little loss in understanding.

First, we state the precise definition of a PRG, using the terminology introduced in Defini-
tion 2.9.

Definition 3.2 (pseudo-random generator). A pseudo-random generator consists of an
algorithm G, along with two families of spaces with system parameterization P :

S = {S�,⇤}�,⇤ and R = {R�,⇤}�,⇤,

such that

1. S and R are e�ciently recognizable and sampleable.

2. Algorithm G is an e�cient deterministic algorithm that on input �, ⇤, s, where � 2 Z�1,
⇤ 2 Supp(P (�)), and s 2 S�,⇤, outputs an element of R�,⇤.

Next, Definition 3.1 needs to be properly interpreted. First, in Attack Game 3.1, it is to be
understood that for each value of the security parameter �, we get a di↵erent probability space,
determined by the random choices of the challenger and the random choices of the adversary.
Second, the challenger generates a system parameter ⇤, and sends this to the adversary at the very
start of the game. Third, the advantage PRGadv[A, G] is a function of the security parameter �,
and security means that this function is a negligible function.

3.2 Stream ciphers: encryption with a PRG

Let G be a PRG defined over ({0, 1}`, {0, 1}L); that is, G stretches an `-bit seed to an L-bit output.
The stream cipher E = (E, D) constructed from G is defined over ({0, 1}`, {0, 1}L, {0, 1}L);
for s 2 {0, 1}` and m, c 2 {0, 1}L, encryption and decryption are defined as follows: if |m| = v,
then

E(s, m) := G(s)[0 . . v � 1] � m,

and if |c| = v, then
D(s, c) := G(s)[0 . . v � 1] � c.

As the reader may easily verify, this satisfies our definition of a cipher (in particular, the correctness
property is satisfied).

Note that for the purposes of analyzing the semantic security of E , the length associated with a
message m in Attack Game 2.1 is the natural length |m| of m in bits. Also, note that if v is much
smaller than L, then for many practical PRGs, it is possible to compute the first v bits of G(s)
much faster than actually computing all the bits of G(s) and then truncating.

The main result of this section is the following:
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Theorem 3.1. If G is a secure PRG, then the stream cipher E constructed from G is a semantically
secure cipher.

In particular, for every SS adversary A that attacks E as in Attack Game 2.1, there exists a
PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

SSadv⇤[A, E ] = PRGadv[B, G].

Proof idea. In proving this theorem, it is more convenient to work with the bit-guessing version of
the SS attack game, discussed in Section 2.3.5. Recall that, by Theorem 2.10, the adversary’s bit
guessing SS advantage, SSadv⇤[A, E ], is twice its SS advantage, SSadv[A, E ], so if one is negligible,
so is the other.

The basic idea is to argue that we can replace the output of the PRG by a truly random
string, without a↵ecting the adversary’s bit-guessing advantage by more than a negligible amount.
However, after making this replacement, the adversary’s bit-guessing advantage is zero. 2

Proof. Let A be an e�cient adversary attacking the semantic security of the cipher in the bit-
guessing version of Attack Game 2.1. In this game, A presents the challenger with two messages
m0, m1 of the same length; the challenger then chooses a random key s and a random bit b, and
encrypts mb under s, giving the resulting ciphertext c to A; finally, A outputs a bit b̂. The adversary
A wins the game if b̂ = b.

Let us call this Game 0. The logic of the challenger in this game may be written as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
s R {0, 1}`, r  G(s)
c r[0 . . v � 1]�mb

send c to A.

Game 0 is illustrated in Fig. 3.2.
Let W0 be the event that b̂ = b in Game 0. By definition, we have

SSadv⇤[A, E ] = ·|Pr[W0]� 1/2|. (3.1)

Next, we modify the challenger of Game 0, obtaining new game, called Game 1, which is
exactly the same as Game 0, except that the challenger uses a truly random string in place of a
pseudo-random string. The logic of the challenger in Game 1 is as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
r  R {0, 1}L
c r[0 . . v � 1]�mb

send c to A.

As usual, A outputs a bit b̂ at the end of this game. We have highlighted the changes from Game 0
in gray. Game 1 is illustrated in Fig. 3.3.

Let W1 be the event that b̂ = b in Game 1. We claim that

Pr[W1] = 1/2. (3.2)

This is because in Game 1, the adversary is attacking the variable length one-time pad. In particu-
lar, it is easy to see that the adversary’s output b̂ and the challenger’s hidden bit b are independent.
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A

b̂ 2 {0, 1}

Challenger

b
R {0, 1}

s
R {0, 1}`

r  G(s)

m
0

,m
1

2 {0, 1}�L

(|m
0

| = |m
1

| = v)

cc r[0 . . v � 1]�mb

Figure 3.2: Game 0 in the proof of Theorem 3.1

A

b̂ 2 {0, 1}

Challenger

b
R {0, 1}

r
R {0, 1}L

m
0

,m
1

2 {0, 1}�L

(|m
0

| = |m
1

| = v)

c r[0 . . v � 1]�mb

c

Figure 3.3: Game 1 in the proof of Theorem 3.1
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A

r 2 {0, 1}L

b
R {0, 1}

b̂ 2 {0, 1}

PRG Challenger
for G

B

�(b̂, b)

m
0

,m
1

2 {0, 1}�L

(|m
0

| = |m
1

| = v)

c r[0 . . v � 1]�mb

c

Figure 3.4: The PRG adversary B in the proof of Theorem 3.1

Finally, we show how to construct an e�cient PRG adversary B that uses A as a subroutine,
such that

|Pr[W0]� Pr[W1]| = PRGadv[B, G]. (3.3)

This is actually quite straightforward. The logic of our new adversary B is illustrated in Fig. 3.4.
Here, � is defined as follows:

�(x, y) :=

(

1 if x = y,

0 if x 6= y.
(3.4)

Also, the box labeled “PRG Challenger” is playing the role of the challenger in Attack Game 3.1
with respect to G.

In words, adversary B, which is a PRG adversary designed to attack G (as in Attack Game 3.1),
receives r 2 {0, 1}L from its PRG challenger, and then plays the role of challenger to A, as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
c r[0 . . v � 1]�mb

send c to A.

Finally, when A outputs a bit b̂, B outputs the bit �(b̂, b).
Let p0 be the probability that B outputs 1 when the PRG challenger is running Experiment 0

of Attack Game 3.1, and let p1 be the probability that B outputs 1 when the PRG challenger is
running Experiment 1 of Attack Game 3.1. By definition, PRGadv[B, G] = |p1 � p0|. Moreover, if
the PRG challenger is running Experiment 0, then adversary A is essentially playing our Game 0,
and so p0 = Pr[W0], and if the PRG challenger is running Experiment 1, then A is essentially
playing our Game 1, and so p1 = Pr[W1]. Equation (3.3) now follows immediately.
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Combining (3.1), (3.2), and (3.3), we have

SSadv⇤[A, E ] = PRGadv[B, G].

Moreover, since B is just as e�cient as A, under our assumption that G is a secure PRG, the value
PRGadv[B, G] must be negligible, and therefore, SSadv⇤[A, E ] must be negligible as well. 2

In the above theorem, we reduced the security of E to that of G by showing that if A is an
e�cient SS adversary that attacks E , then there exists an e�cient PRG adversary B that attacks
G, such that

SSadv⇤[A, E ]  PRGadv[B, G].

(Actually, we showed that equality holds, but that is not so important.) In the proof, we argued
that if G is secure, then PRGadv[B, G] is negligible, hence by the above inequality, we conclude
that SSadv⇤[A, E ] is also negligible. Since this holds for all e�cient adversaries A, we conclude that
E is semantically secure.

Analogous to the discussion after the proof of Theorem 2.7, another way to structure the proof
is by proving the contrapositive: indeed, if we assume that E is insecure, then there must be an
e�cient adversary A such that SSadv⇤[A, E ] is non-negligible, and the reduction (and the above
inequality) gives us an e�cient adversary B such that PRGadv[B, G] is also non-negligible. That
is, if we can break E , we can also break G. While logically equivalent, such a proof has a di↵erent
“feeling”: one starts with an adversary A that breaks E , and shows how to use A to construct a
new adversary B that breaks G.

The reader should notice that the proof of the above theorem follows the same basic pattern
as our analysis of Internet roulette in Section 2.3.4. In both cases, we started with an attack game
(Fig. 2.2 or Fig. 3.2) which we modified to obtain a new attack game (Fig. 2.3 or Fig. 3.3); in
this new attack game, it was quite easy to compute the adversary’s advantage. Also, we used an
appropriate security assumption to show that the di↵erence between the adversary’s advantages in
the original and the modified games was negligible. This was done by exhibiting a new adversary
(Fig. 2.4 or Fig. 3.4) that attacked the underlying cryptographic primitive (cipher or PRG) with an
advantage equal to this di↵erence. Assuming the underlying primitive was secure, this di↵erence
must be negligible; alternatively, one could argue the contrapositive: if this di↵erence were not
negligible, the new adversary would “break” the underlying cryptographic primitive.

This is a pattern that will be repeated and elaborated upon throughout this text. The reader
is urged to study both of these analyses to make sure he or she completely understands what is
going on.

3.3 Stream cipher limitations: attacks on the one time pad

Although stream ciphers are semantically secure they are highly brittle and become totally insecure
if used incorrectly.

3.3.1 The two-time pad is insecure

A stream cipher is well equipped to encrypt a single message from Alice to Bob. Alice, however,
may wish to send several messages to Bob. For simplicity suppose Alice wishes to encrypt two
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messages m1 and m2. The naive solution is to encrypt both messages using the same stream cipher
key s:

c1  m1 �G(s) and c2  m2 �G(s) (3.5)

A moments reflection shows that this construction is insecure in a very strong sense. An adversary
who intercepts c1 and c2 can compute

� := c1 � c2 =
�

m1 �G(s)
�� �

m2 �G(s)
�

= m1 �m2

and obtain the xor of m1 and m2. Not surprisingly, English text contains enough redundancy that
given � = m1�m2 the adversary can recover both m1 and m2 in the clear. Hence, the construction
in (3.5) leaks the plaintexts after seeing only two su�ciently long ciphertexts.

The construction in (3.5) is jokingly called the two-time pad. We just argued that the two-
time pad is totally insecure. In particular, a stream cipher key should never be used to
encrypt more than one message. Throughout the book we will see many examples where a
one-time cipher is su�cient. For example, when choosing a new random key for every message as
in Section 5.4.1. However, in settings where a single key is used multiple times, one should never
use a stream cipher directly. We build multi-use ciphers in Chapter 5.

Incorrectly reusing a stream cipher key is a common error in deployed systems. For example,
a protocol called PPTP enables two parties A and B to send encrypted messages to one another.
Microsoft’s implementation of PPTP in Windows NT uses a stream cipher called RC4. The original
implementation encrypts messages from A to B using the same RC4 key as messages from B
to A [62]. Consequently, by eavesdropping on two encrypted messages headed in opposite directions
an attacker could recover the plaintext of both messages.

Another amusing story about the two-time pad is relayed by Klehr [35] who describes in great
detail how Russian spies in the US during World War II were sending messages back to Moscow,
encrypted with the one-time pad. The system had a critical flaw, as explained by Klehr:

During WWII the Soviet Union could not produce enough one-time pads . . . to keep
up with the enormous demand . . . . So, they used a number of one-time pads twice,
thinking it would not compromise their system. American counter-intelligence during
WWII collected all incoming and outgoing international cables. Beginning in 1946, it
began an intensive e↵ort to break into the Soviet messages with the cooperation of the
British and by . . . the Soviet error of using some one-time pads as two-time pads, was
able, over the next 25 years, to break some 2900 messages, containing 5000 pages of the
hundreds of thousands of messages that been sent between 1941 and 1946 (when the
Soviets switched to a di↵erent system).

The decryption e↵ort was codenamed project Venona. The Venona files are most famous for
exposing Julius and Ethel Rosenberg and help give indisputable evidence of their involvement with
the Soviet spy ring. Starting in 1995 all 3000 Venona decrypted messages were made public.

3.3.2 The one-time pad is malleable

Although semantic security ensures that an adversary cannot read the plaintext, it provides no
guarantees for integrity. When using a stream cipher, an adversary can change a ciphertext and
the modification will never be detected by the decryptor. Even worse, let us show that by changing
the ciphertext, the attacker can control how the decrypted plaintext will change.
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Suppose an attacker intercepts a ciphertext c := E(s, m) = m�G(s). The attacker changes c to
c0 := c�� for some � of the attacker’s choice. Consequently, the decryptor receives the modified
message

D(s, c0) = c0 �G(s) = (c��)�G(s) = m��

Hence, without knowledge of either m or s, the attacker was able to cause the decrypted message
to become m�� for � of the attacker’s choosing. We say that stream-ciphers are malleable since
an attacker can cause predictable changes to the plaintext. We will construct ciphers that provide
both privacy and integrity in Chapter 9.

A simple example where malleability could help an attacker is an encrypted file system. Suppose
Alice stores incoming emails on a disk encrypted with her secret stream cipher key. An email from
Bob always starts with the characters From: Bob. An attacker who knows that a certain email is
from Bob, can use the stream cipher malleability to change the encrypted email to say From: Eve.
He simply xors the appropriate three character string with the email characters in positions 7 to 9.
The attacker makes this change by only operating on ciphertexts and without knowledge of Alice’s
secret key. Alice will never know that the sender’s address was changed.

3.4 Composing PRGs

In this section, we discuss two constructions that allow one to build new PRGs out of old PRGs.
These constructions allow one to increase the size of the output space of the original PRG while at
the same time preserving its security. Perhaps more important than the constructions themselves is
the proof technique, which is called a hybrid argument. This proof technique is used pervasively
throughout modern cryptography.

3.4.1 A parallel construction

Let G be a PRG defined over (S, R). Suppose that in some application, we want to use G many
times. We want all the outputs of G to be computationally indistinguishable from random elements
of R. If G is a secure PRG, and if the seeds are independently generated, then this will indeed be
the case.

We can model the use of many applications of G as a new PRG G0. That is, we construct a
new PRG G0 that applies G to n seeds, and concatenates the outputs. Thus, G0 is defined over
(Sn, Rn), and for s1, . . . , sn 2 R,

G0(s1, . . . , sn) := (G(s1), . . . , G(sn)).

We call G0 the n-wise parallel composition of G. The value n is called a repetition parameter,
and we require that it is a poly-bounded value.

Theorem 3.2. If G is a secure PRG, then the n-wise parallel composition G0 of G is also a secure
PRG.

In particular, for every PRG adversary A that attacks G0 as in Attack Game 3.1, there exists
a PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

PRGadv[A, G0] = n · PRGadv[B, G].

67



As a warm up, we first prove this theorem in the special case n = 2. Let A be an e�cient PRG
adversary that has advantage ✏ in attacking G0 in Attack Game 3.1. We want to show that ✏ is
negligible, under the assumption that G is a secure PRG. To do this, let us define Game 0 to be
Experiment 0 of Attack Game 3.1 with A and G0. The challenger in this game works as follows:

s1  R S, r1  G(s1)
s2  R S, r2  G(s2)
send (r1, r2) to A.

Let p0 denote the probability with which A outputs 1 in this game.
Next, we define Game 1, which is played between A and a challenger that works as follows:

r1  R R
s2  R S, r2  G(s2)
send (r1, r2) to A.

Note that Game 1 corresponds to neither Experiment 0 nor Experiment 1 of Attack Game 3.1;
rather, it is a “hybrid” experiment corresponding to something in between Experiments 0 and 1.
All we have done is replaced the pseudo-random value r1 in Game 0 by a truly random value (as
highlighted). Intuitively, under the assumption that G is a secure PRG, the adversary A should
not notice the di↵erence. To make this argument precise, let p1 be the probability that A outputs
1 in Game 1.

Let �1 := |p1 � p0|. We claim that �1 is negligible, assuming that G is a secure PRG. Indeed,
we can easily construct an e�cient PRG adversary B1 whose advantage in attacking G in Attack
Game 3.1 is precisely equal to �1. The adversary B1 works as follows:

Upon receiving r 2 R from its challenger, B1 plays the role of challenger to A, as follows:

r1  r
s1  R S, r2  G(s2)
send (r1, r2) to A.

Finally, B1 outputs whatever A outputs.

Observe that when B1 is in Experiment 0 of its attack game, it perfectly mimics the behavior of the
challenger in Game 0, while in Experiment 1, it perfectly mimics the behavior of the challenger in
Game 1. Thus, p0 is equal to the probability that B1 outputs 1 in Experiment 0 of Attack Game 3.1,
while p1 is equal to the probability that B1 outputs 1 in Experiment 1 of Attack Game 3.1. Thus,
B1’s advantage in attacking G is precisely |p1 � p0|, as claimed.

Next, we define Game 2, which is played between A and a challenger that works as follows:

r1  R R
r2  R R
send (r1, r2) to A.

All we have done is replaced the pseudo-random value r2 in Game 1 by a truly random value (as
highlighted). Let p2 be the probability that A outputs 1 in Game 2. Note that Game 2 corresponds
to Experiment 1 of Attack Game 3.1 with A and G0, and so p2 is equal to the probability that A
outputs 1 in Experiment 1 of Attack Game 3.1 with respect to G0.
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Let �2 := |p2 � p1|. By an argument similar to that above, it is easy to see that �2 is negligible,
assuming that G is a secure PRG. Indeed, we can easily construct an e�cient PRG adversary B2

whose advantage in Attack Game 3.1 with respect to G is precisely equal to �2. The adversary B2

works as follows:

Upon receiving r 2 R from its challenger, B2 plays the role of challenger to A, as follows:

r1  R R
r2  r
send (r1, r2) to A.

Finally, B2 outputs whatever A outputs.

It should be clear that p1 is equal to the probability that B2 outputs 1 in Experiment 0 of Attack
Game 3.1, while p2 is equal to the probability that B2 outputs 1 in Experiment 1 of Attack Game 3.1.

Recalling that ✏ = PRGadv[A, G0], then from the above discussion, we have

✏ = |p2 � p0| = |p2 � p1 + p1 � p0|  |p1 � p0| + |p2 � p1| = �1 + �2.

Since both �1 and �2 are negligible, then so is ✏ (see Fact 2.6).
That completes the proof that G0 is secure in the case n = 2. Before giving the proof in the

general case, we give another proof in the case n = 2. While our first proof involved the construction
of two adversaries B1 and B2, our second proof combines these two adversaries into a single PRG
adversary B that plays Attack Game 3.1 with respect to G, and which runs as follows:

upon receiving r 2 R from its challenger, adversary B chooses ! 2 {1, 2} at random,
and gives r to B!; finally, B outputs whatever B! outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. Conditioning on the events ! = 1
and ! = 2, we have

Pr[W0] = Pr[W0 | ! = 1] Pr[! = 1] + Pr[W0 | ! = 2] Pr[! = 2]

= 1
2

✓

Pr[W0 | ! = 1] + Pr[W0 | ! = 2]

◆

= 1
2(p0 + p1).

Similarly, we have

Pr[W1] = Pr[W1 | ! = 1] Pr[! = 1] + Pr[W1 | ! = 2] Pr[! = 2]

= 1
2

✓

Pr[W1 | ! = 1] + Pr[W1 | ! = 2]

◆

= 1
2(p1 + p2).

Therefore, if � is the advantage of B in Attack Game 3.1 with respect to G, we have

� =
�

�Pr[W1]� Pr[W0]
�

� =
�

�

1
2(p1 + p2)� 1

2(p0 + p1)
�

� = 1
2 |p2 � p0| = ✏/2.

Thus, ✏ = 2�, and since � is negligible, so is ✏ (see Fact 2.6).
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Hybrid 0: G(s1) G(s2) G(s3) · · · G(sn)
Hybrid 1: r1 G(s2) G(s3) · · · G(sn)
Hybrid 2: r1 r2 G(s3) · · · G(sn)

...
Hybrid n� 1: r1 r2 r3 · · · G(sn)
Hybrid n: r1 r2 r3 · · · rn

Figure 3.5: Values prepared by challenger in Hybrids 0, 1, . . . , n. Each ri is a random element of
R, and each si is a random element of S.

Now, finally, we present the proof of Theorem 3.2 for general, poly-bounded n.

Proof idea. We could try to extend the first strategy outlined above from n = 2 to arbitrary n.
That is, we could construct a sequence of n + 1 games, starting with a challenger that produces
a sequence (G(s1), . . . , G(sn)), of pseudo-random elements replacing elements one at a time with
truly random elements of R, ending up with a sequence (r1, . . . , rn) of truly random elements of
R. Intuitively, the adversary should not notice any of these replacements, since G is a secure
PRG; however, proving this formally would require the construction of n di↵erent adversaries,
each of which attacks G in a slightly di↵erent way. As it turns out, this leads to some annoying
technical di�culties when n is not an absolute constant, but is simply poly-bounded; it is much
more convenient to extend the second strategy outlined above, constructing a single adversary that
attacks G “in one blow.” 2

Proof. Let A be an e�cient PRG adversary that plays Attack Game 3.1 with respect to G0. We
first introduce a sequence of n + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid n. For
j = 0, 1, . . . , n, Hybrid j is a game played between A and a challenger that prepares a tuple of n
values, the first j of which are truly random, and the remaining n� j of which are pseudo-random
outputs of G; that is, the challenger works as follows:

r1  R R
...

rj  R R
sj+1  R S, rj+1  G(sj+1)

...
sn  R S, rn  G(sn)

send (r1, . . . , rn) to A.

As usual, A outputs 0 or 1 at the end of the game. Fig. 3.5 illustrates the values prepared by the
challenger in each of these n+1 games. Let pj denote the probability that A outputs 1 in Hybrid j.
Note that p0 is also equal to the probability that A outputs 1 in Experiment 0 of Attack Game 3.1,
while pn is equal to the probability that A outputs 1 in Experiment 1. Thus, we have

PRGadv[A, G0] = |pn � p0|. (3.6)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to G, and which
works as follows:
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Upon receiving r 2 R from its challenger, B plays the role of challenger to A, as follows:

!  R {1, . . . , n}
r1  R R

...
r!�1  R R
r!  r

s!+1  R S, r!+1  G(s!+1)
...

sn  R S, rn  G(sn)

send (r1, . . . , rn) to A.

Finally, B outputs whatever A outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on ! = j for every fixed j = 1, . . . , n, Experiment 0 of B’s attack game
is equivalent to Hybrid j � 1, while Experiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,
Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

So we have

Pr[W0] =
n
X

j=1

Pr[W0 | ! = j] Pr[! = j] =
1

n

n
X

j=1

Pr[W0 | ! = j] =
1

n

n
X

j=1

pj�1,

and similarly,

Pr[W1] =
n
X

j=1

Pr[W1 | ! = j] Pr[! = j] =
1

n

n
X

j=1

Pr[W1 | ! = j] =
1

n

n
X

j=1

pj .

Finally, we have

PRGadv[B, G] = |Pr[W1]� Pr[W0]|

=

�

�

�

�

1

n

n
X

j=1

pj � 1

n

n
X

j=1

pj�1

�

�

�

�

=
1

n
|pn � p0|,

and combining this with (3.6), we have

PRGadv[A, G0] = n · PRGadv[B, G].
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G G G

s

s1

r1

s2

r2 r3 s3

Figure 3.6: The sequential construction for n = 3

Since we are assuming G is a secure PRG, it follows that PRGadv[B, G] is negligible, and since n is
poly-bounded, it follows that PRGadv[A, G0] is negligible (see Fact 2.6). That proves the theorem.
2

Theorem 3.2 says that the security of a PRG degrades at most linearly in the number of times
that we use it. One might ask if this bound is tight; that is, might security indeed degrade linearly
in the number of uses? The answer is in fact “yes” (see Exercise 3.15).

3.4.2 A sequential construction: the Blum-Micali method

We now present a sequential construction, invented by Blum and Micali, which uses a PRG that
stretches just a little, and builds a PRG that stretches an arbitrary amount.

Let G be a PRG defined over (S, R⇥S), for some finite sets S and R. For every poly-bounded
value n � 1, we can construct a new PRG G0, defined over (S, Rn ⇥ S). For s 2 S, we let

G0(s) :=
s0  s
for i 1 to n do

(ri, si) G(si�1)
output (r1, . . . , rn, sn).

We call G0 the n-wise sequential composition of G. See Fig. 3.6 for a schematic description of
G0 for n = 3.

We shall prove below in Theorem 3.3 that if G is a secure PRG, then so is G0. As a special case
of this construction, suppose G is a PRG defined over ({0, 1}`, {0, 1}t+`), for some positive integers
` and t; that is, G stretches `-bit strings to (t + `)-bit strings. We can naturally view the output
space of G as {0, 1}t ⇥ {0, 1}`, and applying the above construction, and interpreting outputs as
bit strings, we get a PRG G0 that stretches `-bit strings to (nt + `)-bit strings.

Theorem 3.3. If G is a secure PRG, then the n-wise sequential composition G0 of G is also a
secure PRG.

In particular, for every PRG adversary A that plays Attack Game 3.1 with respect to G0, there
exists a PRG adversary B that plays Attack Game 3.1 with respect to G, where B is an elementary
wrapper around A, such that

PRGadv[A, G0] = n · PRGadv[B, G].
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Proof idea. The proof of this is a hybrid argument that is very similar in spirit to the proof of
Theorem 3.2. The intuition behind the proof is as follows: Consider a PRG adversary A who
receives the (r1, . . . , rn, sn) Experiment 0 of Attack Game 3.1. Since s = s0 is random and G is a
secure PRG, we may replace (r1, s1) by a completely random element of R⇥S, and the probability
that A outputs 1 in this new, hybrid game should change by only a negligible amount. Now, since
s1 is random (and again, since G is a secure PRG), we may replace (r2, s2) by a completely random
element of R ⇥ S, and the probability that A outputs 1 in this second hybrid game should again
change by only a negligible amount. Continuing in this way, we may incrementally replace (r3, s3)
through (rn, sn) by random elements of R⇥S, and the probability that A outputs 1 should change
by only a negligible amount after making all these changes (assuming n is poly-bounded). However,
at this point, A outputs 1 with the same probability with which he would output 1 in Experiment 1
in Attack Game 3.1, and therefore, this probability is negligibly close to the probability that A
outputs 1 in Experiment 0 of Attack Game 3.1.

That is the idea; however, just as in the proof of Theorem 3.2, for technical reasons, we design
a single PRG adversary that attacks G. 2

Proof. Let A be a PRG adversary that plays Attack Game 3.1 with respect to G0. We first introduce
a sequence of n + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid n. For j = 0, 1, . . . , n, we
define Hybrid j to be the game played between A and the following challenger:

r1  R R
...

rj  R R
sj  R S
(rj+1, sj+1) G(sj)

...
(rn, sn) G(sn�1)

send (r1, . . . , rn, sn) to A.

As usual, A outputs 0 or 1 at the end of the game. See Fig. 3.7 for a schematic description of
how these challengers work in the case n = 3. Let pj denote the probability that A outputs 1
in Hybrid j. Note that p0 is also equal to the probability that A outputs 1 in Experiment 0 of
Attack Game 3.1, while pn is equal to the probability that A outputs 1 in Experiment 1 of Attack
Game 3.1. Thus, we have

PRGadv[A, G0] = |pn � p0|. (3.7)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to G, and which
works as follows:

Upon receiving (r, s) 2 R ⇥ S from its challenger, B plays the role of challenger to A,
as follows:
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G G G

r1 r2 r3 s3

S

G G

r1 r2 r3 s3

S
R

G

r1 r2 r3 s3

R
S
R

r1 r2 r3 s3

R R
S
R

Hybrid 0

Hybrid 1

Hybrid 2

Hybrid 3

Figure 3.7: The challenger’s computation in the hybrid games for n = 3. The circles indicate
randomly generated elements of S or R, as indicated by the label.
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!  R {1, . . . , n}
r1  R R

...
r!�1  R R
(r!, s!) (r, s)

(r!+1, s!+1) G(s!)
...

(rn, sn) G(sn�1)

send (r1, . . . , rn, sn) to A.

Finally, B outputs whatever A outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on ! = j for every fixed j = 1, . . . , n, Experiment 0 of B’s attack game
is equivalent to Hybrid j � 1, while Experiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,
Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

The remainder of the proof is a simple calculation that is identical to that in the last paragraph of
the proof of Theorem 3.2. 2

One criteria for evaluating a PRG is its expansion rate: a PRG that stretches an n-bit seed
to an m-bit output has expansion rate of m/n; more generally, if the seed space is S and the
output space is R, we would define the expansion rate as log|R|/ log|S|. The sequential composi-
tion achieves a better expansion rate than the parallel composition. However, it su↵ers from the
drawback that it cannot be parallelized. In fact, we can obtain the best of both worlds: a large
expansion rate with a highly parallelizable construction (see Exercise 4.18).

3.4.3 Mathematical details

There are some subtle points in the proofs of Theorems 3.2 and 3.3 that merit discussion.
First, in both constructions, the underlying PRG G may have system parameters. That is,

there may be a probabilistic algorithm that takes as input the security parameter �, and outputs
a system parameter ⇤. Recall that a system parameter is public data that fully instantiates the
scheme (in this case, it might define the seed and output spaces). For both the parallel and
sequential constructions, one could use the same system parameter for all n instances of G; in fact,
for the sequential construction, this is necessary to ensure that outputs from one round may be
used as inputs in the next round. The proofs of these security theorems are perfectly valid if the
same system parameter is used for all instances of G, or if di↵erent system parameters are used.

Second, we briefly discuss a rather esoteric point regarding hybrid arguments. To make things
concrete, we focus attention on the proof of Theorem 3.2 (although analogous remarks apply to the
proof of Theorem 3.3, or any other hybrid argument). In proving this theorem, we ultimately want
to show that if there is an e�cient adversary A that breaks G0, then there is an e�cient adversary
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that breaks G. Suppose that A is an e�cient adversary that breaks G0, so that its advantage ✏(�)
(which we write here explicitly as a function of the security parameter �) with respect to G0 is not
negligible. This means that there exists a constant c such that ✏(�) � 1/�c for infinitely many �.

Now, in the discussion preceding the proof of Theorem 3.2, we considered the special case n = 2,
and showed that there exist e�cient adversaries B1 and B2, such that ✏(�)  �1(�)+ �2(�) for all �,
where �j(�) is the advantage of Bj with respect to G. It follows that either �1(�) � 1/2�c infinitely
often, or �2(�) � 1/2�c infinitely often. So we may conclude that either B1 breaks G or B2 breaks
G (or possibly both). Thus, there exists an e�cient adversary that breaks G: it is either B1 or
B2, which one we do not say (and we do not have to). However, whichever one it is, it is a fixed
adversary that is defined uniformly for all �; that is, it is a fixed machine that takes � as input.

This argument is perfectly valid, and extends to every constant n: we would construct n adver-
saries B1, . . . , Bn, and argue that for some j = 1, . . . , n, adversary Bj must have advantage 1/n�c

infinitely often, and thus break G. However, this argument does not extend to the case where n
is a function of �, which we now write explicitly as n(�). The problem is not that 1/(n(�)�c) is
perhaps too small (it is not). The problem is quite subtle, so before we discuss it, let us first review
the (valid) proof that we did give. For each �, we defined a sequence of n(�) + 1 hybrid games,
so that for each �, we actually get a di↵erent sequence of games. Indeed, we cannot speak of a
single, finite sequence of games that works for all �, since n(�) ! 1. Nevertheless, we explicitly
constructed a fixed adversary B that is defined uniformly for all �; that is, B is a fixed machine
that takes � as input. The sequence of hybrid games that we define for each � is a mathematical
object for which we make no claims as to its computability — it is simply a convenient device used
in the analysis of B.

Hopefully by now the reader has at least a hint of the problem that arises if we attempt to
generalize the argument for constant n to a function n(�). First of all, it is not even clear what
it means to talk about n(�) adversaries B1, . . . , Bn(�): our adversaries our supposed to be fixed
machines that take � as input, and the machines themselves should not depend on �. Such linguistic
confusion aside, our proof for the constant case only shows that there exists an “adversary” that for
infinitely many values of � somehow knows the “right” value of j = j(�) to use in the (n(�) + 1)-
game hybrid argument — no single, constant value of j necessarily works for infinitely many �. One
can actually make sense of this type of argument if one uses a non-uniform model of computation,
but we shall not take this approach in this text.

All of these problems simply go away when we use a hybrid argument that constructs a single
adversary B, as we did in the proofs of Theorems 3.2 and 3.3. However, we reiterate that the original
analysis we did in the where n = 2, or its natural extension to every constant n, is perfectly valid.
In that case, we construct a single, fixed sequence of n + 1 games, with each individual game
uniformly defined for all � (just as our attack games are in our security definitions), as well as a
finite collection of adversaries, each of which is a fixed machine. We reiterate this because in the
sequel we shall often be constructing proofs that involve finite sequences of games like this (indeed,
the proof of Theorem 3.1 was of this type). In such cases, each game will be uniformly defined for
all �, and will be denoted Game 0, Game 1, etc. In contrast, when we make a hybrid argument
that uses non-uniform sequences of games, we shall denote these games Hybrid 0, Hybrid 1, etc.,
so as to avoid any possible confusion.
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3.5 The next bit test

Let G be a PRG defined over ({0, 1}`, {0, 1}L), so that it stretches `-bit strings to L-bit strings.
There are a number of ways an adversary might be able to distinguish a pseudo-random output of
G from a truly random bit string. Indeed, suppose that an e�cient adversary were able to compute,
say, the last bit of G’s output, given the first L� 1 bits of G’s output. Intuitively, the existence of
such an adversary would imply that G is insecure, since given the first L� 1 bits of a truly random
L-bit string, one has at best a 50-50 chance of guessing the last bit. It turns out that an interesting
converse, of sorts, is also true.

We shall formally define the notion of unpredictability for a PRG, which essentially says
that given the first i bits of G’s output, it is hard to predict the next bit (i.e., the (i + 1)-st
bit) with probability significantly better that 1/2 (here, i is an adversarially chosen index). We
shall then prove that unpredictability and security are equivalent. The fact that security implies
unpredictability is fairly obvious: the ability to e↵ectively predict the next bit in the pseudo-random
output string immediately gives an e↵ective statistical test. However, the fact that unpredictability
implies security is quite interesting (and requires more e↵ort to prove): it says that if there is any
e↵ective statistical test at all, then there is in fact an e↵ective method for predicting the next bit
in a pseudo-random output string.

Attack Game 3.2 (Unpredictable PRG). For a given PRG G, defined over (S, {0, 1}L), and a
given adversary A, the attack game proceeds as follows:

• The adversary sends an index i, with 0  i  L� 1, to the challenger.

• The challenger computes
s R S, r  G(s)

and sends r[0 . . i� 1] to the adversary.

• The adversary outputs g 2 {0, 1}.

We say that A wins if r[i] = g, and we define A’s advantage Predadv[A, G] to be |Pr[A wins]�1/2|.
2

Definition 3.3 (Unpredictable PRG). A PRG G is unpredictable if the value Predadv[A, G]
is negligible for all e�cient adversaries A.

We begin by showing the security implies unpredictability.

Theorem 3.4. Let G be a PRG, defined over (S, {0, 1}L). If G is secure, then G is unpredictable.

In particular, for every adversary A breaking the unpredictability of G, as in Attack Game 3.2,
there exists an adversary B breaking the security G as in Attack Game 3.1, where B is an
elementary wrapper around A, such that

Predadv[A, G] = PRGadv[B, G].

Proof. Let A be an adversary breaking the predictability of G, and let i denote the index chosen
by A. Also, suppose A wins Attack Game 3.2 with probability 1/2+ ✏, so that Predadv[A, G] = |✏|.

We build an adversary B breaking the security of G, using A as a subroutine, as follows:
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Upon receiving r 2 {0, 1}L from its challenger, B does the following:

• B gives r[0 . . i� 1] to A, obtaining A’s output g 2 {0, 1};

• if r[i] = g, then output 1, and otherwise, output 0.

For b = 0, 1, let Wb be the event that B outputs 1 in Experiment b of Attack Game 3.1. In
Experiment 0, r is a pseudo-random output of G, and W0 occurs if and only if r[i] = g, and so by
definition

Pr[W0] = 1/2 + ✏.

In Experiment 1, r is a truly random bit string, but again, W1 occurs if and only if r[i] = g; in this
case, however, as random variables, the values of r[i] and g are independent, and so

Pr[W1] = 1/2.

It follows that

PRGadv[B, G] = |Pr[W1]� Pr[W0]| = |✏| = Predadv[A, G]. 2

The more interesting, and more challenging, task is to show that unpredictability implies secu-
rity. Before getting into all the details of the proof, we sketch the high level ideas.

First, we shall employ a hybrid argument, which will essentially allow us to argue that if A is
an e�cient adversary that can e↵ectively distinguish a pseudo-random L-bit string from a random
L-bit string, then we can construct an e�cient adversary B that can e↵ectively distinguish

x1 · · · xj xj+1

from
x1 · · · xj r,

where j is a randomly chosen index, x1, . . . , xL is the pseudo-random output, and r is a random bit.
Thus, adversary B can distinguish the pseudo-random bit xj+1 from the random bit rj+1, given
the “side information” x1, . . . , xj .

We want to turn B’s distinguishing advantage into a predicting advantage. The rough idea is
this: given x1, . . . , xj , we feed B the string x1, . . . , xj r for a randomly chosen bit r; if B outputs 1,
our prediction for xj+1 is r; otherwise, or prediction for xj+1 is r̄ (the complement of r).

That this prediction strategy works is justified by the following general result, which we call
the distinguisher/predictor lemma. The general setup is as follows. We have:

• a random variable X, which corresponds to the “side information” x1, . . . , xj above, as well
as any random coins used by the adversary B;

• a 0/1-valued random variable B, which corresponds to xj+1 above, and which may be corre-
lated with X;

• a 0/1-valued random variable R, which corresponds to r above, and which is independent of
(X,B);

• a function d, which corresponds to B’s strategy, so that B’s distinguishing advantage is equal
to |✏|, where ✏ = Pr[d(X,B) = 1]� Pr[d(X,R) = 1].
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The lemma says that if we define B0 using the predicting strategy outlined above, namely B0 = R
if d(X,R) = 1, and B0 = R otherwise, then the probability that the prediction B0 is equal to the
actual value B is precisely 1/2 + ✏. Here is the precise statement of the lemma:

Lemma 3.5 (Distinguisher/predictor lemma). Let X be a random variable taking values in
some set S, and let B and R be a 0/1-valued random variables, where R is uniformly distributed
over {0, 1} and is independent of (X,B). Let d : S ⇥ {0, 1}! {0, 1} be an arbitrary function, and
let

✏ := Pr[d(X,B) = 1]� Pr[d(X,R) = 1].

Define the random variable B0 as follows:

B0 :=

(

R if d(X,R) = 1;

R otherwise.

Then
Pr[B0 = B] = 1/2 + ✏.

Proof. We calculate Pr[B0 = B], conditioning on the events B = R and B = R:

Pr[B0 = B] = Pr[B0 = B | B = R] Pr[B = R] + Pr[B0 = B | B = R] Pr[B = R]

= Pr[d(X,R) = 1 | B = R]
1

2
+ Pr[d(X,R) = 0 | B = R]

1

2

=
1

2

⇣

Pr[d(X,R) = 1 | B = R] + (1� Pr[d(X,R) = 1 | B = R)]
⌘

=
1

2
+

1

2
(↵� �),

where
↵ := Pr[d(X,R) = 1 | B = R] and � := Pr[d(X,R) = 1 | B = R].

By independence, we have

↵ = Pr[d(X,R) = 1 | B = R] = Pr[d(X,B) = 1 | B = R] = Pr[d(X,B) = 1].

To see the last equality, the result of Exercise 3.26 may be helpful.
We thus calculate that

✏ = Pr[d(X,B) = 1]� Pr[d(X,R) = 1]

= ↵�
⇣

Pr[d(X,R) = 1 | B = R] Pr[B = R] + Pr[d(X,R) = 1 | B = R] Pr[B = R]
⌘

= ↵� 1

2
(↵ + �)

=
1

2
(↵� �),

which proves the lemma. 2

Theorem 3.6. Let G be a PRG, defined over (S, {0, 1}L). If G is unpredictable, then G is secure.
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In particular, for every adversary A breaking the security of G as in Attack Game 3.1, there
exists an adversary B, breaking the unpredictability of G as in Attack Game 3.2, where B is an
elementary wrapper around A, such that

PRGadv[A, G] = L · Predadv[B, G].

Proof. Let A attack G as in Attack Game 3.1. Using A, we build a predictor B, which attacks G
as in Attack Game 3.2, and works as follows:

• Choose ! 2 {1, . . . , L} at random.

• Send L� ! to the challenger, obtaining a string x 2 {0, 1}L�!.

• Generate ! random bits r1, . . . , r!, and give the L-bit string x k r1 · · · r! to A.

• If A outputs 1, then output r1; otherwise, output r1.

To analyze B, we consider L + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid L. For
j = 0, . . . , L, we define Hybrid j to be the game played between A and a challenger that generates
a bit string r consisting of L� j pseudo-random bits, followed by j truly random bits; that is, the
challenger chooses s 2 S and t 2 {0, 1}j at random, and sends A the bit string

r := G(s)[0 . . L� j � 1] k t.

As usual, A outputs 0 or 1 at the end of the game, and we define pj to be the probability that A
outputs 1 in Hybrid j. Note that p0 is the probability that A outputs 1 in Experiment 0 of Attack
Game 3.1, while pL is the probability that A outputs 1 in Experiment 1 of Attack Game 3.1.

Let W be the event that B wins in Attack Game 3.2 (that is, correctly predicts the next bit).
Then we have

Pr[W ] =
L
X

j=1

Pr[W | ! = j] Pr[! = j]

=
1

L

L
X

j=1

Pr[W | ! = j]

=
1

L

L
X

j=1

⇣1

2
+ pj�1 � pj

⌘

(by Lemma 3.5)

=
1

2
+

1

L
(p0 � pL),

and the theorem follows. 2

3.6 Case study: the Salsa and ChaCha PRGs

There are many ways to build PRGs and stream ciphers in practice. One approach builds PRGs
using the Blum-Micali paradigm discussed in Section 3.4.2. Another approach, discussed more
generally in the Chapter 5, builds them from a more versatile primitive called a pseudorandom
function in counter mode. We start with a construction that uses this latter approach.
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Salsa20/12 and Salsa20/20 are fast stream ciphers designed by Dan Burnstein in 2005.
Salsa20/12 is one of four Profile 1 stream ciphers selected for the eStream portfolio of stream
ciphers. eStream is a project that identifies fast and secure stream ciphers that are appropriate
for practical use. Variants of Salsa20/12 and Salsa20/20, called ChaCha12 and ChaCha20 respec-
tively, were proposed by Bernstein in 2008. These stream ciphers have been incorporated into
several widely deployed protocols such as TLS, SSH, and QUIC.

Let us briefly describe the PRGs underlying the Salsa and ChaCha stream cipher families.
These PRGs take as input a 256-bit seed and a 64-bit nonce. For now we ignore the nonce and
simply set it to 0. We discuss the purpose of the nonce at the end of this section. The Salsa
and ChaCha PRGs follow the same high level structure shown in Fig. 3.8. They make use of two
components:

• A padding function denoted pad(s, j, 0) that combines a 256-bit seed s with a 64-bit counter
j to form a 512-bit block. The third input, a 64-bit nonce, is always set to 0 for now.

• A fixed public permutation ⇡ : {0, 1}512 ! {0, 1}512.
These components are used to output L < 264 pseudorandom blocks, each 512 bits long, using the
following algorithm (Fig. 3.8):

input: seed s 2 {0, 1}256
1. for j  0 to L� 1
2. hj  pad(s, j, 0) 2 {0, 1}512
3. rj  ⇡(hj)� hj

4. output (r0, . . . , rL�1).

The final PRG output is 512 · L bits long. We note that in Salsa and ChaCha the XOR on line 3
is a slightly more complicated operation: the 512-bit operands hj and ⇡(hj) are split into 16 words
each 32-bits long and then added word-wise mod 232.

The design of Salsa and ChaCha is highly parallelizable and can take advantage of multiple
processor cores to speed-up encryption. Moreover, it enables random access to output blocks:
output block number j can be computed without having to first compute all previous blocks.
Generators based on the Blum-Micali paradigm do not have these properties.

We analyze the security of the Salsa and ChaCha design in Exercise 4.21 in the next chapter,
after we develop a few more tools.

The details. We briefly describe the padding function pad(s, j, n) and the permutation ⇡ used
in ChaCha20. The padding function takes as input a 256-bit seed s0, . . . , s7 2 {0, 1}32, a 64-bit
counter j0, j1 2 {0, 1}32, and 64-bit nonce n0, n1 2 {0, 1}32. It outputs a 512-bit block denoted
x0, . . . , x15 2 {0, 1}32. The output is arranged in a 4⇥ 4 matrix of 32-bit words as follows:

0

B

B

@

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

1

C

C

A

 �

0

B

B

@

c0 c1 c2 c3
s0 s1 s2 s3
s4 s5 s6 s7
j0 j1 n0 n1

1

C

C

A

(3.8)

where c0, c1, c2, c3 are fixed 32-bit constants.
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Figure 3.8: A schematic of the Salsa and ChaCha PRGs

The permutation ⇡ : {0, 1}512 ! {0, 1}512 is constructed by iterating a simpler permutation a
fixed number of times. The 512-bit input to ⇡ is treated as a 4 ⇥ 4 array of 32-bit words denoted
by x0, . . . , x15. In ChaCha20 the function ⇡ is implemented by repeating the following sequence of
steps ten times:

QuarterRound(x0, x4, x8, x12), QuarterRound(x1, x5, x9, x13), QuarterRound(x2, x6, x10, x14),
QuarterRound(x3, x7, x11, x15), QuarterRound(x0, x5, x10, x15), QuarterRound(x1, x6, x11, x12),
QuarterRound(x2, x7, x8, x13), QuarterRound(x3, x4, x9, x14)

where QuarterRound(a, b, c, d) is defined as the following sequence of steps written as C code:

a += b; d ^= a; d <<<= 16;

c += d; b ^= c; b <<<= 12;

a += b; d ^= a; d <<<= 8;

c += d; b ^= c; b <<<= 7;

The first four invocations of QuarterRound are applied to each of the first four columns. The
next four invocations are applied to each of the four diagonals. This completes our description of
ChaCha20, except that we still need to discuss the use of nonces.

Using nonces. While the PRGs we discussed so far only take the seed as input, many PRGs used
in practice take an additional input called a nonce. That is, the PRG is a function G : S ⇥N ! R
where S and R are as before and N is called a nonce space. The nonce lets us generate multiple
pseudorandom outputs from a single seed s. That is, G(s, n0) is one pseudorandom output and
G(s, n1) for n1 6= n0 is another. The nonce turns the PRG into a more powerful primitive called
a pseudorandom function discussed in the next chapter. As we will see, secure pseudorandom
functions make it possible to use the same seed to encrypt multiple messages securely.
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3.7 Case study: linear generators

In this section we look at two example PRGs built from linear functions. Both generators follow the
Blum-Micali paradigm presented in Section 3.4.2. Our first example, called a linear congruential
generator, is completely insecure and we present it to give an example of some beautiful mathematics
that comes up when attacking PRGs. Our second example, called a subset sum generator, is a
provably secure PRG assuming a certain version of the classic subset-sum problem is hard.

3.7.1 An example cryptanalysis: linear congruential generators

Linear congruential generators (LCG) are used in statistical simulations to generate pseudorandom
values. They are fast, easy to implement, and widely deployed. Variants of LCG are used to
generate randomness in early versions of glibc, Microsoft Visual Basic, and the Java runtime.
While these generators may be su�cient for simulations they should never be used for cryptographic
applications because they are insecure as PRGs. In particular, they are predictable: given a few
consecutive outputs of an LCG generator it is easy to compute all subsequent outputs. In this
section we describe an attack on LCG generators by showing a prediction algorithm.

The basic linear congruential generator is specified by four public system parameters: an inte-
ger q, two constants a, b 2 {0, . . . , q � 1}, and a positive integer w  q. The constant a is taken to
be relatively prime to q. We use Sq and R to denote the sets:

Sq := {0, . . . , q � 1}; R :=
�

0, . . . , b(q � 1)/wc  .

Here b·c is the floor function: for a real number x, bxc is the biggest integer less than or equal to x.
Now, the generator Glcg : Sq ! R⇥ Sq with seed s 2 Sq is defined as follows:

Glcg(s) :=
� bs/wc, as + b mod q

�

.

When w is a power of 2, say w = 2t, then the operation bs/wc simply erases the t least significant
bits of s. Hence, the left part of Glcg(s) is the result of dropping the t least significant bits of s.

The generator Glcg is clearly insecure since given s0 := as + b mod q it is straight-forward to
recover s and then distinguish bs/wc from random. Nevertheless, consider a variant of the Blum-
Micali construction in which the final Sq-value is not output:

G(n)
lcg (s) := s0  s

for i 1 to n do
ri  bsi�1/wc, si  asi�1 + b mod q

output (r1, . . . , rn).

We refer to each iteration of the loop as a single iteration of the LCG generator and call each one
of r1, . . . , rn the output of a single iteration.

Di↵erent implementations use di↵erent system parameters q, a, b, w. For example, the
Math.random function in the Java 8 Development Kit (JDKv8) uses q = 248, w = 222, and the
hexadecimal constants a = 0x5DEECE66D, b = 0x0B. Thus, every iteration of the LCG generator
outputs the top 48� 22 = 26 bits of the 48-bit state si.

The parameters used by this Java 8 generator are clearly too small for security applications
since the output of the first iteration of the generator reveals all but 22 bits of the seed s. An
attacker can easily recover these unknown 22 bits by exhaustive search: for every possible value
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of the 22 bits the attacker forms a candidate seed ŝ. It tests if ŝ is the correct seed by comparing
subsequent outputs computed from seed ŝ to a few subsequent outputs observed from the actual
generator. By trying all 222 candidates (about four million) the attacker eventually finds the correct
seed s and can then predict all subsequent outputs of the generator. This attack runs in under a
second on a modern processor.

Even when the LCG parameters are su�ciently large to prevent exhaustive search, say q = 2512,

the generator G(n)
lcg is insecure and should never be used for security applications despite its wide

availability in software libraries. Known attacks [29] on the LCG show that even if the generator
outputs only a few bits per iteration, it is still possible to predict the entire sequence from just a
few consecutive outputs. Let us see an elegant version of this attack.

Cryptanalysis. Suppose that q is large (e.g. q = 2512) and the LCG generator G(n)
lcg outputs

about half the bits of the state s per iteration, as in the Java 8 Math.random generator. An
exhaustive search on the seed s is not possible given its size. Nevertheless, we show how to quickly
predict the generator from the output of only two consecutive iterations.

More precisely, suppose that w <
p

q/c for some fixed c > 0, say c = 32. This means that at
every iteration the generator outputs slightly more than half the bits of the current internal state.

Suppose the attacker is given two consecutive outputs of the generator ri, ri+1 2 R. We show
how it can predict the remaining sequence. The attacker knows that

ri = bsi/wc and ri+1 = bsi+1/wc = b(asi + b mod q)/wc .

for some unknown si 2 Sq. We have

ri · w + e0 = si and ri+1 · w + e1 = (asi + b mod q),

where e0 and e1 are the remainders after dividing si and si+1 by w; in particular, 0  e0, e1 < w <p
q/c. The fact that e0, e1 are smaller than

p
q is an essential ingredient of the attack. Next, let us

write s in place of si, and eliminate the mod q by introducing an integer variable x to obtain

ri · w + e0 = s and ri+1 · w + e1 = as + b + qx .

The values x, s, e0, e1 are unknown to the attacker, but it knows ri, ri+1, w, a, b. Finally, re-arranging
terms to put the terms involving x and s on the left gives

s = ri · w + e0 and as + qx = ri+1w � b + e1 . (3.9)

We can re-write (3.9) in vector form as

s ·
✓

1
a

◆

+ x ·
✓

0
q

◆

= g + e where g :=

✓

riw
ri+1w � b

◆

and e :=

✓

e0
e1

◆

. (3.10)

Let u 2 Z2 denote the unknown vector u := g + e = s · (1, a)| + x · (0, q)|. If the attacker could
find u then he could easily recover s and x from u by linear algebra. Using s he could predict the
rest of the PRG output. Thus, to break the generator it su�ces to find the vector u. The attacker
knows the vector g 2 Z2, and moreover, he knows that e is short, namely kek1 is at most

p
q/c.

Therefore, he knows that u is “close” to g.
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Figure 3.9: The two-dimensional lattice associated with attacking the LCG. Here the lattice is
generated by the vectors (1, 5)| and (0, 29)|. The attacker has a vector g = (9, 7)| and wishes to
find the closest lattice vector u. In this picture there is indeed only one “close” lattice vector to g.

We show how to find u from g. Consider the set of all integer linear combinations of the
vectors (1, a)| and (0, q)|. This set, denoted by La, is a subset of Z2 and contains vectors like
(1, a)|, (2, 2a)|, (3, 3a� 2q)|, and so on. The set La is illustrated in Fig. 3.9 where the solid dots
in the figure are the integer linear combinations of the vectors (1, a)| and (0, q)|. The set La is
called the two-dimensional lattice generated by the vectors (1, a)| and (0, q)|.

Now, the attacker has a vector g 2 Z2 and knows that his target vector u 2 La is close to g.
If he could find the closest vector in La to g then there is a good chance that this vector is the
desired vector u. The following lemma shows that indeed this is the case for most a 2 Sq.

Lemma 3.7. For at least (1 � 16/c2) · q of the a in Sq, the lattice La ✓ Z2 has the following
property: for every g 2 Z2 there is at most one vector u 2 La such that kg � uk1 <

p
q/c.

Taking c = 32 in Lemma 3.7 (so that w =
p

q/30) shows that for 98% of the a 2 Sq the closest
vector to g in La is precisely the desired vector u. Before proving the lemma, let us first complete
the description of the attack.

It remains to e�ciently find the closest vector to g in La. This problem is a special case of
a general problem called the closest vector problem: given a lattice L and a vector g, find
the vector in L that is closest to g. When the lattice L is two dimensional there is an e�cient
polynomial time algorithm for this problem [69]. Armed with this algorithm the attacker can
recover the internal state si of the LCG generator from just two outputs ri, ri+1 of the generator
and predict the remaining sequence. This attack works for 98% of the a 2 Sq.

For completeness we note that some example a 2 Sq in the 2% where the attack fails are a = 1
and a = 2. For these a there may be many lattice vector in La close to a given g. We leave it as
a fun exercise to devise an attack that works for the a in Sq to which Lemma 3.7 does not apply.
We conclude this section with a proof of Lemma 3.7.

Proof of Lemma 3.7. Let g 2 Z2 and suppose there are two vectors u0 and u1 in La that are close
to g, that is, kui � gk1 <

p
q/c for i = 0, 1. Then u0 and u1 must be close to each other. Indeed,
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by the triangle inequality, we have

ku0 � u1k1  ku0 � gk1 + kg � u1k1  2
p

q/c .

Since any lattice is closed under addition, we see that u := u0 � u1 is a vector in the lattice La,
and we conclude that La must contain a “short” vector, namely, a non-zero vector of norm at most
B := 2

p
q/c. So let us bound the number of “bad” a’s for which La contains such a short vector.

Let us first consider the case when q is prime. We show that every short vector is contained in at
most one lattice La and therefore the number of bad a’s is at most the number of short vectors. Let
t = (s, y)| 2 Z2 be some non-zero vector such that ktk1  B. Suppose that t 2 La for some a 2 Sq.
Then there exist integers sa and xa such that sa · (1, a)| + xa · (0, q)| = t = (s, y)|. From this we
obtain that s = sa and y = as mod q. Moreover, s 6= 0 since otherwise t = 0. Since y = as mod q
and s 6= 0, the value of a is uniquely determined, namely, a = ys�1 mod q. Hence, when q is prime,
every non-zero short vector t is contained in at most one lattice La for some a 2 Sq. It follows that
the number of bad a is at most the number of short vectors, which is (2B)2 = 16q/c2.

The same bound on the number of bad a’s holds when q is not prime. To see why consider a
specific non-zero s 2 Sq and let d = gcd(s, q). As above, a vector t = (s, y)| is contained in some
lattice La only if there is an a 2 Sq satisfying as ⌘ y (mod q). This implies that y must be a
multiple of d so that we need only consider 2B/d possible values of y. For each such y the vector
t = (s, y)| is in at most d lattices La. Since there are 2B possible values for s, this shows that the
number of bad a’s is bounded by d · 2B/d · 2B = (2B)2 as in the case when q is prime.

To conclude, there are at most 16q/c2 bad values of a in Sq. Therefore, for (1� 16/c2) · q of the
a values in Sq, the lattice La contains no non-zero short vectors and the lemma follows. 2

3.7.2 The subset sum generator

We next show how to construct a pseudorandom generator from simple linear operations. The
generator is secure assuming that a certain randomized version of the classic subset sum problem
is hard.

The modular subset problem. Let q be a positive integer and set Sq := {0, . . . , q�1}. Choose n
integers a := (a0, . . . , an�1) in Sq and define the subset sum function fa : {0, 1}n ! Sq as

fa(s) :=
X

i:si=1

ai mod q .

Now, for a target integer t 2 Sq the modular subset problem is defined as follows:

given (q,a, t) as input, output a vector s 2 {0, 1}n such that fa(s) = t, if one exists.

In other words, the problem is to invert the function fa(·) by finding a pre-image of t, if one exists.
The modular subset problem is known to be NP hard.

The subset sum PRG. The subset problem naturally suggests the following PRG: at setup
time fix an integer q and choose random integers ~a := (a0, . . . , an�1) in Sq. The PRG Gq,~a takes a
seed s 2 {0, 1}n and outputs a pseudorandom value in Sq. It is defined as

Gq,~a(s) :=
n
X

i=1

ai · si mod q .
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The PRG expands an n bit seed to a log2 q bits of output. Choosing an n and q so that 2n = log2 q
gives a PRG whose output is twice the size of the input. We can plug this into the Blum-Micali
construction to expand the output further.

While the PRG is far slower than custom constructions like ChaCha20 from Section 3.6, the
work per bit of output is a single modular addition in Sq, which may be appropriate for some
applications that are not time sensitive.

Impagliazzo and Naor [?] show that attacking Gq,~a as a PRG is as hard as solving a certain
randomized variant of the modular subset sum problem. We present the analysis in Section ??
after we develop a few more tools. While there is considerable work on solving the modular subset
problem, the problem appears to be hard when 2n = log2 q for large n, say n > 1000, which implies
the security of Gq,~a as a PRG.

Variants. Fischer and Stern [?] and others propose the following variation of the subset sum
generator:

Gq,A(s) := A · s mod q

where q is a small prime, A is a random matrix in Sn⇥m
q for n < m, and the seed s is uniform in

{0, 1}m. The generator maps an m-bit seed to n log2 q bits of output.

3.8 Case study: cryptanalysis of the DVD encryption system

The Content Scrambling System (CSS) is a system used for protecting movies on DVD disks. It
uses a stream cipher, called the CSS stream cipher, to encrypt movie contents. CSS was designed
in the 1980’s when exportable encryption was restricted to 40-bit keys. As a result, CSS encrypts
movies using a 40-bit secret key. While ciphers using 40-bit keys are woefully insecure, we show that
the CSS stream cipher is particularly weak and can be broken in far less time than an exhaustive
search over all 240 keys. It provides a fun opportunity for cryptanalysis.

Linear feedback shift registers (LFSR). The CSS stream cipher is built from two LFSRs.
An n-bit LFSR is defined by a set of integers V := {v1, . . . , vd} where each vi is in the range
{0, . . . , n � 1}. The elements of V are called tap positions. An LFSR gives a PRG as follows
(Fig. 3.10):

Input: s = (bn�1, . . . , b0) 2 {0, 1}n and s 6= 0n

Output: y 2 {0, 1}` where ` > n

for i 1 . . . ` do
output b0 // output one bit
b bv1 � · · ·� bvd // compute feedback bit
s (b, bn�1, . . . , b1) // shift register bits to the right

The LFSR outputs one bit per clock cycle. Note that if an LFSR is started in state s = 0n then
its output is degenerate, namely all 0. For this reason one of the seed bits is always set to 1.

LFSR can be implemented in hardware with few transistors. As a result, stream ciphers built
from LFSR are attractive for low-cost consumer electronics such as DVD players, cell phones, and
Bluetooth devices.
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Figure 3.10: The 8 bit linear feedback shift register {4, 3, 2, 0}

Stream ciphers from LSFRs. A single LFSR is completely insecure as a PRG since given n
consecutive bits of its output it is trivial to compute all subsequent bits. Nevertheless, by combining
several LFSRs using a non-linear component it is possible to get some (weak) security as a PRG.
Trivium, one of the eStream portfolio stream ciphers, is built this way.

One approach to building stream ciphers from LFSRs is to run several LFSRs in parallel and
combine their output using a non-linear operation. The CSS stream cipher, described next, com-
bines two LFSRs using addition over the integers. The A5/1 stream cipher used to encrypt GSM
cell phone tra�c combines the outputs of three LFSRs. The Bluetooth E0 stream cipher combines
four LFSRs using a 2-bit finite state machine. All these algorithms have been shown to be insecure
and should not be used: recovering the plaintext takes far less time than an exhaustive search on
the key space.

Another approach is to run a single LFSR and generate the output from a non-linear operation
on its internal state. The snow 3G cipher used to encrypt 3GPP cell phone tra�c operates this
way.

The CSS stream cipher. The CSS stream cipher is built from the PRG shown in Fig. 3.11.
The PRG works as follows:

Input: seed s 2 {0, 1}40
write s = s1ks2 where s1 2 {0, 1}16 and s2 2 {0, 1}24
load 1ks1 into a 17-bit LFSR
load 1ks2 into a 25-bit LFSR
c 0 // carry bit

repeat
run both LFSRs for eight cycles to obtain x, y 2 {0, 1}8
treat x, y as integers in 0 . . . 255
output x + y + c mod 256
if x + y > 255 then c 1 else c 0 // carry bit

forever

The PRG outputs one byte per iteration. Prepending 1 to both s1 and s2 ensures that the LFSRs
are never initialized to the all 0 state. The taps for both LFSRs are fixed. The 17-bit LFSR uses
taps {14, 0}. The 25-bit LFSR uses taps {12, 4, 3, 0}.

The CSS PRG we presented is a minor variation of CSS that is a little easier to describe, but
has the same security. In the real CSS, instead of prepending a 1 to the initial seeds, one inserts
the 1 in bit position 9 for the 17-bit LFSR and in bit position 22 for the 25-bit LFSR. In addition,
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Figure 3.11: The CSS stream cipher

the real CSS discards the first byte output by the 17-bit LFSR and the first two bytes output by
the 25-bit LFSR. Neither issue a↵ects the analysis presented next.

Insecurity of CSS. Given the PRG output, one can clearly recover the secret seed in time 240

by exhaustive search over the seed space. We show a much faster attack that takes only 216 guesses.
Suppose we are given the first 100 bytes z̄ := (z1, z2, . . .) output by the PRG. The attack is based
on the following simple observations:

• Let (x1, x2, x3) be the first three bytes output by the 17-bit LFSR. The initial state s2 of the
second LFSR is easily obtained once both (z1, z2, z3) and (x1, x2, x3) are known by subtracting
one from the other. More precisely, subtract the integer 216x3 + 28x2 + x1 from the integer
217 + 216z3 + 28z2 + z1.

• The output (x1, x2, x3) is determined by the 16-bit seed s1.

With these two observations the attacker can recover the seed s by trying all possible 16-bit values
for s1. For each guess for s1 compute the corresponding (x1, x2, x3) output from the 17-bits LFSR.
Subtract (x1, x2, x3) from (z1, z2, z3) to obtain a candidate seed s2 for the second LFSR. Now,
confirm that (s1, s2) are the correct secret seed s by running the PRG and comparing the resulting
output to the given sequence z̄. If the sequences do not match, try another guess for s1. Once the
attacker hits the correct value for s1, the generated sequence will match the given z̄ in which case
the attacker found the secret seed s = (s1, s2).

We just showed that the entire seed s can be found after an expected 215 guesses for s1. This
is much faster than the naive 240-time exhaustive search attack.

3.9 Case study: cryptanalysis of the RC4 stream cipher

The RC4 stream cipher, designed by Ron Rivest in 1987, was historically used for securing Web
tra�c (in the SSL/TLS protocol) and wireless tra�c (in the 802.11b WEP protocol). It is designed
to operate on 8-bit processors with little internal memory. While RC4 is still in use, it has been
shown to be vulnerable to a number of significant attacks and should not be used in new projects.
Our discussion of RC4 serves as an elegant example of stream cipher cryptanalysis.

At the heart of the RC4 cipher is a PRG, called the RC4 PRG. The PRG maintains an internal
state consisting of an array S of 256 bytes plus two additional bytes i, j used as pointers into S.
The array S contains all the numbers 0 . . . 255 and each number appears exactly once. Fig. 3.12
gives an example of an RC4 state.
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Figure 3.12: An example RC4 internal state

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S to a
pseudo-random permutation of the numbers 0 . . . 255. Initialization is performed using the following
setup algorithm:

input: string of bytes s

for i 0 to 255 do: S[i] i

j  0
for i 0 to 255 do

k  s
⇥

i mod |s|⇤ // extract one byte from seed
j  �

j + S[i] + k
�

mod 256
swap(S[i], S[j])

During the loop the index i runs linearly through the array while the index j jumps around. At
each iteration the entry an index i is swapped with the entry at index j.

Once the array S is initialized, the PRG generates pseudo-random output one byte at a time
using the following stream generator:

i 0, j  0

repeat
i (i + 1) mod 256
j  (j + S[i]) mod 256
swap(S[i], S[j])
output S

⇥

(S[i] + S[j]) mod 256
⇤

forever

The procedure runs for as long as necessary. Again, the index i runs linearly through the array
while the index j jumps around. Swapping S[i] and S[j] continuously shu✏es the array S.

RC4 encryption speed. RC4 is well suited for software implementations. Other stream ciphers,
such as Grain and Trivium, are designed for hardware and perform poorly when implemented in
software. Table 3.1 provides running times for RC4 and a few other software stream ciphers.
Modern processors operate on 64-bit words, making the 8-bit design of RC4 relatively slow on
these architectures.

1Performance numbers were obtained using the Crypto++ 5.6.0 benchmarks running on a 1.83 GhZ Intel Core 2
processor.
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cipher speed1(MB/sec)
RC4 126
SEAL 375
Salsa20 408
Sosemanuk 727

Table 3.1: Software stream cipher speeds (higher speed is better)

3.9.1 Security of RC4

At one point RC4 was believed to be a secure stream cipher and was widely deployed in applications.
The cipher fell from grace after a number of attacks showed that its output is somewhat biased.
We present two attacks that distinguish the output of RC4 from a random string. Throughout the
section we let n denote the size of the array S. n = 256 for RC4.

Bias in the initial RC4 output. The RC4 setup algorithm initializes the array S to a permuta-
tion of 0 . . . 255 generated from the given random seed. For now, let us assume that the RC4 setup
algorithm is perfect and generates a uniform permutation from the set of all 256! permutations.
Mantin and Shamir [44] showed that, even assuming perfect initialization, the output of RC4 is
biased.

Lemma 3.8 (Mantin-Shamir). Suppose the array S is set to random permutation of 0 . . . n� 1
and that i, j are set to 0. Then the probability that the second byte of the output of RC4 is equal to
0 is 2/n.

Proof idea. Let z2 be the second byte output by RC4. Let P be the event that S[2] = 0 and
S[1] 6= 2. The key observation is that when event P happens then z2 = 0 with probability 1. See
Fig. 3.13. However, when P does not happen then z2 is uniformly distributed in 0 . . . n � 1 and
hence equal to 0 with probability 1/n. Since Pr[P ] is about 1/n we obtain (approximately) that

Pr[z2 = 0] = Pr
⇥

(z2 = 0) | P
⇤ · Pr[P ] + Pr

⇥

(z2 = 0) | ¬P
⇤ · Pr[¬P ]

⇡ 1 · (1/n) + (1/n) · (1� 1/n) ⇡ 2/n 2

The lemma shows that the probability that the second byte in the output of RC4 is 0 is
twice what it should be. This leads to a simple distinguisher for the RC4 PRG. Given a string
x 2 {0 . . . 255}`, for ` � 2, the distinguisher outputs 0 if the second byte of x is 0 and outputs 1
otherwise. By Lemma 3.8 this distinguisher has advantage approximately 1/n, which is 0.39% for
RC4.

The Mantin-Shamir distinguisher shows that the second byte of the RC4 output are biased.
This was generalized by AlFardan et al. [3] who showed, by measuring the bias over many random
keys, that there is bias in every one of the first 256 bytes of the output: the distribution on each
byte is quite far from uniform. The bias is not as noticeable as in the second byte, but it is non-
negligible and su�cient to attack the cipher. They show, for example, that given the encryption of
a single plaintext encrypted under 230 random keys, it is possible to recover the first 128 bytes of
the plaintext with probability close to 1. This attack is easily carried out on the Web where a secret
cookie is often embedded in the first few bytes of a message. This cookie is re-encrypted over and
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Figure 3.13: Proof of Lemma 3.8

over with fresh keys every time the browser connects to a victim web server. Using Javascript the
attacker can make the user’s browser repeatedly re-connect to the target site giving the attacker
the 230 ciphertexts needed to mount the attack and expose the cookie.

In response, RSA Labs issued a recommendation suggesting that one discard the first 1024 bytes
output by the RC4 stream generator and only use bytes 1025 and onwards. This defeats the initial
key stream bias distinguishers, but does not defeat other attacks, which we discuss next.

Bias in the RC4 stream generator. Suppose the RC4 setup algorithm is modified so that the
attack of the previous paragraph is ine↵ective. Fluhrer and McGrew [28] gave a direct attack on
the stream generator. They argue that the number of times that the pair of bytes (0, 0) appears
in the RC4 output is larger than what it should be for a random sequence. This is su�cient to
distinguish the output of RC4 from a random string.

Let STRC4 be the set of all possible internal states of RC4. Since there are n! possible settings
for the array S and n possible settings for each of i and j, the size of STRC4 is n! ·n2. For n = 256,
as used in RC4, the size of STRC4 is gigantic, namely about 10511.

Lemma 3.9 (Fluhrer-McGrew). Suppose RC4 is initialized with a random state T in ST
RC4

.
Let (z1, z2) be the first two bytes output by RC4 when started in state T . Then

i 6= n� 1 =) Pr[(z1, z2) = (0, 0)] � (1/n2) · �1 + (1/n)
�

i 6= 0, 1 =) Pr[(z1, z2) = (0, 1)] � (1/n2) · �1 + (1/n)
�

A pair of consecutive outputs (z1, z2) is called a digraph. In a truly random string, the
probability of all digraphs (x, y) is exactly 1/n2. The lemma shows that for RC4 the probability
of (0, 0) is greater by 1/n3 from what it should be. The same holds for the digraph (0, 1). In fact,
Fluhrer-McGrew identify several other anomalous digraphs, beyond those stated in Lemma 3.9.

The lemma suggests a simple distinguisher D between the output of RC4 and a random string.
If the distinguisher finds more (0, 0) pairs in the given string than are likely to be in a random
string it outputs 1, otherwise it outputs 0. More precisely, the distinguisher D works as follows:
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Figure 3.14: A Random Number Generator

input: string x 2 {0 . . . n}`
output: 0 or 1

let q be the number of times the pair (0, 0) appears in x
if (q/`)� (1/n2) > 1/(2n3) output 0, else output 1

Using Theorem B.3 we can estimate D’s advantage as a function of the input length `. In
particular, the distinguisher D achieves the following advantages:

` = 214 bytes: PRGadv[D, RC4] � 2�8

` = 234 bytes: PRGadv[D, RC4] � 0.5

Using all the anomalous digraphs provided by Fluhrer and McGrew one can build a distinguisher
that achieves advantage 0.8 using only 230.6 bytes of output.

Related key attacks on RC4. Fluhrer, Mantin, and Shamir [27] showed that RC4 is insecure
when used with related keys. We discuss this attack and its impact on the 802.11b WiFi protocol
in Section 9.9, attack 2.

3.10 Generating random bits in practice

Random bits are needed in cryptography for many tasks, such as generating keys and other
ephemeral values called nonces. Throughout the book we assume all parties have access to a
good source of randomness, otherwise many desirable cryptographic goals are impossible. So far
we used a PRG to stretch a short uniformly distributed secret seed to a long pseudorandom string.
While a PRG is an important tool in generating random (or pseudorandom) bits it is only part of
the story.

In practice, random bits are generated using a random number generator, or RNG. An
RNG, like a PRG, outputs a sequence of random or pseudorandom bits. RNGs, however, have an
additional interface that is used to continuously add entropy to the RNG’s internal state, as shown
in Fig. 3.14. The idea is that whenever the system has more random entropy to contribute to the
RNG, this entropy is added into the RNG internal state. Whenever someone reads bits from the
RNG, these bits are generated using the current internal state.

An example is the Linux RNG which is implemented as a device called /dev/random. Anyone
can read data from the device to obtain random bits. To play with the /dev/random try typing
cat /dev/random at a UNIX shell. You will see an endless sequence of random-looking characters.
The UNIX RNG obtains its entropy from a number of hardware sources:

• keyboard events: inter-keypress timings provide entropy;
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• mouse events: both interrupt timing and reported mouse positions are used;

• hardware interrupts: time between hardware interrupts is a good source of entropy;

These sources generate a continuous stream of randomness that is periodically XORed into the
RNG internal state. Notice that keyboard input is not used as a source of entropy; only keypress
timings are used. This ensures that user input is not leaked to other users in the system via the
Linux RNG.

High entropy random generation. The entropy sources described above generate randomness
at a relatively slow rate. To generate true random bits at a faster rate, Intel added a hardware
random number generator to starting with the Ivy processor processor family in 2012. Output from
the generator is read using the RdRand instruction that is intended to provide a fast uniform bit
generator.

To reduce biases in the generator output, the raw bits are first passed through a function called
a “conditioner” designed to ensure that the output is a sequence of uniformly distributed bits,
assuming su�cient entropy is provided as input. We discuss this in more detail in Section 8.9
where we discuss the key deriviation problem.

The RdRand generator should not replace other entropy sources such as the four sources described
above; it should only augment them as an additional entropy source for the RNG. This way, if the
generator is defective it will not completely compromise the cryptographic application.

One di�culty with Intel’s approach is that, over time, the hardware elements being sampled
might stop producing randomness due to hardware glitch. For example, the sampled bits might
always be ‘0’ resulting in highly non-random output. To prevent this from happening the RNG
output is constantly tested using a fixed set of statistical tests. If any of the tests reports “non-
random” the generator is declared to be defective.

3.11 A broader perspective: computational indistinguishability

Our definition of security for a pseudo-random generator G formalized the intuitive idea that an
adversary should not be able to e↵ectively distinguish between G(s) and r, where s is a randomly
chosen seed, and r is a random element of the output space.

This idea generalizes quite naturally and usefully to other settings. Suppose P0 and P1 are
probability distributions on some finite set R. Our goal is to formally define the intuitive notion
than an adversary cannot e↵ectively distinguish between P0 and P1. As usual, this is done via an
attack game. For b = 0, 1, we write x  R Pb to denote the assignment to x of a value chosen at
random from the set R, according to the probability distribution Pb.

Attack Game 3.3 (Distinguishing P0 from P1). For given probability distributions P0 and
P1 on a finite set R, and for a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger computes x as follows:

x R Pb
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and sends x to the adversary.

• Given x, the adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to P0 and P1 as

Distadv[A, P0, P1] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 3.4 (Computational indistinguishability). Distributions P0 and P1 are called
computationally indistinguishable if the value Distadv[A, P0, P1] is negligible for all e�cient
adversaries A.

Just to exercise the definition a bit: a PRG G defined over (S, R) is secure if and only if P0

and P1 are computationally indistinguishable, where P1 is the uniform distribution on R, and P0

is distribution that assigns to each r 2 R the value

P0(r) :=
|{s 2 S : G(s) = r}|

|S| .

Again, as discussed in Section 2.3.5, Attack Game 3.3 can be recast as a “bit guessing” game,
where instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random,
and then runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing
advantage Distadv⇤[A, P0, P1] as |Pr[b̂ = b]� 1/2|. The general result of Section 2.3.5 applies here
as well: Distadv[A, P0, P1] = 2 · Distadv⇤[A, P0, P1].

Typically, to prove that two distributions are computationally indistinguishable, we will have to
make certain other computational assumptions. However, sometimes two distributions are so similar
that no adversary can e↵ectively distinguish between them, regardless of how much computing
power the adversary may have. To make this notion of “similarity” precise, we introduce a useful
tool, called statistical distance:

Definition 3.5. Suppose P0 and P1 are probability distributions on a finite set R. Then their
statistical distance is defined as

�[P0, P1] :=
1

2

X

r2R
|P0(r)� P1(r)|.

Example 3.1. Suppose P0 is the uniform distribution on {1, . . . , m}, and P1 is the uniform dis-
tribution on {1, . . . , m� �}, where � 2 {0, . . . , m� 1}. Let us compute �[P0, P1]. We could apply
the definition directly; however, consider the following graph of P0 and P1:

0

A

B C

m� � m

1/m

1/(m� �)

95



The statistical distance between P0 and P1 is just 1/2 times the area of regions A and C in the
diagram. Moreover, because probability distributions sum to 1, we must have

area of B + area of A = 1 = area of B + area of C,

and hence, the areas of region A and region C are the same. Therefore,

�[P0, P1] = area of A = area of C = �/m. 2

The following theorem allows us to make a connection between the notions of computational
indistinguishability and statistical distance:

Theorem 3.10. Let P0 and P1 be probability distributions on a finite set R. Then we have

max
R0⇢R

|P0[R0]� P1[R0]| = �[P0, P1],

where the maximum is taken over all subsets R0 of R.

Proof. Suppose we split the set R into two disjoint subsets: the set R0 consisting of those r 2 R
such that P0(r) < P1(r), and the set R1 consisting of those r 2 R such that P0(r) � P1(r).
Consider the following rough graph of the distributions of P0 and P1, where the elements of R0 are
placed to the left of the elements of R1:

A

B

C

R0 R1

P1

P0

Now, as in Example 3.1,

�[P0, P1] = area of A = area of C.

Observe that for every subset R0 of R, we have

P0[R0]� P1[R0] = area of C 0 � area of A0,

where C 0 is the subregion of C that lies above R0, and A0 is the subregion of A that lies above R0.
It follows that |P0[R0]� P1[R0]| is maximized when R0 = R0 or R0 = R1, in which case it is equal
to �[P0, P1]. 2

The connection to computational indistinguishability is as follows:

Theorem 3.11. Let P0 and P1 be probability distributions on a finite set R. Then for every
adversary A, we have

Distadv[A, P0, P1]  �[P0, P1].
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Proof. Consider an adversary A that tries to distinguish P0 from P1, as in Attack Game 3.3.
First, we consider the case where A is deterministic. In this case, the output of A is a function

f(r) of the value r 2 R presented to it by the challenger. Let R0 := {r 2 R : f(r) = 1}. If W0 and
W1 are the events defined in Attack Game 3.3, then for b = 0, 1, we have

Pr[Wb] = Pb[R0].

By the previous theorem, we have

Distadv[A, P0, P1] = |P0[R0]� P1[R0]|  �[P0, P1].

We now consider the case where A is probabilistic. We can view A as taking an auxiliary
input t, representing its random choices. We view t as being chosen uniformly at random from
some finite set T . Thus, the output of A is a function g(r, t) of the value r 2 R presented to it
by the challenger, and the value t 2 T representing its random choices. For a given t 2 T , let
R0

t := {r 2 R : g(r, t) = 1}. Then, averaging over the random choice of t, we have

Pr[Wb] =
1

|T |
X

t2T
Pb[R0

t].

It follows that

Distadv[A, P0, P1] = |Pr[W0]� Pr[W1]|
=

1

|T |
�

�

�

X

t2T
(P0[R0

t]� P1[R0
t])
�

�

�

 1

|T |
X

t2T
|P0[R0

t]� P1[R0
t]|

 1

|T |
X

t2T
�[P0, P1]

= �[P0, P1]. 2

As a consequence of this theorem, we see that if �[P0, P1] is negligible, then P0 and P1 are
computationally indistinguishable.

One also defines the statistical distance between two random variables as the statistical distance
between their corresponding distributions. That is, if X and Y are random variables taking values
in a finite set R, then their statistical distance is

�[X,Y] :=
1

2

X

r2R
|Pr[X = r]� Pr[Y = r]|.

In this case, Theorem 3.10 says that

max
R0⇢R

�

�

�

Pr[X 2 R0]� Pr[Y 2 R0]
�

�

�

= �[X,Y],

where the maximum is taken over all subsets R0 of R.
Analogously, one can define distinguishing advantage with respect to random variables, rather

than distributions. The advantage of working with random variables is that we can more con-
veniently work with distributions that are related to one another, as exemplified in the following
theorem.
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Theorem 3.12. If S and T are finite sets, X and Y are random variables taking values in S, and
f : S ! T is a function, then �[f(X), f(Y)]  �[X,Y].

Proof. We have

�[f(X), f(Y)] = |Pr[f(X) 2 T 0]� Pr[f(Y) 2 T 0]| for some T 0 ⇢ T
(by Theorem 3.10)

= |Pr[X 2 f�1(T 0)]� Pr[Y 2 f�1(T 0)]|
 �[X,Y] (again by Theorem 3.10). 2

Example 3.2. Let X be uniformly distributed over the set {0, . . . , m�1}, and let Y be uniformly
distributed over the set {0, . . . , N � 1}, for N � m. Let f(t) := t mod m. We want to compute
an upper bound on the statistical distance between X and f(Y). We can do this as follows. Let
N = qm � r, where 0  r < m, so that q = dN/me. Also, let Z be uniformly distributed over
{0, . . . , qm � 1}. Then f(Z) is uniformly distributed over {0, . . . , m � 1}, since every element
of {0, . . . , m � 1} has the same number (namely, q) of pre-images under f which lie in the set
{0, . . . , qm�1}. Since statistical distance depends only on the distributions of the random variables,
by the previous theorem, we have

�[X, f(Y)] = �[f(Z), f(Y)]  �[Z,Y],

and as we saw in Example 3.1,

�[Z,Y] =
r

qm
<

1

q
 m

N
.

Therefore,

�[X, f(Y)] <
m

N
. 2

Example 3.3. Suppose we want to generate a pseudo-random number in a given interval
{0, . . . , m � 1}. However, suppose that we have at our disposal a PRG G that outputs L-bit
strings. Of course, an L-bit string can be naturally viewed as a number in the range {0, . . . , N�1},
where N := 2L. Let us assume that N � m.

To generate a pseudo-random number in the interval {0, . . . , m� 1}, we can take the output of
G, view it as a number in the interval {0, . . . , N � 1}, and reduce it modulo m. We will show that
this procedure produces a number that is computationally indistinguishable from a truly random
in the interval {0, . . . , m� 1}, assuming G is secure and m/N is negligible (e.g., N � 2100 · m).

To this end, let P0 be the distribution representing the output of G, reduced modulo m, let P1

be the uniform distribution on {0, . . . , m� 1}, and let A be an adversary trying to distinguish P0

from P1, as in Attack Game 3.3.
Let Game 0 be Experiment 0 of Attack Game 3.3, in which A is presented with a random

sample distributed according to P0, and let W0 be the event that A outputs 1 in this game.
Now define Game 1 to be the same as Game 0, except that we replace the output of G by a

truly random value chosen from the interval {0, . . . , N � 1}. Let W1 be the event that A outputs 1
in Game 1. One can easily construct an e�cient adversary B that attacks G as in Attack Game 3.1,
such that

PRGadv[B, G] = |Pr[W0]� Pr[W1]|.
The idea is that B takes its challenge value, reduces it modulo m, gives this value to A, and outputs
whatever A outputs.
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Finally, we define Game 2 be Experiment 1 of Attack Game 3.3, in which A is presented with
a random sample distributed according to P1, the uniform distribution on {0, . . . , m� 1}. Let W2

be the event that A outputs 1 in Game 2. If P is the distribution of the value presented to A in
Game 1, then by Theorem 3.11, we have |Pr[W1]�Pr[W2]|  �[P, P1]; moreover, by Example 3.3,
we have �[P, P1]  m/N .

Putting everything together, we see that

Distadv[A, P0, P1] = |Pr[W0]� Pr[W2]|  |Pr[W0]� Pr[W1]| + |Pr[W1] + Pr[W2]|
 PRGadv[B, G] +

m

N
,

which, by assumption, is negligible. 2

3.11.1 Mathematical details

As usual, we fill in the mathematical details needed to interpret the definitions and results of this
section from the point of view of asymptotic complexity theory.

In defining computational indistinguishability (Definition 3.4), one should consider two families
of probability distributions P0 = {P0,�}� and P1 = {P1,�}�, indexed by a security parameter �.
For each �, the distributions P0,� and P1,� should take values in a finite set of bit strings R�,
where the strings in R� are bounded in length by a polynomial in �. In Attack Game 3.3, the
security parameter � is an input to both the challenger and adversary, and in Experiment b, the
challenger produces a sample, distributed according to Pb,�. The advantage should properly be
written Distadv[A, P0, P1](�), which is a function of �. Computationally indistinguishability means
that this is a negligible function.

In some situations, it may be natural to introduce a probabilistically generated system parame-
ter; however, from a technical perspective, this is not necessary, as such a system parameter can be
incorporated in the distributions P0,� and P1,�. One could also impose the requirement that P0,�

and P1,� be e�ciently sampleable; however, to keep the definition simple, we will not require this.
The definition of statistical distance (Definition 3.5) makes perfect sense from a non-asymptotic

point of view, and does not require any modification or elaboration. Theorem 3.10 holds as stated,
for specific distributions P0 and P1. Theorem 3.11 may be viewed asymptotically as stating that for
all distribution families P0 = {P0,�}� and P1 = {P1,�}�, for all adversaries (even computationally
unbounded ones), and for all �, we have

Distadv[A, P0, P1](�)  �[P0,�, P1,�].

3.12 A fun application: coin flipping and commitments

Alice and Bob are going out on a date. Alice wants to see one movie and Bob wants to see another.
They decide to flip a random coin to choose the movie. If the coin comes up “heads” they will go to
Alice’s choice; otherwise, they will go to Bob’s choice. When Alice and Bob are in close proximity
this is easy: one of them, say Bob, flips a coin and they both verify the result. When they are far
apart and are speaking on the phone this is harder. Bob can flip a coin on his side and tell Alice
the result, but Alice has no reason to believe the outcome. Bob could simply claim that the coin
came up “tails” and Alice would have no way to verify this. Not a good way to start a date.
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A simple solution to their problem makes use of a cryptographic primitive called bit commit-
ment. It lets Bob commit to a bit b 2 {0, 1} of his choice. Later, Bob can open the commitment
and convince Alice that b was the value he committed to. Committing to a bit b results in a com-
mitment string c, that Bob sends to Alice, and an opening string s that Bob uses for opening
the commitment later. A commitment scheme is secure if it satisfies the following two properties:

• Hiding: The commitment string c reveals no information about the committed bit b. More
precisely, the distribution on c when committing to the bit 0 is indistinguishable from the
distribution on c when committing to the bit 1. In the bit commitment scheme we present
the binding property is based on the security of a given PRG G.

• Binding: Let c be a commitment string output by Bob. If Bob can open the commitment
as some b 2 {0, 1} then he cannot open it as b̄. This ensures that once Bob commits to a
bit b he can open it as b and nothing else. In the commitment scheme we present the binding
property holds unconditionally.

Coin flipping. Using a commitment scheme, Alice and Bob can generate a random bit b 2 {0, 1}
so that no side can bias the result towards their preferred outcome, assuming the protocol terminates
successfully. Such protocols are called coin flipping protocols. The resulting bit b determines
what movie they go to.

Alice and Bob use the following simple coin flipping protocol:

Step 1: Bob chooses a random bit b0  R {0, 1}.
Alice and Bob execute the commitment protocol by which Alice obtains
a commitment c to b0 and Bob obtains an opening string s.

Step 2: Alice chooses a random bit b1  R {0, 1} and sends b1 to Bob in the clear.
Step 3: Bob opens the commitment by revealing b0 and s to Alice.

Alice verifies that c is indeed a commitment to b0 and aborts if verification fails.

Output: the resulting bit is b := b0 � b1.

We argue that if the protocol terminates successfully and one side is honestly following the protocol
then the other side cannot bias the result towards their preferred outcome. By the hiding property,
Alice learns nothing about b0 at the end of Step 1 and therefore her choice of bit b1 is independent of
the value of b0. By the binding property, Bob can only open the commitment c in Step 3 to the bit
b0 he chose in Step 1. Because he chose b0 before Alice chose b1, Bob’s choice of b0 is independent
of b1. We conclude that the output bit b is the XOR of two independent bits. Therefore, if one
side is honestly following the protocol, the other side cannot bias the resulting bit.

One issue with this protocol is that Bob learns the generated bit at the end of Step 2, before
Alice learns the bit. In principle, if the outcome is not what Bob wants he could abort the protocol
at the end of Step 2 and try to re-initiate the protocol hoping that the next run will go his way.
More sophisticated coin flipping protocols avoid this problem, but at the cost of many more rounds
of interaction (see, e.g., [49]).

Bit commitment from secure PRGs. It remains to construct a secure bit commitment scheme
that lets Bob commit to his bit b0 2 {0, 1}. We do so using an elegant construction due to Naor [52].

Let G : S ! R be a secure PRG where |R| � |S|3 and R = {0, 1}n for some n. To commit to
the bit b0, Alice and Bob engage in the following protocol:
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Bob commits to bit b0 2 {0, 1}:
Step 1: Alice chooses a random r 2 R and sends r to Bob.
Step 2: Bob chooses a random s 2 S and computes c com(s, r, b0)

where com(s, r, b0) is the following function:

c = com(s, r, b0) :=

(

G(s) if b0 = 0,

G(s)� r if b0 = 1.

Bob outputs c as the commitment string and uses s as the opening string.

When it comes time to open the commitment Bob sends (b0, s) to Alice. Alice accepts the opening
if c = com(s, r, b0) and rejects otherwise.

The hiding property follows directly from the security of the PRG: because the output G(s)
is computationally indistinguishable from a uniform random string in R it follows that G(s) � r
is also computationally indistinguishable from a uniform random string in R. Therefore, whether
b0 = 0 or b0 = 1, the commitment string c is computationally indistinguishable from a uniform
string in R, as required.

The binding property holds unconditionally as long as 1/|S| is negligible. The only way Bob
can open a commitment c 2 R as both 0 and 1 is if there exist two seeds s0, s1 2 S such that
c = G(s0) = G(s1) � r which implies that G(s0) � G(s1) = r. Let us say that r 2 R is “bad” if
there are seeds s0, s1 2 S such that G(s0) � G(s1) = r. The number of pairs of seeds (s0, s1) is
|S|2, and therefore the number of bad r is at most |S|2. It follows that the probability that Alice
chooses a bad r is most |S|2/|R| < |S|2/|S|3 = 1/|S| which is negligible. Therefore, the probability
that Bob can open the commitment c as both 0 and 1 is negligible.

3.13 Notes

Citations to the literature to be added.

3.14 Exercises

Exercises 3.1–3.5 are based on definitions from the previous chapter; however, these exercises should
be much more accessible using the techniques introduced in this chapter.

3.1. One can define a notion of semantic security for random messages. Here, one modifies Attack
Game 2.1 so that instead of the adversary choosing the messages m0, m1, the challenger generates
m0, m1 at random from the message space. Otherwise, the definition of advantage and security
remains unchanged.

Suppose that E = (E, D) is defined over (K, M, C), where M = {0, 1}L. Assuming that E is
semantically secure for random messages, show how to construct a new cipher E 0 that is secure
in the ordinary sense. Your new cipher should be defined over (K0, M0, C0), where K0 = K and
M0 = M.

3.2. Give an example of a cipher that is semantically secure for random messages (see previous
exercise) but that is not semantically secure in the ordinary sense.
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3.3. Let E = (E, D) be a perfectly secure cipher defined over (K, M, C) where K = M. Let
E 0 = (E0, D0) be a cipher where encryption is defined as E0((k1, k2), m) :=

�

E(k1, k2), E(k2, m)
�

.
Show that E 0 is perfectly secure.

3.4. This exercise develops an alternative characterization of semantic security. Let E = (E, D)
be a cipher defined over (K, M, C). Assume that one can e�ciently generate messages from the
message space M at random. We define an attack game between an adversary A and a challenger
as follows. The adversary selects a message m 2M and sends m to the challenger. The challenger
then computes:

b R {0, 1}, k  R K, m0  m, m1  R M, c R E(k, mb),

and sends the ciphertext c to A, who then computes and outputs a bit b̂. That is, the challenger
encrypts either m or a random message, depending on b. We define A’s advantage to be |Pr[b̂ =
b]� 1/2|, and we say the E is real/random semantically secure if this advantage is negligible for all
e�cient adversaries.

Show that E is real/random semantically secure if and only if it is semantically secure in the
ordinary sense.

3.5. In this exercise, we develop a notion of security for a cipher, called psuedo-random ciphertext
security, which intuitively says that no e�cient adversary can distinguish an encryption of a chosen
message from a random ciphertext.

Let E = (E, D) be defined over (K, M, C). Assume that one can e�ciently generate ciphertexts
from the ciphertext space C at random. We define an attack game between an adversary A and a
challenger as follows. The adversary selects a message m 2M and sends m to the challenger. The
challenger then computes:

b R {0, 1}, k  R K, c0  R E(k, m), c1  R C, c R cb

and sends the ciphertext c to A, who then computes and outputs a bit b̂. We define A’s advantage
to be |Pr[b̂ = b] � 1/2|, and we say the E is pseudo-random ciphertext secure if this advantage is
negligible for all e�cient adversaries.

(a) Show that if a cipher is psuedo-random ciphertext secure, then it is semantically secure.

(b) Show that the one-time pad is psuedo-random ciphertext secure.

(c) Give an example of a cipher that is semantically secure, but not psuedo-random ciphertext
secure.

3.6. Suppose G is a PRG defined over (S, R) where |R| � 2|S|. Let us show that |S| must be
super-poly. To do so, show that there is an adversary that achieves advantage at least 1/2 in
attacking the PRG G whose running is linear in |S|.
3.7. Let us give another example illustrating the malleability of stream ciphers. Sup-
pose you are told that the stream cipher encryption of the message “attack at dawn” is
6c73d5240a948c86981bc294814d (the plaintext letters are encoded as 8-bit ASCII and the given
ciphertext is written in hex). What would be the stream cipher encryption of the message “attack
at dusk” under the same key?

3.8. Suppose G(s) is a secure PRG that outputs bit-strings in {0, 1}n. Which of are the following
derived generators are secure?
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(a) G1(s1 k s2) := G(s1) ^G(s2) where ^ denotes bit-wise AND.

(b) G2(s1 k s2) := G(s1)�G(s2).

(c) G3(s) := G(s)� 1n.

(d) G4(s) := G(s)[0 . . n� 1].

(e) G5(s) := (G(s), G(s)).

(f) G6(s1 k s2) := (s1, G(s2)).

3.9. In Section 3.2, we showed how to build a stream cipher from a PRG. In Theorem 3.1, we
proved that this encryption scheme is semantically secure if the PRG is secure. Prove the converse:
the PRG is secure if this encryption scheme is semantically secure.

3.10. In Section 3.5, we showed that if one could e↵ectively distinguish a random bit string from
a pseudo-random bit string, then one could succeed in predicting the next bit of a pseudo-random
bit string with probability significantly greater than 1/2 (where the position of the “next bit” was
chosen at random). Generalize this from bit strings to strings over the alphabet {0, . . . , n � 1},
for all n � 2, assuming that n is poly-bounded. Hint: first generalize the distinguisher/predictor
lemma (Lemma 3.5).

3.11. Simple statistical distance calculations:

(a) Let X and Y be independent random variables, each uniformly distributed over Zp, where p
is prime. Calculate �[ (X,Y), (X,XY) ].

(b) Let X and Y be random variables, each taking values in the interval [0, t]. Show that |E[X]�
E[Y]|  t�[X,Y].

The following three exercises should be done together; they will be used in exercises in the
following chapters.

3.12. This exercise develops another way of comparing two probability distributions, which con-
siders ratios of probabilities, rather than di↵erences. Let X and Y be two random variables taking
values on a finite set R, and assume that Pr[X = r] > 0 for all r 2 R. Define

⇢[X,Y] := max
�

Pr[Y = r]/ Pr[X = r] : r 2 R 

Show that for every subset R0 of R, we have Pr[Y 2 R0]  ⇢[X,Y] · Pr[X 2 R0].

3.13 (A variant of Bernoulli’s inequality). The following is a useful fact that will be used
in the following exercise. Prove the following statement by induction on n: for any real numbers
x1, . . . , xn in the interval [0, 1], we have

n
Y

i=1

(1� xi) � 1�
n
X

i=1

xi.

3.14. Let X be a finite set of size N , and let Q  N . Define random variables X and Y, where X
is uniformly distributed over all sequences of Q elements in X , and Y is uniformly distributed over
all sequences of Q distinct elements in X . Let �[X,Y] be the statistical distance between X and
Y, and let ⇢[X,Y] be defined as in Exercise 3.12. Using the previous exercise, prove the following:
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(a) �[X,Y] = 1�
Q�1
Y

i=0

(1� i/N)  Q2

2N
,

(b) ⇢[X,Y] =
1

QQ�1
i=0 (1� i/N)

 1

1� Q2

2N

(assuming Q2 < 2N).

3.15. Let us show that the bounds in the parallel composition theorem, Theorem 3.2, are tight.
Consider the following, rather silly PRG G0, which “stretches” `-bit strings to `-bit strings, with `
even: for s 2 {0, 1}`, we define

G0(s) :=
if s[0 . . `/2� 1] = 0`/2

then output 0`

else output s.

That is, if the first `/2 bits of s are zero, then G0(s) outputs the all-zero string, and otherwise,
G0(s) outputs s.

Next, define the following PRG adversary B0 that attacks G0:

When the challenger presents B0 with r 2 {0, 1}`, if r is of the form 0`/2 k t, for some
t 6= 0`/2, B0 outputs 1; otherwise, B0 outputs 0.

Now, let G0
0 be the n-wise parallel composition of G0. Using B0, we construct a PRG adversary

A0 that attacks G0
0:

when the challenger presents A0 with the sequence of strings (r1, . . . , rn), A0 presents
each ri to B0, and outputs 1 if B0 ever outputs 1; otherwise, A0 outputs 0.

(a) Show that PRGadv[B0, G0] = 2�`/2 � 2�`.

(b) Show that PRGadv[A0, G0
0] � n2�`/2 � n(n + 1)2�`.

(c) Show that no adversary attacking G0 has a better advantage than B0 (hint: make an argument
based on statistical distance).

(d) Using parts (a)–(c), argue that Theorem 3.2 cannot be substantially improved; in particular,
show that the following cannot be true:

There exists a constant c < 1 such that for every PRG G, poly-bounded n, and e�cient
adversary A, there exists an e�cient adversary B such that

PRGadv[A, G0]  cn · PRGadv[B, G],

where G0 is the n-wise parallel composition of G.

3.16. Let G be a PRG that stretches n-bit strings to 2n-bit strings. For s 2 {0, 1}n, write
G(s) = G0(s) k G1(s), so that G0(s) represents the first n bits of G(s), and G1(s) represents the
last n bits of G(s). Define a new PRG G0 that stretches n-bit strings to 4n-bit strings, as follows:
G0(s) := G(G0(s)) k G(G1(s)). Show that if G is a secure PRG, then so is G0.
This construction is a special case of a more general construction discussed in Section 4.6.
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3.17. Let E = (E, D) be a semantically secure cipher defined over (K, M, C), where M = {0, 1}.
Show that for every e�cient adversary A that receives an encryption of a random bit b, the prob-
ability that A correctly predicts b is at most 1/2 + ✏, where ✏ is negligible. This proves a converse
of sorts to Theorem 2.8. Hint: use Lemma 3.5.

3.18. Suppose that A is an e↵ective next-bit predictor. That is, suppose that A is an e�cient
adversary whose advantage in Attack Game 3.2 is nonnegligible. Show how to use A to build
an explicit, e↵ective previous-bit predictor B that uses A as a black box. Here, one defines a
previous-bit prediction game that is the same as Attack Game 3.2, except that the challenger sends
r[i + 1 . . L � 1] to the adversary. Also, express B’s previous-bit prediction advantage in terms of
A’s next-bit prediction advantage.

3.19. Let A be a fixed m ⇥ n matrix with m > n whose entries are all binary. Consider the
following PRG G : {0, 1}n ! {0, 1}m defined by

G(s) := A · s (mod 2)

where A · s mod 2 denotes a matrix-vector product where all elements of the resulting vector are
reduced modulo 2. Show that this PRG is insecure no matter what matrix A is used.

3.20. Let G : S ! R a secure PRG. Let E = (E, D) be a semantically secure cipher defined over
(K, M, C). Assume K = R. Construct a new cipher E 0 = (E0, D0) defined over (S, M, C), where
E0(s, m) := E(G(s), m) and D0(s, c) := D(G(s), c). Show that E 0 is semantically secure.

3.21. Let G0 : S ! R1 and G1 : R1 ! R2 be two secure PRGs. Show that G(s) := G1(G0(s))
mapping S to R2 is a secure PRG.

3.22. Show that a secure PRG G : {0, 1}n ! R can become insecure if the seed is not uniformly
random in S.

• Consider the PRG G0 : {0, 1}n+1 ! R ⇥ {0, 1} defined as G0(s0 k s1) = (G(s0), s1). Show
that G0 is a secure PRG assuming G is secure.

• Show that G0 becomes insecure if its random seed s0 k s1 is chosen so that its last bit is
always 0.

• Construct a secure PRG G00 : {0, 1}n+1 ! R ⇥ {0, 1} that becomes insecure if its seed s is
chosen to that the parity of the bits in s is always 0.

3.23. Let us show that a natural approach to strengthening a PRG is insecure. Let m > n and let
G : {0, 1}n ! {0, 1}m be a PRG. Define a new generator G0(s) := G(s)� (0m�n k s) derived from
G. Show that there is a secure PRG G for which G0 is insecure.
Hint: use the construction from part (a) of Exercise 3.22.

3.24. Let G be a PRG defined over (S, R) where, |S|/|R| is negligible, and suppose A is an
adversary that given G(s) outputs s with non-negligible probability. Show how to use A to construct
a PRG adversary B that has non-negligible advantage in attacking G as a PRG. This shows that
for a secure PRG it is intractable to recover the seed from the output.

3.25. Suppose that G1 and G2 are PRG’s defined over (S, R), where R = {0, 1}L. Define a new
PRG G0 defined over (S ⇥S, R), where G0(s1, s2) = G1(s1)�G2(s2). Show that if either G1 or G2

is secure (we may not know which one is secure), then G0 is secure.
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3.26. This exercise develops a simple fact from probability that is helpful in understanding the
proof of Lemma 3.5. Let X and Y be independent random variables, taking values in S and T ,
respectively, where Y is uniformly distributed over T . Let f : S ! {0, 1} and g : S ! T be
functions. Show that the events f(X) = 1 and g(X) = Y are independent, and the probability of
the latter is 1/|T |.
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Chapter 4

Block ciphers

This chapter continues the discussion begun in the previous chapter on achieving privacy against
eavesdroppers. Here, we study another kind of cipher, called a block cipher. We also study the
related concept of a pseudo-random function.

Block ciphers are the “work horse” of practical cryptography: not only can they can be used to
build a stream cipher, but they can be used to build ciphers with stronger security properties (as
we will explore in Chapter 5), as well as many other cryptographic primitives.

4.1 Block ciphers: basic definitions and properties

Functionally, a block cipher is a deterministic cipher E = (E, D) whose message space and
ciphertext space are the same (finite) set X . If the key space of E is K, we say that E is a block
cipher defined over (K, X ). We call an element x 2 X a data block, and refer to X as the data
block space of E .

For every fixed key k 2 K, we can define the function fk := E(k, ·); that is, fk : X ! X sends
x 2 X to E(k, x) 2 X . The usual correctness requirement for any cipher implies that for every
fixed key k, the function fk is one-to-one, and as X is finite, fk must be onto as well. Thus, fk is
a permutation on X , and D(k, ·) is the inverse permutation f�1

k .
Although syntactically a block cipher is just a special kind of cipher, the security property we

shall expect for a block cipher is actually much stronger than semantic security: for a randomly
chosen key k, the permutation E(k, ·) should — for all practical purposes — “look like” a random
permutation. This is a notion that we will soon make more precise.

One very important and popular block cipher is AES (the Advanced Encryption Standard).
We will study the internal design of AES in more detail below, but for now, we just give a very
high-level description. AES keys are 128-bit strings (although longer key sizes may be used, such
as 192-bits or 256-bits). AES data blocks are 128-bit strings. See Fig. 4.1. AES was designed to be
quite e�cient: one evaluation of the encryption (or decryption) function takes just a few hundred
cycles on a typical computer.

The definition of security for a block cipher is formulated as a kind of “black box test.” The intu-
ition is the following: an e�cient adversary is given a “black box.” Inside the box is a permutation
f on X , which is generated via one of two random processes:

• f := E(k, ·), for a randomly chosen key k, or
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Figure 4.1: The block cipher AES

• f is a truly random permutation, chosen uniformly from among all permutations on X .

The adversary cannot see inside the box, but he can “probe” it with questions: he can give the
box a value x 2 X , and obtain the value y := f(x) 2 X . We allow the adversary to ask many
such questions, and we quite liberally allow him to choose the questions in any way he likes; in
particular, each question may even depend in some clever way on the answers to previous questions.
Security means that the adversary should not be able to tell which type of function is inside the
box — a randomly keyed block cipher, or a truly random permutation. Put another way, a secure
block cipher should be computationally indistinguishable from a random permutation.

To make this definition more formal, let us introduce some notation:

Perms[X ]

denotes the set of all permutations on X . Note that this is a very large set:
�

�Perms[X ]
�

� = |X |!.
For AES, with |X | = 2128, the number of permutations is about

Perms[X ] ⇡ 22
135

,

while the number of permutations defined by 128-bit AES keys is at most 2128.
As usual, to define security, we introduce an attack game. Just like the attack game used

to define a PRG, this attack game comprises two separate experiments. In both experiments,
the adversary follows the same protocol; namely, it submits a sequence of queries x1, x2, . . . to
the challenger; the challenger responds to query xi with f(xi), where in the first experiment,
f := E(k, ·) for randomly chosen k 2 K, and while in the second experiment, f is randomly
selected from Perms[X ]; throughout each experiment, the same f is used to answer all queries.
When the adversary tires of querying the challenger, it outputs a bit.

Attack Game 4.1 (block cipher). For a given block cipher (E, D), defined over (K, X ), and for
a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we
define:

Experiment b:

108



• The challenger selects f 2 Perms[X ] as follows:

if b = 0: k  R K, f  E(k, ·);
if b = 1: f  R Perms[X ].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a data block xi 2 X .

The challenger computes yi  f(xi) 2 X , and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

BCadv[A, E ] :=
�

�Pr[W0]� Pr[W1]
�

�.

Finally, we say that A is a Q-query BC adversary if A issues at most Q queries. 2

Fig. 4.2 illustrates Attack Game 4.1.

Definition 4.1 (secure block cipher). A block cipher E is secure if for all e�cient adversaries
A, the value BCadv[A, E ] is negligible.

We stress that the queries made by the challenger in Attack Game 4.1 are allowed to be adaptive;
that is, the adversary need not choose all its queries in advance; rather, it is allowed to concoct
each query in some clever way that depends on the previous responses from the challenger (see
Exercise 4.7).

4.1.1 Some implications of security

Let E = (E, D) be a block cipher defined over (K, X ). To exercise the definition of security a bit, we
prove a couple of simple implications. For simplicity, we assume that |X | is large (i.e., super-poly).

A secure block cipher is unpredictable

We show that if E is secure in the sense of Definition 4.1, then it must be unpredictable, which
means that every e�cient adversary wins the following prediction game with negligible probability.
In this game, the challenger chooses a random key k, and the adversary submits a sequence of
queries x1, . . . , xQ; in response to the ith query xi, the challenger responds with E(k, xi). These
queries are adaptive, in the sense that each query may depend on the previous responses. Finally,
the adversary outputs a pair of values (xQ+1, y), where xQ+1 /2 {x1, . . . , xQ}. The adversary wins
the game if y = E(k, xQ+1).

To prove this implication, suppose that E is not unpredictable, which means there is an e�cient
adversary A that wins the above prediction game with non-negligible probability p. Then we can
use A to break the security of E in the sense of Definition 4.1. To this end, we design an adversary
B that plays Attack Game 4.1, and plays the role of challenger to A in the above prediction game.
Whenever A makes a query xi, adversary B passes xi through to its own challenger, obtaining a
response yi, which it passes back to A. Finally, when A outputs (xQ+1, y), adversary B submits
xQ+1 to its own challenger, obtaining yQ+1, and outputs 1 if y = yQ+1, and 0, otherwise.
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Challenger

Challenger

(Experiment 0)

(Experiment 1)

A

A

k
R K

xi 2 X

xi 2 X

yi

yi

yi  f(xi)

b̂ 2 {0, 1}

b̂ 2 {0, 1}

f
R Perms[X ]

yi  E(k, xi)

Figure 4.2: Attack Game 4.1
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On the one hand, if B’s challenger is running Experiment 0, then B outputs 1 with probability
p. On the other hand, if B’s challenger running Experiment 1, then B outputs 1 with negligible
probability ✏ (since we are assuming |X | is super-poly). This implies that B’s advantage in Attack
Game 4.1 is |p� ✏|, which is non-negligible.

Unpredictability implies security against key recovery

Next, we show that if E is unpredictable, then it is secure against key recovery, which means that
every e�cient adversary wins the following key-recovery game with negligible probability. In this
game, the adversary interacts with the challenger exactly as in the prediction game, except that at
the end, it outputs a candidate key k 2 K, and wins the game if k = k.

To prove this implication, suppose that E is not secure against key recovery, which means that
there is an e�cient adversary A that wins the key-recovery game with non-negligible probability p.
Then we can use A to build an e�cient adversary B that wins the prediction game with probability
at least p. Adversary B simply runs A’s attack, and when A outputs k , adversary B chooses an
arbitrary xQ+1 /2 {x1, . . . , xQ}, computes y  E(k , xQ+1), and outputs (xQ+1, y).

It is easy to see that if A wins the key-recovery game, then B wins the prediction game.

Key space size and exhaustive-search attacks

Combining the above two implications, we conclude that if E is a secure block cipher, then it must
be secure against key recovery. Moreover, if E is secure against key recovery, it must be the case
that |K| is large.

One way to see this is as follows. An adversary can always win the key-recovery game with
probability 1/|K| by simply choosing k from K at random. If |K| is not super-poly, then 1/|K|
is non-negligible. Hence, when |K| is not super-poly this simple key guessing adversary wins the
key-recovery game with non-negligible probability.

We can trade success probability for running time using a di↵erent attack, called an exhaustive-
search attack. In this attack, our adversary makes a few, arbitrary queries x1, . . . , xQ in the key-
recovery game, obtaining responses y1, . . . , yQ. One can argue — heuristically, at least, assuming
that |X | � |K| and |X | is super-poly — that for fairly small values of Q (Q = 2, in fact), with all
but negligible probability, only one key k satisfies

yi = E(k, xi) for i = 1, . . . , Q. (4.1)

So our adversary simply tries all possible keys to find one that satisfies (4.1). If there is only
one such key, then the key that our adversary finds will be the key chosen by the challenger, and
the adversary will win the game. Thus, our adversary wins the key-recovery game with all but
negligible probability; however, its running time is linear in |K|.

This time/advantage trade-o↵ can be easily generalized. Indeed, consider an adversary that
chooses t keys at random, testing if each such key satisfies (4.1). The running time of such an
adversary is linear in t, and it wins the key-recovery game with probability ⇡ t/|K|.

We describe a few real-world exhaustive search attacks in Section 4.2.2. We present a de-
tailed treatment of exhaustive search in Section 4.7.2 where, in particular, we justify the heuristic
assumption used above that with high probability there is at most one key satisfying (4.1).

So it is clear that if a block cipher has any chance of being secure, it must have a large key
space, simply to avoid a key-recovery attack.
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4.1.2 E�cient implementation of random permutations

Note that the challenger’s protocol in Experiment 1 of Attack Game 4.1 is not very e�cient: he is
supposed to choose a very large random object. Indeed, just writing down an element of Perms[X ]
would require about |X | log2|X | bits. For AES, with |X | = 2128, this means about 1040 bits!

While this is not a problem from a purely definitional point of view, for both aesthetic and
technical reasons, it would be nice to have a more e�cient implementation. We can do this by
using a “lazy” implementation of f . That is, the challenger represents the random permutation
f by keeping track of input/output pairs (xi, yi). When the challenger receives the ith query xi,
he tests whether xi = xj for some j < i; if so, he sets yi  yj (this ensures that the challenger
implements a function); otherwise, he chooses yi at random from the set X \ {y1, . . . , yi�1} (this
ensures that the function is a permutation); finally, he sends yi to the adversary. We can write the
logic of this implementation of the challenger as follows:

upon receiving the ith query xi 2 X from A do:
if xi = xj for some j < i

then yi  yj
else yi  R X \ {y1, . . . , yi�1}

send yi to A.

To make this implementation as fast as possible, one would implement the test “if xi = xj for some
j < i” using an appropriate dictionary data structure (hash tables, digital search tries, balanced
trees, etc.). Assuming random elements of X can be generated e�ciently, one way to implement
the step “yi  R X \ {y1, . . . , yi�1}” is as follows:

repeat y  R X until y 62 {y1, . . . , yi�1}
yi  y,

again, using appropriate dictionary data structure for the tests “y 62 {y1, . . . , yi�1}.” When i <
|X |/2 the loop will run for only two iterations in expectation.

One way to visualize this implementation is that the challenger in Experiment 1 is a “black box,”
but inside the box is a little faithful gnome whose job it is to maintain the table of input/output
pairs which represents a random permutation f . See Fig. 4.3.

4.1.3 Strongly secure block ciphers

Note that in Attack Game 4.1, the decryption algorithm D was never used. One can in fact define
a stronger notion of security by defining an attack game in which the adversary is allowed to make
two types of queries to the challenger:

forward queries: the adversary sends a value xi 2 X to the challenger, who sends yi := f(xi) to
the adversary;

inverse queries: the adversary sends a value yi 2 X to the challenger, who sends xi := f�1(yi)
to the adversary (in Experiment 0 in the attack game, this is done using algorithm D).

One then defines a corresponding advantage for this attack game. A block cipher is then called
strongly secure if for all e�cient adversaries, this advantage is negligible. We leave it to the
reader to work out the details of this definition (see Exercise 4.10). We will not make use this
notion in this text, other than an example application in a later chapter (Exercise ??).
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x f(x)
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10111 01011
00011 10001

x

f(x)

Figure 4.3: A faithful gnome implementing random permutation f

4.1.4 Using a block cipher directly for encryption

Since a block cipher is a special kind of cipher, we can of course consider using it directly for
encryption. The question is: is a secure block cipher also semantically secure?

The answer to this question is “yes,” provided the message space is equal to the data block
space. This will be implied by Theorem 4.1 below. However, data blocks for practical block ciphers
are very short: as we mentioned, data blocks for AES are just 128-bits long. If we want to encrypt
longer messages, a natural idea would be to break up a long message into a sequence of data blocks,
and encrypt each data block separately. This use of a block cipher to encrypt long messages is called
electronic codebook mode, or ECB mode for short.

More precisely, suppose E = (E, D) is a block cipher defined over (K, X ). For any poly-bounded
` � 1, we can define a cipher E 0 = (E0, D0), defined over (K, X`, X`), as follows.

• For k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
�

E(k, m[0]), . . . , E(k, m[v � 1])
�

.

• For k 2 K and c 2 X`, with v := |c|, we define

D0(k, m) :=
�

D(k, c[0]), . . . , E(k, c[v � 1])
�

.

Fig. 4.4 illustrates encryption and decryption. We call E 0 the `-wise ECB cipher derived from E .
The ECB cipher is very closely related to the substitution cipher discussed in Examples 2.3

and 2.6. The main di↵erence is that instead of choosing a permutation at random from among all
possible permutations on X , we choose one from the much smaller set of permutations {E(k, ·) : k 2
K}. A less important di↵erence is that in Example 2.3, we defined our substitution cipher to have
a fixed length, rather than a variable length message space (this was really just an arbitrary choice
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E(k, ·) E(k, ·)E(k, ·) · · ·

m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]

· · ·

m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]

D(k, ·) D(k, ·) D(k, ·)

(a) encryption

(b) decryption

Figure 4.4: Encryption and decryption for ECB mode
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using AES
(b) plaintext encrypted in ECB mode(a) plaintext

Figure 4.5: Encrypting in ECB mode

— we could have defined the substitution cipher to have a variable length message space). Another
di↵erence is that in Example 2.3, we suggested an alphabet of size 27, while if we use a block cipher
like AES with a 128-bit block size, the “alphabet” is much larger — it has 2128 elements. Despite
these di↵erences, some of the vulnerabilities discussed in Example 2.6 apply here as well. For
example, an adversary can easily distinguish an encryption of two messages m0, m1 2 X 2, where
m0 consists of two equal blocks (i.e., m0[0] = m0[1]) and m1 consists of two unequal blocks (i.e.,
m1[0] 6= m1[1]). For this reason alone, the ECB cipher does not satisfy our definition of semantic
security, and its use as an encryption scheme is strongly discouraged.

This ability to easily tell which plaintext blocks are the same is graphically illustrated in Fig. 4.5
(due to B. Preneel ). Here, visual data is encrypted in ECB mode, with each data block encoding
some small patch of pixels in the original data. Since identical patches of pixels get mapped to
identical blocks of ciphertext, some patterns in the original picture are visible in the ciphertext.

Note, however, that some of the vulnerabilities discussed in Example 2.6 do not apply directly
here. Suppose we are encrypting ASCII text. If the block size of the cipher is 128-bits, then each
character of text will be typically encoded as a byte, with 16 characters packed into a data block.
Therefore, an adversary will not be able to trivially locate positions where individual characters
are repeated, as was the case in Example 2.6.

We close this section with a proof that ECB mode is in fact secure if the message space is
restricted to sequences on distinct data blocks. This includes as a special case the encryption of
single-block messages. It is also possible to encode longer messages as sequences of distinct data
blocks. For example, suppose we are using AES, which has 128-bit data blocks. Then we could
allocate, say, 32 bits out of each block as a counter, and use the remaining 96 bits for bits of the
message. With such a strategy, we can encode any message of up to 232 · 96 bits as a sequence of
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distinct data blocks. Of course, this strategy has the disadvantage that ciphertexts are 33% longer
than plaintexts.

Theorem 4.1. Let E = (E, D) be a block cipher. Let ` � 1 be any poly-bounded value, and let
E 0 = (E0, D0) be the `-wise ECB cipher derived from E, but with the message space restricted to all
sequences of at most ` distinct data blocks. If E is a secure block cipher, then E 0 is a semantically
secure cipher.

In particular, for every A SS adversary that plays Attack Game 2.1 with respect to E 0, there
exists a BC adversary B that plays Attack Game 4.1 with respect to E, where B is an elementary
wrapper around A, such that

SSadv⇤[A, E 0] = BCadv[B, E ].

Proof idea. The basic idea is that if an adversary is given an encryption of a message, which is a
sequence of distinct data blocks, then what he sees is e↵ectively just a sequence of random data
blocks (sampled without replacement). 2

Proof. Assume that E is defined over (K, X ) and is a secure block cipher. Let X`⇤ denote the set
of all sequences of at most ` distinct elements of X .

Let A be an adversary attacking E 0. We shall consider the bit-guessing version of Attack
Game 2.1, that is, Attack Game 2.4, discussed in Section 2.3.5. In this game, A presents the
challenger with two messages m0, m1 of the same length; the challenger then chooses a random key
k and a random bit b, and encrypts mb under k, giving the resulting ciphertext c to A; finally, A
outputs a bit b̂. The adversary A wins the game if b̂ = b.

The logic of the challenger in this game may be written as follows:

upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:
b R {0, 1}
k  R K
c (E(k, mb[0]), . . . , E(k, mb[v � 1]))
send c to A.

Let us call this Game 0. We will define two more games: Game 1 and Game 2. For j = 0, 1, 2,
we define Wj to be the event that b̂ = b in Game j. By definition, we have

SSadv⇤[A, E ] = |Pr[W0]� 1/2|. (4.2)

Game 1. This is the same as Game 0, except the challenger uses a random f 2 Perms[X ] in place
of E(k, ·). Our challenger now looks like this:

upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:
b R {0, 1}
f  R Perms[X ]
c (f(mb[0]), . . . , f(mb[v � 1]))
send c to A.

Intuitively, the fact that E is a secure block cipher implies that the adversary should not notice
the switch. To prove this rigorously, we show how to build a BC adversary B that is an elementary
wrapper around A, such that

|Pr[W0]� Pr[W1]| = BCadv[B, E ]. (4.3)
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The design of B follows directly from the logic of Games 0 and 1. Adversary B plays Attack
Game 4.1 with respect to E , and works as follows:

Let f be the function chosen by B’s BC challenger in Attack Game 4.1. We let B play
the role of challenger to A, as follows:

upon receiving m0, m1 2 X`⇤ from A, with v := |m0| = |m1|, do:
b R {0, 1}
c (f(mb[0]), . . . , f(mb[v � 1]))
send c to A.

Note that B computes the values f(mb[0]), . . . , f(mb[v � 1]) by querying its own BC
challenger. Finally, when A outputs a bit b̂, B outputs the bit �(b̂, b) (see (3.4)).

It should be clear that when B is in Experiment 0 of its attack game, it outputs 1 with probability
Pr[W0], while when B is in Experiment 1 of its attack game, it outputs 1 with probability Pr[W1].
The equation (4.3) now follows.

Game 2. We now rewrite the challenger in Game 1 so that it uses the “faithful gnome” imple-
mentation of a random permutation, discussed in Section 4.1.2. Each of the messages m0 and m1

is required to consist of distinct data blocks (our challenger does not have to verify this), and so
our gnome’s job is quite easy: it does not even have to look at the input data blocks, as these are
guaranteed to be distinct; however, it still has to ensure that the output blocks it generates are
distinct.

We can express the logic of our challenger as follows:

y0  R X , y1  R X \ {y0}, . . . , y`�1  R X \ {y0, . . . , y`�2}
upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:

b R {0, 1}
c (y0, . . . , yv�1)
send c to A.

Since our gnome is faithful, we have

Pr[W1] = Pr[W2]. (4.4)

Moreover, we claim that
Pr[W2] = 1/2. (4.5)

This follows from the fact that in Game 2, the adversary’s output b̂ is a function of its own random
choices, together with y0, . . . , y`�1; since these values are (by definition) independent of b, it follows
that b̂ and b are independent. The equation (4.5) now follows.

Combining (4.2), (4.3), (4.4), and (4.5), we have

SSadv⇤[A, E 0] = BCadv[B, E ].

That completes the proof. 2
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Figure 4.6: Encryption in a real-world block cipher

4.1.5 Mathematical details

As usual, we address a few mathematical details that were glossed over above.
Since a block cipher is just a special kind of cipher, there is really nothing to say about the

definition of a block cipher that was not already said in Section 2.4. As usual, Definition 4.1 needs
to be properly interpreted. First, in Attack Game 4.1, it is to be understood that for each value of
the security parameter �, we get a di↵erent probability space, determined by the random choices of
the challenger and the random choices of the adversary. Second, the challenger generates a system
parameter ⇤, and sends this to the adversary at the very start of the game. Third, the advantage
BCadv[A, E ] is a function of the security parameter �, and security means that this function is a
negligible function.

4.2 Constructing block ciphers in practice

Block ciphers are a basic primitive in cryptography from which many other systems are built.
Virtually all block ciphers used in practice use the same basic framework called the iterated
cipher paradigm. To construct an iterated block cipher the designer makes two choices:

• First, he picks a simple block cipher Ê := (Ê, D̂) that is clearly insecure on its own. We call Ê
the round cipher.

• Second, he picks a simple (not necessarily secure) PRG G that is used to expand the key k
into d keys k1, . . . , kd for Ê . We call G the key expansion function.

Once these two choices are made, the iterated block cipher E is completely specified. The encryption
algorithm E(k, x) works as follows (see Fig. 4.6):
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key size block size number of performance1

(bits) (bits) rounds (MB/sec)
DES 56 64 16 27
3DES 168 64 48 9
AES-128 128 128 10 61
AES-256 256 128 14 ?

Table 4.1: Sample block ciphers

Algorithm E(k, x):

• step 1. key expansion: use the key expansion function G to
stretch the key k of E to d keys of Ê :

(k1, . . . , kd) G(k)

• step 2. iteration: for i = 1, . . . , d apply Ê(ki, ·), namely:

y  Ê(kd, Ê(kd�1, . . . , Ê(k2, Ê(k1, x)) . . .))

Each application of Ê is called a round and the total number of rounds is d. The keys k1, . . . , kd
are called round keys. The decryption algorithm D(k, y) is identical except that the round keys
are applied in reverse order. D(k, y) is defined as:

x D̂(k1, D̂(k2, . . . , D̂(kd�1, D̂(kd, y)) . . .))

Table 4.1 lists a few common block ciphers and their parameters. We describe DES and AES in
the next section.

Does iteration give a secure block cipher? Nobody knows. However, heuristic evidence
suggests that security of a block cipher comes from iterating a simple cipher many times. Not all
round ciphers will work. For example, iterating a linear function

Ê(k, x) := k · x mod q

will never result in a secure block cipher since the iterate of Ê is just another linear function. There
is currently no way to classify which round ciphers will eventually result in a secure block cipher.
Moreover, for a candidate round cipher Ê there is no rigorous methodology to gauge how many
times it needs to be iterated before it becomes a secure block cipher. All we know is that certain
functions, like linear functions, never lead to secure block ciphers, while simple non-linear functions
appear to give a secure block cipher after a few iterations.

The challenge for the cryptographer is to come up with a fast round cipher that converges to a
secure block cipher within a few rounds. Looking at Table 4.1 one is impressed that AES-128 uses
a simple round cipher and yet seems to produce a secure block cipher after only ten rounds.

1Crypto++ library on Pentium 4, 2.1 GHz.
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A word of caution. While this section explains the inner workings of several block ciphers, it
does not teach how to design new block ciphers. In fact, one of the main take-away messages from
this section is that readers should not design block ciphers on their own, but instead always use
the standard ciphers described here. Block-cipher design is non-trivial and many years of analysis
are needed before one gains confidence in a specific proposal. Furthermore, readers should not even
implement block ciphers on their own since implementations of block-ciphers tend to be vulnerable
to timing and power attacks, as discussed in Section 4.3.2. It is much safer to use one of the standard
implementations freely available in crypto libraries such as OpenSSL. These implementations have
gone through considerable analysis over the years and have been hardened to resist attack.

4.2.1 Case study: DES

The Data Encryption Standard (DES) was developed at IBM in response to a solicitation for
proposals from the National Bureau of Standards (now the National Institute of Standards). It
was published in the Federal Register in 1975 and was adopted as a standard for “unclassified”
applications in 1977. The DES algorithm single-handedly jump started the field of cryptanalysis;
everyone wanted to break it. Since inception, DES has undergone considerable analysis that lead
to the development of many new tools for analyzing block ciphers.

The precursor to DES is an earlier IBM block cipher called Lucifer. Certain variants of Lucifer
operated on 128-bit blocks using 128-bit keys. The National Bureau of Standards, however, asked
for a block cipher that used shorter blocks (64 bits) and shorter keys (56 bits). In response, the IBM
team designed a block cipher that met these requirements and eventually became DES. Setting the
DES key size to 56 bits was widely criticized and lead to speculation that DES was deliberately
made weak due to pressure from US intelligence agencies. In the coming chapters, we will see that
reducing the block size to 64 bits also creates problems.

Due to its short key size, the DES algorithm is now considered insecure and should not be used.
However, a strengthened version of DES called Triple-DES (3DES) was rea�rmed as a US standard
in 1998. NIST has approved Triple-DES through the year 2030 for government use. In 2002 DES
was superseded by a new and more e�cient block cipher standard called AES that uses 128-bit (or
longer) keys, and operates on 128-bit blocks.

The DES algorithm

The DES algorithm consists of 16 iterations of a simple round cipher. To describe DES it su�ces
to describe the DES round cipher and the DES key expansion function. We describe each in turn.

The Feistel permutation. One of the key innovations in DES, invented by Horst Feistel at
IBM, builds a permutation from an arbitrary function. Let f : X ! X be a function. We construct
a permutations ⇡ : X 2 ! X 2 as follows (Fig. 4.7):

⇡(x, y) :=
�

y, x� f(y)
�

To show that ⇡ is one-to-one we construct its inverse, which is given by:

⇡�1(u, v) =
�

v � f(u), u
�

The function ⇡ is called a Feistel permutation and is used to build the DES round cipher.
The composition of n Feistel permutations is called an n-round Feistel network. Block ciphers
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Figure 4.7: The Feistel permutation

designed as a Feistel network are called Feistel ciphers. For DES, the function f takes 32-bit
inputs and the resulting permutation ⇡ operates on 64-bit blocks.

Note that the Feistel inverse function ⇡�1 is almost identical to ⇡. As a result the same hardware
can be used for evaluating both ⇡ and ⇡�1. This in turn means that the encryption and decryption
circuits can use the same hardware.

The DES round function F (k, x). The DES encryption algorithm is a 16-round Feistel network
where each round uses a di↵erent function f : X ! X . In round number i the function f is defined
as

f(x) := F (ki, x)

where ki is a 48-bit key for round number i and F is a fixed function called the DES round
function. The function F is the centerpiece of the DES algorithm and is shown in Fig. 4.8. F
uses several auxiliary functions E, P , and S1, . . . , S8 defined as follows:

• The function E expands a 32-bit input to a 48-bit output by rearranging and replicating the
input bits. For example, E maps input bit number 1 to output bits 2 and 48; it maps input
bit 2 to output bit number 3, and so on.

• The function P , called the mixing permutation, maps a 32-bit input to a 32-bit output
by rearranging the bits of the input. For example, P maps input bit number 1 to output bit
number 9; input bit number 2 to output number 15, and so on.

• At the heart of the DES algorithm are the functions S1, . . . , S8 called S-boxes. Each S-box
Si maps a 6-bit input to a 4-bit output by a lookup table. The DES standard lists these 8
look-up tables, where each table contains 64 entries.

Given these functions, the DES round function F (k, x) works as follows:
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Figure 4.8: The DES round function F (k, x)
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input: k 2 {0, 1}48 and x 2 {0, 1}32
output: y 2 {0, 1}32
F (k, x):

t E(x)� k 2 {0, 1}48
separate t into 8 groups of 6-bits each: t := t1 k · · · k t8
for i = 1 to 8 : si  Si(ti)
s s1 k · · · k s8 2 {0, 1}32
y  P (s) 2 {0, 1}32
output y

Except for the S-boxes, the DES round cipher is made up entirely of XORs and bit permutations.
The eight S-boxes are the only components that introduce non-linearity into the design. IBM
published the criteria used to design the S-boxes in 1994 [21], after the discovery of a powerful
attack technique called “di↵erential cryptanalysis” in the open literature. This IBM report makes
it clear that the designers of DES knew in 1973 of attack techniques that would only become known
in the open literature many years later. They designed DES to resist these attacks. The reason for
keeping the S-box design criteria secret is explained in the following quote [21]:

The design [of DES] took advantage of knowledge of certain cryptanalytic techniques,
most prominently the technique of “di↵erential cryptanalysis,” which were not known
in the published literature. After discussions with NSA, it was decided that disclosure
of the design considerations would reveal the technique of di↵erential cryptanalysis, a
powerful technique that can be used against many ciphers. This in turn would weaken
the competitive advantage of the United States enjoyed over other countries in the field
of cryptography.

Once di↵erential cryptanalysis became public there was no longer any reason to keep the design of
DES secret. Due to the importance of the S-boxes we list a few of the criteria that went into their
design, as explained in [21].

1. The size of the look-up tables, mapping 6-bits to 4-bits, was the largest that could be accom-
modated on a single chip using 1974 technology.

2. No output bit of an S-box should be close to a linear function of the input bits. That is, if
we select any output bit and any subset of the 6 input bits, then the fraction of inputs for
which this output bit equals the XOR of these input bits should be close to 1/2.

3. If we fix the leftmost and rightmost bits of the input to an S-box then the resulting 4-bit to
4-bit function is one-to-one. In particular, this implies that each S-box is a 4-to-1 map.

4. Changing one bit of the input to an S-box changes at least two bits of the output.

5. For each � 2 {0, 1}6, among the 64 pairs x, y 2 {0, 1}6 such that x � y = �, the quantity
Si(x)� Si(y) must not attain a single value more than eight times.

These criteria were designed to make DES as strong as possible, given the 56-bit key-size constraints.
It is now known that if the S-boxes were simply chosen at random, then with high probability the
resulting DES cipher would be insecure. In particular, the secret key could be recovered after only
several million queries to the challenger.
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Beyond the S-boxes, the mixing permutation P also plays an important role. It ensures that
the S-boxes do not always operate on the same group of 6 bits. Again, [21] lists a number of criteria
used to choose the permutation P . If the permutation P was simply chosen at random then DES
would be far less secure.

The key expansion function. The DES key expansion function G takes as input the 56-bit
key k and outputs 16 keys k1, . . . , k16, each 48-bits long. Each key ki consists of 48 bits chosen
from the 56-bit key, with each ki using a di↵erent subset of bits from k.

The DES algorithm. The complete DES algorithm is shown in Fig. 4.9. It consists of 16
iterations of the DES round cipher plus initial and final permutations called IP and FP. These
permutations simply rearrange the 64 incoming and outgoing bits. The permutation FP is the
inverse of IP.

IP and FP have no cryptographic significance and were included for unknown reasons. Since bit
permutations are slow in software, but fast in hardware, one theory is that IP and FP are intended
to deliberately slow down software implementations of DES.

4.2.2 Exhaustive search on DES: the DES challenges

Recall that an exhaustive search attack on a block cipher (E, D) (Section 4.1.1) refers to the
following attack: the adversary is given a small number of plaintext blocks x1, . . . , xQ 2 X and
their encryption y1, . . . , yQ using a block cipher key k in K. The adversary finds k by trying all
possible keys k 2 K until it finds a key that maps all the given plaintext blocks to the given
ciphertext blocks. If enough ciphertext blocks are given, then k is the only such key, and it will be
found by the adversary.

For block ciphers like DES and AES-128 three blocks are enough to ensure that with high
probability there is a unique key mapping the given plaintext blocks to the given ciphertext blocks.
We will see why in Section 4.7.2 where we discuss ideal ciphers and their properties. For now it
su�ces to know that given three plaintext/ciphertext blocks an attacker can use exhaustive search
to find the secret key k.

In 1974, when DES was designed, an exhaustive search attack on a key space of size 256 was
believed to be infeasible. With improvements in computer hardware it was shown that a 56-bit is
woefully inadequate.
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To prove that exhaustive search on DES is feasible, RSA data security setup a sequence of
challenges, called the DES challenges. The rules were simple: on a pre-announced date RSA
data security posted three input/output pairs for DES. The first group to find the corresponding
key wins ten thousand US dollars. To make the challenge more entertaining, the challenge consisted
of n DES outputs y1, y2, . . . , yn where the first three outputs, y1, y2, y3, were the result of applying
DES to the 24-byte plaintext message:

The unknown message is:
x

1

x
2

x
3

which consists of three DES blocks: each block is 8 bytes which is 64 bits, a single DES block. The
goal was to find a DES key that maps xi to yi for all i = 1, 2, 3 and then use this key to decrypt
the secret message encoded in y4 . . . yn.

The first challenge was posted in January 1997. It was solved by the deschall project in 96
days. The team used a distributed Internet search with the help of 78,000 volunteers who con-
tributed idle cycles on their machines. The person whose machine found the secret-key received
40% of the prize money. Once decrypted, the secret message encoded in y4 . . . yn was “Strong
cryptography makes the world a safer place.”

A second challenge, posted in January 1998, was solved by the distributed.net project in only
41 days by conducting a similar Internet search, but on a larger scale.

In early 1998, the Electronic Frontiers Foundation (EFF) contracted Paul Kocher to construct
a dedicated machine to do DES exhaustive key search. The machine, called DeepCrack, cost
250,000 US dollars and contained about 1900 dedicated DES chips housed in six cabinets. The
chips worked in parallel, each searching through an assigned segment of the key space. When RSA
data security posted the next challenge in July 1998, DeepCrack solved it in 56 hours and easily
won the ten thousand dollar prize: not quite enough to cover the cost of the machine, but more
than enough to make an important point about DES.

The final challenge was posted in January 1999. It was solved within 22 hours using a combined
DeepCrack and distributed.net e↵ort. This put the final nail in DES’s co�n showing that a 56-bit
secret key can be recovered in just a few hours.

To complete the story, in 2007 the copacobana team built a cluster of o↵ the shelf 120 FPGA
boards at a total cost of about ten thousand US dollars. The cluster can search through the entire
256 DES key space in about 12.8 days [34].

The conclusion from all this work is that a 56-bit key is way too short. The minimum safe key
size these days is 128 bits.

Is AES-128 vulnerable to exhaustive search? Let us extrapolate the DES results to AES.
While these estimates are inherently imprecise, they give some indication as to the complexity of
exhaustive search on AES. The minimum AES key space size is 2128. If scanning a space of size
256 takes 22 hours then scanning a space of size 2128 will take time:

(22 hours)⇥ 2128�56 ⇡ 1.18 · 1020 years.

Even allowing for a billion fold improvement in computing speed and computing resources and
accounting for the fact that evaluating AES is faster than evaluating DES, the required time far
exceeds our capabilities. It is fair to conclude that a brute-force exhaustive search attack on AES
will never be practical. However, more sophisticated brute-force attacks on AES-128 exploiting
time-space tradeo↵s may come withing reach, as discussed in [11].
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4.2.3 Strengthening ciphers against exhaustive search: the 3E construction

The DES cipher has proved to be remarkably resilient to sophisticated attacks. Despite many years
of analysis the most practical attack on DES is a brute force exhaustive search over the entire key
space. Unfortunately, the 56-bit key space is too small.

A natural question is whether we can strengthen the cipher against exhaustive search without
changing its inner structure. The simplest solution is to iterate the cipher several time using
independent keys.

Let E = (E, D) be a block cipher defined over (K, X ). We define the block cipher 3E = (E3, D3)
as

E3( (k1, k2, k3), x) := E
�

k3, E(k2, E(k1, x))
�

The 3E block cipher takes keys in K3. For DES the 3E block cipher, called Triple-DES, uses keys
whose length is 3⇥ 56 = 168 bits.

Security. To analyze the security of 3E we will need a framework called the ideal cipher model
which we present at the end of this chapter. We analyze the security of 3E in that section.

The Triple-DES standard. NIST approved Triple-DES for government use through the
year 2030. Strictly speaking, the NIST version of Triple-DES is defined as

E3( (k1, k2, k3), x) := E
�

k3, D(k2, E(k1, x))
�

.

The reason for this is that setting k1 = k2 = k3 reduces the NIST Triple-DES to ordinary DES
and hence Triple-DES hardware can be used to implement single DES. This will not a↵ect our
discussion of security of Triple-DES. Another variant of Triple-DES is discussed in Exercise 4.6.

The 2E construction is insecure

While Triple-DES is not vulnerable to exhaustive search, its performance is three times slower than
single DES, as shown in Table 4.1.

Why not use Double-DES? Its key size is 2⇥ 56 = 112 bits, which is already su�cient to defeat
exhaustive search. Its performance is much better then Triple-DES.

Unfortunately, Double-DES is no more secure than single DES. More generally, let E = (E, D)
be a block cipher with key space K. We show that the 2E = (E2, D2) construction, defined as

E2( (k1, k2), x) := E
�

k2, E(k1, x)
�

is no more secure than E . The attack strategy is called meet in the middle.
We are given Q plaintext blocks x1, . . . , xQ and their 2E encryptions yi = E2

�

(k1, k2), xi
�

for
i = 1, . . . , Q. We show how to recover the secret key (k1, k2) in time proportional to |K|, even though
the key space has size |K|2. As with exhaustive search, a small number of plaintext/ciphertext pairs
is su�cient to ensure that there is a unique key (k1, k2) with high probability. Ten pairs are more
than enough to ensure uniqueness for block ciphers like Double-DES.

Theorem 4.2. Let E = (E, D) be a block cipher defined over (K, X ). There is an algorithm AEX

that takes as input Q plaintext/ciphertext pairs (xi, yi) 2 X 2 for i = 1, . . . , Q and outputs a key
pair (k 1, k 2) 2 K2 such that

yi = E2
�

(k 1, k 2), xi
�

for all i = 1, . . . , Q. (4.6)
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Figure 4.10: Meet in the middle attack on 2E

Its running time is dominated by a total of 2Q · |K| evaluations of algorithms E and D.

Proof. Let x̄ := (x1, . . . , xQ) and ȳ := (y1, . . . , yQ). To simplify the notation let us write

ȳ = E2
�

(k 1, k 2), x̄
�

= E(k 2, E(k 1, x̄))

to capture the Q relations in (4.6). We can write this as

D(k 2, ȳ) = E(k 1, x̄) (4.7)

To find a pair (k 1, k 2) satisfying (4.7) the algorithm AEX does the following:

step 1: construct a table T containing all pairs
�

k 1, E(k 1, x̄)
�

for all k 1 2 K
step 2: for all k 2 2 K do:

x̄ D(k 2, ȳ)
table lookup: if T contains a pair (·, x̄) then

let (k 1, x̄) be that pair and output (k 1, k 2) and halt

This meet in the middle attack is depicted in Fig. 4.10. By construction, the pair (k 1, k 2) output
by the algorithm must satisfy (4.7), a required.

Step 1 requires Q · |K| evaluations of E. Step 2 similarly requires Q · |K| evaluations of D.
Therefore, the total number of evaluation of E and D is 2Q · |K|. We assume that the time to insert
and look-up elements in the data structure holding the table T is less than the time to evaluate
algorithms E and D. 2

As discussed above, for relatively small values of Q, with overwhelming probability there will
be only one key pair satisfying (4.6), and this will be the output of Algorithm AEX in Theorem 4.2.

The running time of algorithm A in Theorem 4.2 is about the same as the time to do exhaustive
search on E , suggesting that 2E does not strengthen E against exhaustive search. The theorem,
however, only considers the running time of A. Notice that A must keep a large table in memory
which can be di�cult. To attack Double-DES, A would need to store a table of size 256 where
each table entry contains a DES key and short ciphertext. Overall this amounts to about 260 bytes
or about a million Terrabytes. While not impossible, obtaining su�cient storage can be di�cult.
Alternatively an attacker can trade-o↵ storage space for running time — it is easy to modify A so
that at any given time it only stores an ✏ fraction of the table at the cost of increasing the running
time by a factor of 1/✏.
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A meet in the middle attack on Triple-DES. A similar meet in the middle attack applies
to the 3E construction from the previous section. While 3E has key space K3, the meet in the
middle attack on 3E runs in time about |K|2 and takes space |K|. In the case of Triple-DES, the
attack requires about |K|2 = 2112 evaluations of DES which is too long to run in practice. Hence,
Triple-DES resists this meet in the middle attack and is the reason why Triple-DES is used in
practice.

4.2.4 Case study: AES

Although Triple-DES is a NIST approved cipher, it has a number of significant drawbacks. First,
Triple-DES is three times slower than DES and performs poorly when implemented in software.
Second, the 64-bit block size is problematic for a number of important applications (i.e., applications
in Chapter 6). By the mid-1990s it became apparent that a new federal block cipher standard is
needed.

The AES process. In 1997 NIST put out a request for proposals for a new block cipher standard
to be called the Advanced Encryption Standard or AES. The AES block cipher had to operate
on 128-bit blocks and support three key sizes: 128, 192, and 256 bits. In September of 1997,
NIST received 15 proposals, many of which were developed outside of the United Stated. After
holding two open conferences to discuss the proposals, in 1999 NIST narrowed down the list to five
candidates. A further round of intense cryptanalysis followed, culminating in the AES3 conference
in April of 2000, at which a representative of each of the final five teams made a presentation
arguing why their standard should be chosen as the AES. In October of 2000, NIST announced
that Rijndael, a Belgian block cipher, had been selected as the AES cipher. The AES became an
o�cial standard in November of 2001 when it was published as a NIST standard in FIPS 197. This
concluded a five year process to standardize a replacement to DES.

Rijndael was designed by Belgian cryptographers Joan Daemen and Vincent Rijmen [22]. AES
is slightly di↵erent from the original Rijndael cipher. For example, Rijndael supports blocks of size
128, 192, or 256 bits while AES only supports 128-bit blocks.

The AES algorithm

Like most real-world block ciphers, AES is an iterated cipher that iterates a simple round cipher
several times. The number of iterations depends on the size of the secret key:

cipher key-size number of
name (bits) rounds

AES-128 128 10
AES-192 192 12
AES-256 256 14

For example, the structure of the cipher AES-128 with its ten rounds is shown in Fig. 4.11. Here
f
AES

is a fixed invertible function on {0, 1}128 that does not depend on the key. The last step of
each round is to XOR the current round key with the output of f

AES

. This is repeated 9 times
until in the last round a slightly modified function f̂

AES

is used. Inverting the AES algorithm is
done by running the entire structure in the reverse direction. This is possible because every step is
easily invertible.
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Figure 4.11: Schematic of the AES-128 block cipher

Ciphers that follow the structure shown in Fig. 4.11 are called alternating key ciphers.
They are also known as iterated Even-Mansour ciphers. They can be proven secure under
certain “ideal” assumptions about the function f

AES

in each round. We present this analysis in
Theorem 4.14 later in this chapter.

To complete the description of AES it su�ces to describe the AES round function f
AES

and
the AES key expansion PRG. We describe each in turn.

The AES round function. An AES round function f
AES

is made up of a sequence of three
invertible operations on the set {0, 1}128. The input 128-bits is organized as a 4⇥ 4 array of cells,
where each cell is eight bits. The following three invertible operations are then carried out in
sequence, one after the other, on this 4⇥ 4 array:

1. SubBytes: Let S : {0, 1}8 ! {0, 1}8 be a fixed invertible function. This function is applied
to each of the 16 cells, one cell at a time. The function S is hard-coded in the AES standard.
It is designed to have no fixed points, namely S(x) 6= x for all x 2 {0, 1}8, and no inverse
fixed points, namely S(x) 6= x̄ where x̄ is the bit-wise complement of x. These requirements
are needed to defeat certain attacks discussed in Section 4.3.1.

2. ShiftRows: This step performs a cyclic shift on the four rows of the input 4 ⇥ 4 array: the
first row is unchanged, the second row is cyclically shifted one byte to the left, the third row is
cyclically shifted two bytes, and the fourth row is cyclically shifted three bytes. In a diagram,
this step performs the following transformation:

0

B

B

@

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

1

C

C

A

=)

0

B

B

@

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

1

C

C

A

(4.8)

3. MixColumns: In this step the 4⇥ 4 array is treated as a matrix and this matrix is multiplied
by a fixed matrix where arithmetic is interpreted in the finite field GF(28). Elements in
the field GF(28) are represented as polynomials over GF(2) of degree less than eight where
multiplication is done modulo the irreducible polynomial x8 + x4 + x3 + x + 1. Specifically,
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the MixColumns transformation does:
0

B

B

@

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

1

C

C

A

⇥

0

B

B

@

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

1

C

C

A

=)

0

B

B

@

a00,0 a00,1 a00,2 a00,3
a01,1 a01,2 a01,3 a01,0
a02,2 a02,3 a02,0 a02,1
a03,3 a03,0 a03,1 a03,2

1

C

C

A

(4.9)

Here the scalars 01, 02, 03 are interpreted as elements of GF(28) using their binary represen-
tation (e.g., 03 represents the element x + 1 in GF(28)). This fixed matrix is invertible over
GF(28) so that the entire transformation is invertible.

The function f
AES

used in the AES circuit of Fig. 4.11 is the sequential composition of the
three functions SubBytes, ShiftRows, and MixColumns in that order. In the very last round AES
uses a slightly di↵erent function we call f̂

AES

. This function is the same as f
AES

except that
the MixColumns step is omitted. This omission is done so that the AES decryption circuit looks
somewhat similar to the AES encryption circuit. Security implications of this omission are discussed
in [25].

Because each step in f
AES

is easily invertible, the entire function f
AES

is easily invertible, as
required for decryption.

Implementing AES using pre-computed tables. The AES round function is built from
a function we called f

AES

defined as a sequence of three steps: SubBytes, ShiftRows, and
MixColumns. The designers of AES did not intend for AES to be implemented that way on modern
processors. Instead, they proposed an implementation of f

AES

the does all three steps at once
using four fixed lookup tables called T0, T1, T2, T3.

To explain how this works recall that f
AES

takes as input a 4⇥4 matrix A = (ai,j) and outputs
a matrix A0 := f

AES

(A) of the same dimensions. Let us use S[a] to denote the result of applying
SubBytes to input a 2 {0, 1}8. Similarly, recall that the MixColumns step multiplies the current
state by a fixed 4 ⇥ 4 matrix M . Let us use M [i] to denote column number i of M and A0[i] to
denote column number i of A0.

Now, looking at (4.9), we can write the four columns of the output of f
AES

(A) as:

A0[0] = M [0] · S[a0,0] + M [1] · S[a1,1] + M [2] · S[a2,2] + M [3] · S[a3,3]

A0[1] = M [0] · S[a0,1] + M [1] · S[a1,2] + M [2] · S[a2,3] + M [3] · S[a3,0]

A0[2] = M [0] · S[a0,2] + M [1] · S[a1,3] + M [2] · S[a2,0] + M [3] · S[a3,1]

A0[3] = M [0] · S[a0,3] + M [1] · S[a1,0] + M [2] · S[a2,1] + M [3] · S[a3,2]

(4.10)

where addition and multiplication is done in GF(28). Each column M [i], i = 0, 1, 2, 3, is a vector
of four bytes over GF(28) while the quantities S[ai,i] are 1-byte scalars in GF(28).

Every term in (4.10) can be evaluated quickly using a fixed pre-computed table. For i = 0, 1, 2, 3
let us define a table Ti with 256 entries as follows:

for a 2 {0, 1}8: Ti[a] := M [i] · S[a] 2 {0, 1}32 .

130



Plugging these tables into (4.10) gives a fast way to evaluate the function f
AES

(A):

A0[0] = T0[a0,0] + T1[a1,1] + T2[a2,2] + T3[a3,3]

A0[1] = T0[a0,1] + T1[a1,2] + T2[a2,3] + T3[a3,0]

A0[2] = T0[a0,2] + T1[a1,3] + T2[a2,0] + T3[a3,1]

A0[3] = T0[a0,3] + T1[a1,0] + T2[a2,1] + T3[a3,2]

The entire AES circuit written this way is a simple sequence of table lookups. Since each table Ti

contains 256 entries, four bytes each, the total size of all four tables is 4KB. For completeness we
note that the circular structure of the matrix M lets us compress the four tables to only 2KB with
little impact on performance.

The one exception to (4.10) is the very last round of AES where the MixColumns step is omitted.
To evaluate the last round we need a fifth 256-byte table S that only implements the SubBytes

operation.
This optimization of AES is optional. Implementations in constrained environments where

there is no room to store a 4KB table can choose to implement the three steps of f
AES

in code,
which takes less than 4KB, but is not as fast. Thus AES can be adapted for both constrained and
unconstrained environments.

As a word of caution, we note that a simplistic implementation of AES using this table lookup
optimization is most likely vulnerable to cache timing attacks discussed in Section 4.3.2.

The AES-128 key expansion method. Looking back at Fig. 4.11 we see that key expansion
for AES-128 needs to generate 11 rounds keys k0, . . . , k10 where each round key is 128 bits. To do
so, the 128-bit AES key is partitioned into four 32-bit words w0,0, w0,1, w0,2, w0,3 and these form
the first round key k0. The remaining ten round keys are generated sequentially: for i = 1, . . . , 10,
the 128-bit round key ki = (wi,0, wi,1, wi,2, wi,3) is generated from the preceding round key ki�1 =
(wi�1,0, wi�1,1, wi�1,2, wi�1,3) as follows:

wi,0  wi�1,0 � gi(wi�1,3)
wi,1  wi�1,1 � wi,0

wi,2  wi�1,2 � wi,1

wi,3  wi�1,3 � wi,2 .

Here the function gi : {0, 1}32 ! {0, 1}32 is a fixed function specified in the AES standard. It
operates on its four byte input in three steps: (1) perform a one-byte left circular rotation on the
4-byte input, (2) apply SubBytes to each of the four bytes obtained, and (3) XOR the left most byte
with a fixed round constant ci. The round constants c1, . . . , c10 are specified in the AES standard:
round constant number i is the element xi�1 of the field GF(28) treated as an 8-bit string.

The key expansion procedures for AES-192 and AES-256 are similar to those of AES-128. For
AES-192 each iteration generates six 32-bit words (192 bits total) in a similar manner to AES-128,
but only the first four 32-bit words (128 bits total) are used as the AES round key. For AES-256
each iteration generates eight 32-bit words (256 bits total) in a similar manner to AES-128, but
only the first four 32-bit words (128 bits total) are used as the AES round key.

The AES key expansion method is intentionally designed to be invertible: given the last round
key, one can work backwards to recover the full AES secret key k. The reason for this is to ensure
that every AES-128 round key, on its own, has the same amount of entropy as the AES-128 secret
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key k. If AES-128 key expansion were not invertible then the last round key would not be uniform
in {0, 1}128. Unfortunately, invertability also aids attacks: it is used in related key attacks and in
side-channel attacks on AES, discussed next.

Security of AES. The AES algorithm withstood fairly sophisticated attempts at cryptanalysis
lobbed at it. At the time of this writing, the best known attacks are as follows:

• Key recovery: Key recovery attacks refer to an adversary who is given multiple plain-
text/ciphertext pairs and is able to recover the secret key from these pairs, as in an exhaustive
search attack. The best known key recovery attack on AES-128 takes 2126.1 evaluations of
AES [17]. This is about four times faster than exhaustive search and takes a prohibitively
long time. Therefore this attack has little impact on the security of AES-128.

The best known attack on AES-192 takes 2189.74 evaluation of AES which is again only about
four times faster than exhaustive search. The best known attack on AES-256 takes 2254.42

evaluation of AES which is about three times faster than exhaustive search. None of these
attacks impact the security of either AES variant.

• Related key attacks: In an `-way related key attack the adversary is given ` lists of
plaintext/ciphertext pairs: for i = 1, . . . , `, list number i is generated using key ki. The
point is that all ` keys k1, . . . , k` must satisfy some fixed relation chosen by the adversary.
The attacker’s goal is to recover one of the keys, say k1. In well-implemented cryptosystems,
keys are always generated independently at random and are unlikely to satisfy the required
relation. Therefore related key attacks do not typically a↵ect correct crypto implementations.

AES-256 is vulnerable to a related key attack that exploits its relatively simple key expansion
mechanism [12]. The attack requires four related keys k1, k2, k3, k4 where the relation is a
simple XOR relation: it requires that certain bits of the quantities k1�k2, k1�k3, and k2�k4
are set to specific values. Then given lists of plaintext/ciphertext pairs generated for each
of the four keys, the attacker can recover the four keys in time 299.5. This is far faster than
the time it would take to mount an exhaustive search on AES-256. While the attack is quite
interesting, it does not a↵ect the security of AES-256 in well-implemented systems.

Hardware implementation of AES. At the time AES was standardized as a federal encryption
standard most implementations were software based. The wide-spread adoption of AES in software
products prompted all major processor vendors to extend their instruction set to add support for
a hardware implementation of AES.

Intel, for example, added new instructions to its Xeon and Core families of processors called
AES-NI (AES new instructions) that speed-up and simplify the process of using AES in software.
The new instructions work as follows:

• AESKEYGENASSIST: runs the key expansion procedure to generate the AES round keys from
the AES key.

• AESENC: runs one round of the AES encryption algorithm. The instruction is called as:

AESENC xmm15, xmm1

where the xmm15 register holds the 128-bit data block and the xmm1 register holds the 128-
bit round key for that round. The resulting 128-bit data block is written to register xmm15.
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Running this instruction nine times with the appropriate round keys loaded into registers
xmm1, . . . , xmm9 executes the first nine rounds of AES encryption.

• AESENCLAST: invoked similar to AESENC to run last round of the AES algorithm. Recall that
the last round function is di↵erent from the others: it omits the MixColumns step.

• AESDEC and AESDECLAST: runs one round of the AES decryption algorithm, analogous to the
encryption instructions.

These AES-NI hardware instructions provide a significant speed-up over a heavily optimized soft-
ware implementations of AES. Experiments by Emilia Käsper in 2009 show that on Intel Core 2
processors AES using the AES-NI instructions takes 1.35 cycles/byte (pipelined) while an optimized
software implementation takes 7.59 cycles/byte.

In Intel’s Haswell processors introduced in 2013 the AESENC, AESDEC and AESENCLAST instruc-
tions each take seven cycles to complete. These instructions are fully pipelined so that a new in-
struction can be dispatched every cycle. In other words, Intel partitioned the execution of AESENC
into a pipeline of seven stages. Seven AES blocks can be processed concurrently by di↵erent stages
of the pipeline. While processing a single AES-128 block takes (7 cycles) ⇥ (10 rounds) = 70 cycles
(or 4.38 cycles/byte), processing seven blocks in a pipeline takes only 77 cycles (or 0.69 cycles/byte).
Hence, pipelining can speed up AES by a factor of seven. As we will see in the next chapter, this
plays an important role in choosing the exact method we use to encrypt long messages: it is best to
choose an encryption method that can leverage the available parallelism to keep the pipeline busy.

Beyond speed, the hardware implementation of AES o↵ers better security because it is resistant
to the side-channel attacks discussed in the next section.

4.3 Sophisticated attacks on block ciphers

Widely deployed block ciphers like AES go through a lengthy selection process before they are
standardized and continue to be subjected to cryptanalysis. In this section we survey some attack
techniques that have been developed over the years.

In Section 4.3.1, we begin with attacks on the design of the cipher that may result in key com-
promise from observing plaintext/ciphertext pairs. Unlike brute-force exhaustive search attacks,
these algorithmic attacks rely on clever analysis of the internal structure of a particular block
cipher.

In Section 4.3.2, we consider a very di↵erent class of attacks, called side-channel attacks. In
analyzing any cryptosystem, we consider scenarios in which an adversary interacts with the users
of a cryptosystem. During the course of these interactions, the adversary collects information that
may help it break the system. Throughout this book, we generally assume that this information
is limited to the input/output behavior of the users (for example, plaintext/ciphertext pairs).
However, this assumption ignores the fact that computation is a physical process. As we shall
see, in some scenarios it is possible for the adversary to break a cryptosystem by measuring physical
characteristics of the users’ computations, for example, running time or power consumption.

Another class of attacks on the physical implementation of a cryptosystem is a fault-injection
attack, which is discussed in Section 4.3.3. Finally, in Section 4.3.4, we consider another class of
algorithmic attacks, in which the adversary can harness the laws of quantum mechanics to speed
up its computations.
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These clever attacks make two very important points:

1. Casual users of cryptography should only ever use standardized algorithms like AES, and not
design their own block ciphers.

2. It is best to not implement algorithms on your own since, most likely the resulting imple-
mentations will be vulnerable to side-channel attacks; instead, it is better to use vetted
implementations in widely used crypto libraries.

To further emphasize these points we encourage anyone who first learns about the inner-workings
of AES to take the following entertaining pledge (originally due to Je↵ Moser):

I promise that once I see how simple AES really is, I will not implement it in production
code even though it will be really fun. This agreement will remain in e↵ect until I learn
all about side-channel attacks and countermeasures to the point where I lose all interest
in implementing AES myself.

4.3.1 Algorithmic attacks

Attacking the design of block ciphers is a vast field with many sophisticated techniques: linear
cryptanalysis, di↵erential cryptanalysis, slide attacks, boomerang attacks, and many others. We
refer to [66] for a survey of the many elegant ideas that have been developed. Here we briefly
describe a technique called linear cryptanalysis that has been used successfully against the DES
block cipher. This technique, due to Matsui [46, 45], illustrates why designing e�cient block-ciphers
is so challenging. This method has been shown to not work against AES.

Linear cryptanalysis. Let (E, D) be a block cipher where data blocks and keys are bit strings.
That is, M = C = {0, 1}n and K = {0, 1}h.

For a bit string m 2 {0, 1}n and a set of bit positions S ✓ {0, . . . , n� 1} we use m[S] to denote
the XOR of the bits in positions in S. That is, if S = {i1, . . . , i`} then m[S] := m[i1]� · · ·�m[i`].

We say that the block cipher (E, D) has a linear relation if there exist sets of bit positions
S0, S1 ✓ {0, . . . , n � 1} and S2 ✓ {0, . . . , h � 1}, such that for all keys k 2 K and for randomly
chosen m 2M, we have

Pr
h

m[S0]� E(k, m)[S1] = k[S2]
i

� 1

2
+ ✏ (4.11)

for some non-negligible ✏ called the bias. For an “ideal” cipher the plaintext and ciphertext behave
like independent strings so that the relation m[S0] � E(k, m)[S1] = k[S2] in (4.11) holds with
probability exactly 1/2, and therefore ✏ = 0. Surprisingly, the DES block cipher has a linear
relation with a small, but non-negligible bias.

Let us see how a linear relation leads to an attack. Consider a cipher (E, D) that has a linear
relation as in (4.11) for some non-negligible ✏ > 0. We assume the linear relation is explicit so that
the attacker knows the sets S0, S1 and S2 used in the relation. Suppose that for some unknown
secret key k 2 K the attacker obtains many plaintext/ciphertext pairs (mi, ci) for i = 1, . . . , t. We
assume that the messages m1, . . . , mt are sampled uniformly and independently from M and that
ci = E(k, mi) for i = 1, . . . , t. Using this information the attacker can learn one bit of information
about the secret key k, namely the bit k[S2] 2 {0, 1} assuming su�ciently many plaintext/ciphertext
pairs are given. The following lemma shows how.
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Lemma 4.3. Let (E, D) be a block cipher for which (4.11) holds. Let m1, . . . , mt be messages
sampled uniformly and independently from the message space M and let ci := E(k, mi) for i =
1, . . . , t. Then

Pr
h

k[S2] = Majorityt
i=1(mi[S0]� ci[S1])

i

� 1� e�t✏2/2 . (4.12)

Here, Majority takes a majority vote on the given bits; for example, on input (0, 0, 1), the
majority is 0, and on input (0, 1, 1), the majority is 1. The proof of the lemma is by a direct
application of the Cherno↵ bound (Theorem ??).

The bound in (4.12) shows that once the number of known plaintext/ciphertext pairs ex-
ceeds 4/✏2, the output of the majority function equals k[S2] with more than 86% probability.
Hence, the attacker can compute k[S2] from the given plaintext/ciphertext pairs and obtain one
bit of information about the secret key. While this single key bit may not seem like much, it is a
stepping stone towards a more powerful attack that can expose the entire key.

Linear cryptanalysis of DES. Matsui showed that 14-rounds of the DES block cipher has a
linear relation where the bias is at least ✏ � 2�21. In fact, two linear relations are obtained: one by
exploiting linearity in the DES encryption circuit and another from linearity in the DES decryption
circuit. For a 64-bit plaintext m let mL and mR be the left and right 32-bits of m respectively.
Similarly, for a 64-bit ciphertext c let cL and cR be the left and right 32-bits of c respectively. Then
two linear relations for 14-rounds of DES are:

mR[17, 18, 24]� cL[7, 18, 24, 29]� cR[15] = k[Se]

cR[17, 18, 24]�mL[7, 18, 24, 29]�mR[15] = k[Sd]
(4.13)

for some bit positions Se, Sd ✓ {0, . . . , 55} in the 56-bit key k. Both relations have a bias of ✏ � 2�21

when applied to 14-rounds of DES.
These relations are extended to the entire 16-round DES by incorporating the first and last

rounds of DES — rounds number 1 and 16 — into the relations. Let k1 be the first round key and
let k16 be the last round key. Then by definition of the DES round function we obtain from (4.13)
the following relations on the entire 16-round DES circuit:

⇣

mL � F (k1, mR)
⌘

[17, 18, 24]� cR[7, 18, 24, 29]�
⇣

cL � F (k16, cR)
⌘

[15] = k[S0
e] (4.14)

⇣

cL � F (k16, cR)
⌘

[17, 18, 24]�mR[7, 18, 24, 29]�
⇣

mL � F (k1, mR)
⌘

[15] = k[S0
d] (4.15)

for appropriate bit positions S0
e, S

0
d ✓ {0, . . . , 55} in the 56-bit key.

Let us first focus on relation (4.14). Bits 17,18,24 of F (k1, mR) are the result of a single S-box
and therefore they depend on only six bits of k1. Similarly F (k16, cR)[15] depends on six bits of k16.
Hence, the left hand side of (4.14) depends on only 12 bits of the secret key k. Let us denote these
12 bits by k(12). We know that when the 12 bits are set to their correct value, the left hand side
of (4.14), evaluated at a random plaintext/ciphertext pair, exhibits a bias of about 2�21 towards
the bit k[S0

e]. When the 12 key bits of the key are set incorrectly one assumes that the bias in (4.14)
is far less. As we will see, this has been verified experimentally.

This observation lets an attacker recover the 12 bits k(12) of the secret key k as follows. Given
a list L of t plaintext/ciphertext pairs (e.g., t = 243) do:
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• Step 1: for each of the 212 candidates for the key bits k(12) compute the bias in (4.14).
That is, evaluate the left hand side of (4.14) on all t plaintext/ciphertext pairs in L and
let t0 be the number of times that the expression evaluates to 0. The bias is computed as
✏ = |(t0/t) � (1/2)|. This produces a vector of 212 biases, one for each candidate 12 bits
for k(12).

• Step 2: sort the 212 candidates by their bias, from largest to smallest. If the list L of given
plaintext/ciphertext pairs is su�ciently large then the 12-bit candidate producing the highest
bias is the most likely to be equal to k(12). This recovers 12 bits of the key. Once k(12) is
known we can determine the bit k[S0

e] using Lemma 4.3, giving a total of 13 bits of k.

The relation (4.15) can be used to recover an additional 13 bits of the key k in exactly the same way.
This gives the attacker a total 26 bits of the key. The remaining 56 � 26 = 30 bits are recovered
by exhaustive search.

Naively computing the biases in Step 1 takes time 212 ⇥ t: for each candidate for k(12) one has
to evaluate (4.14) on all t plaintext/ciphertext pairs in L. The following insight reduces the work to
approximately time t. For a given pair (m, c), the left hand side of (4.14) can be computed from only
thirteen bits of (m, c): six bits of m are needed to compute F (k1, mR)[17, 18, 24], six bits of c are
needed to compute F (k16, cR)[15], and finally the single bit mL[17, 18, 24]� cR[7, 18, 24, 29]� cL[15]
is needed. These 13 bits are su�cient to evaluate the left hand side of (4.14) for any candidate
key. Two plaintext/ciphertext pairs that agree on these 13 bits will always result in the same value
for (4.14). We refer to these 13 bits as the type of the plaintext/ciphertext pair.

Before computing the biases in Step 1 we build a table of size 213 that counts the number
of plaintext/ciphertext pairs in L of each type. For b 2 {0, 1}13 table entry b is the number of
plaintext/ciphertext pairs of type b. Constructing this table takes time t, but once the table is
constructed computing all the biases in Step 1 can be done in time 212 ⇥ 213 = 225 which is much
less than t. Therefore, the bulk of the work in Step 1 is counting the number of plaintext/ciphertext
pairs of each type.

Matsui shows that given a list of 243 plaintext/ciphertext pairs this attack succeeds with proba-
bility 85% using about 243 evaluations of the DES circuit. Experimental results by Junod [38] show
that with 243 plaintext/ciphertext pairs, the correct 26 bits of the key are among the 2700 most
likely candidates from Step 1 on average. In other words, the exhaustive search for the remaining
30 bits is carried out on average 2700 ⇡ 211.4 times to recover the entire 56-bit key. Overall, the
attack is dominated by the time to evaluate the DES circuit 230⇥211.4 = 241.4 times on average [38].

Lesson. Linear cryptanalysis of DES is possible because the fifth S-box, S5, happens to be some-
what approximated by a linear function. The linearity of S5 introduced a linear relation on the
cipher that could be exploited to recover the secret key using 241 DES evaluations, far less than the
256 evaluations that would be needed in an exhaustive search. However, unlike exhaustive search,
this attack requires a large number of plaintext/ciphertext pairs: the required 243 pairs correspond
to 64 terabytes of plaintext data. Nevertheless, this is a good illustration of how di�cult it is to
design secure block ciphers and why one should only use standardized and well-studied ciphers.

Linear cryptanalysis has been generalized over the years to allow for more complex non-linear
relations among plaintext, ciphertext, and key bits. These generalizations have been used against
other block ciphers such as LOKI91 and Q.
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4.3.2 Side-channel attacks

Side-channel attacks do not attack the cryptosystem as a mathematical object. Instead, they
exploit information inadvertently leaked by its physical implementation.

Consider an attacker who observes a cryptosystem as it operates on secret data, such as a
secret key. The attacker can learn far more information than just the input/output behavior of the
system. Two important examples are:

• Timing side channel: In a vulnerable implementation, the time it takes to encrypt a block
of plaintext may depend on the value of the secret key. An attacker who measures encryption
time can learn information about the key, as shown below.

• Power side channel: In a vulnerable implementation, the amount of power used by the
hardware as it encrypts a block of plaintext can depend on the value of the secret key. An
attacker who wants to extract a secret key from a device like a smartcard can measure the
device’s power usage as it operates and learn information about the key.

Many other side channels have been used to attack implementations: electromagnetic radiation
emanating from a device as it encrypts, heat emanating from a device as it encrypts [51], and even
sound [31].

Timing attacks

Timing attacks are a significant threat to crypto implementations. Timing information can be
measured by a remote network attacker who interacts with a victim server and measures the
server’s response time to certain requests. For a vulnerable implementation, the response time can
leak information about a secret key. Timing information can also be obtained by a local attacker
on the same machine as the victim, for example, when a low-privilege process tries to extract a
secret key from a high-privilege process. In this case, the attacker obtains very accurate timing
measurements about its target. Timing attacks have been demonstrated in both the local and
remote settings.

In this section, we describe a timing attack on AES that exploits memory caching behavior
on the victim machine. We will assume that the adversary can accurately measure the victim’s
running time as it encrypts a block of plaintext with AES. The attack we present exploits timing
variations due to caching in the machine’s memory hierarchy.

Modern processors use a hierarchy of caches to speed up reads and writes to memory. The
fastest layer, called the L1 cache, is relatively small (e.g. 64KB). Data is loaded into the L1 cache
in blocks (called lines) of 64 bytes. Loading a line into L1 cache takes considerably more time than
reading a line already in cache.

This cache-induced di↵erence in timing leads to a devastating key recovery attack against the
fast table-based implementation of AES presented on page 130. An implementation that ignores
these caching e↵ects will be easily broken by a timing attack.

Recall that the table-based implementation of AES uses four tables T0, T1, T2, T3 for all but the
last round. The last round does not include the MixColumns step and evaluation of this last round
uses an explicit S table instead of the tables T0, T1, T2, T3. Suppose that when each execution of
AES begins, the S table is not in the L1 cache. The first time a table entry is read, that part of
the table will be loaded into L1 cache. Consequently, this first read will be slow, but subsequent
reads to the same entry will be much faster since the data is already cached. Since the S table is
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only used in the last round of AES no parts of the table will be loaded in cache prior to the last
round.

Letting A = (ai,j) denote the 4⇥ 4 input to the last round, and letting (wi,j) denote the 4⇥ 4
last round key, the final AES output is computed as the 4⇥ 4 matrix:

C = (ci,j) =

0

B

B

@

S[a0,0] + w0,0 S[a0,1] + w0,1 S[a0,2] + w0,2 S[a0,3] + w0,3

S[a1,1] + w1,0 S[a1,2] + w1,1 S[a1,3] + w1,2 S[a1,0] + w1,3

S[a2,2] + w2,0 S[a2,3] + w2,1 S[a2,0] + w2,2 S[a2,1] + w2,3

S[a3,3] + w3,0 S[a3,0] + w3,1 S[a3,1] + w3,2 S[a3,2] + w3,3

1

C

C

A

(4.16)

The attacker is given this final output C.
To mount the attack, consider two consecutive entries in the output matrix C, say c0,0 =

S[a0,0] + w0,0 and c0,1 = S[a0,1] + w0,1. Subtracting one equation from the other we see that when
a0,0 = a0,1 the following relation holds:

c0,0 � c0,1 = w0,0 � w0,1 .

Therefore, with � := w0,0�w0,1 we have that c0,0�c0,1 = � whenever a0,0 = a0,1. Moreover, when
a0,0 6= a0,1 the structure of the S table ensures that c0,0 � c0,1 6= �.

The key insight is that whenever a0,0 = a0,1, reading S[a0,0] loads the a0,0 entry of S into the L1
cache so that the second access to this entry via S[a0,1] is much faster. However, when a0,0 6= a0,1
it is possible that both reads miss the L1 cache so that both are slow. Therefore, when a0,0 = a0,1
the expected running time of the entire AES cipher is slightly less than when a0,0 6= a0,1.

The attacker’s plan now is to run the victim AES implementation on many random input blocks
and measure the running time. For each value of � 2 {0, 1}8 the attacker creates a list L� of all
output ciphertexts where c0,0 � c0,1 = �. For each �-value it computes the average running time
among all ciphertexts in L�. Given enough samples, the lowest average running time is obtained
for the �-value satisfying � = w0,0 � w0,1. Hence, timing information reveals one linear relation
about the last round key: w0,0 � w0,1 = �.

Suppose the implementation evaluates the terms of (4.16) in some sequential order. Repeating
the timing procedure above for di↵erent consecutive pairs ci,j and cu,v in C reveals the di↵erence
in GF(28) between every two consecutive bytes of the last round key. Then if the first byte of
the last round key is known, all remaining bytes of the last round key can be computed from the
known di↵erences. Moreover, since key expansion in AES-128 is invertible, it is a simple matter to
reconstruct the AES-128 secret key from the last round key.

To complete the attack, the attacker simply tries all 256 possible values for the first byte of last
round key. For each candidate value the attacker obtains a candidate AES-128 key. This key can
be tested by trying it out on a few known plaintext/ciphertext pairs. Once a correct AES-128 key
is found, the attacker has obtained the desired key.

This attack, due to Bonneau and Mironov [19], works quite well in practice. Their experiments
on a Pentium IV Xeon successfully recovered the AES secret key using about 220 timing measure-
ments of the encryption algorithm. The attack only takes a few minutes to run. We note that the
Pentium IV Xeon uses 32-byte cache lines so that the S table is split across eight lines.

Mitigations. The simplest approach to defeat timing attacks on AES is to use the AES-NI
instructions that implement AES in hardware. These instructions are faster than a software im-
plementation and always take the same amount of time, independent of the key or input data.
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On processors that do not have built-in AES instructions one is forced to use a software imple-
mentation. One approach to mitigate cache-timing attacks is to use a table-free implementation of
AES. Several such implementations of AES using a technique called bit-slicing provide reasonable
performance in software and are supposedly resistant to timing attacks.

Another approach is to pre-load the tables T0, T1, T2, T3 and S into L1 cache before every
invocation of AES. This prevents the cache-based timing attack, but only if the tables are not evicted
from L1 cache while AES is executing. Ensuring that the tables stay in L1 cache is non-trivial on a
modern processor. Interrupts during AES execution can evict cache lines. Similarly, hyperthreading
allows for multiple threads to execute concurrently on the same core. While one thread pre-loads
the AES tables into L1 cache another thread executing concurrently can inadvertently evict them.

Yet another approach is to pad AES execution to the maximum possible time to prevent timing
attacks, but this has a non-negligible impact on performance.

To conclude, we emphasize that the following mitigation does not work: adding a random
number of instructions at the end of every AES execution to randomly pad the running time does
not prevent the attack. The attacker can overcome this by simply obtaining more samples and
averaging out the noise.

Power attacks on AES implementations

The amount of power consumed by a device as it operates can leak information about the inner-
workings of the device, including secret keys stored on the device. Let us see how an attacker can
use power measurements to quickly extract secret keys from a physical device.

As an example, consider a credit-card with an embedded chip where the chip contains a secret
AES key. To make a purchase the user plugs the credit-card into a point-of-sale terminal. The
terminal provides the card with the transaction details and the card authorizes the transaction
using the secret embedded AES key. We leave the exact details for how this works to a later
chapter.

Since the embedded chip must draw power from the terminal (it has no internal power source)
it is quite easy for the terminal to measure the amount of power consumed by the chip at any
given time. In particular, an attacker can measure the amount of power consumed as the AES
algorithm is evaluated. Fig. 4.12a shows a test device’s power consumption as it evaluates the
AES-128 algorithm four times (the x-axis is time and y-axis is power). Each hump is one run of
AES and within each hump the ten rounds of AES-128 are clearly visible.

Simple power analysis. Suppose an implementation contains a branch instruction that depends
on a bit of the secret key. Say, the branch is taken when the least significant bit of the key is ‘1’ and
not taken otherwise. Since taking a branch requires more power than not taking it, the power trace
will show a spike at the branch point when the key bit is one and no spike otherwise. An attacker
can simply look for a spike at the appropriate point in the power trace and learn that bit of the
key. With multiple key-dependent branch instructions the entire secret key can be extracted. This
works quite well against simple implementations of certain cryptosystems (such as RSA, which is
covered in a later chapter).

The attack of the previous paragraph, called simple power analysis (SPA), will not work
on AES: during encryption the secret AES round keys are simply XORed into the cipher state.
The power used by the XOR instruction only marginally depends on its operands and therefore
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Figure 4.12: AES di↵erential power analysis (source: Kocher et al. [40])

the power used by the XOR reveals no useful information about the secret key. This resistance to
simple power analysis was an attractive feature of AES.

Di↵erential power analysis. Despite AES’s resistance to SPA, a more sophisticated power
analysis attack successfully extracts the AES secret key from simple implementations. Choose an
AES key k at random and encrypt 4000 random plaintexts using the key k. For our test device the
resulting 4000 power traces look quite di↵erent from each other indicating that the power trace is
input dependent, the input being the random plaintext.

Next, consider the output of the first S-box in the first round. Call this output T . We hypothe-
size that the power consumed by the S-box lookup depends on the index being looked up. That is,
we guess that the value of T is correlated with the power consumed by the table lookup instruction.

To test the hypothesis, let us split the 4000 traces into two piles according to the least significant
bit of T : pile 1 contains traces where the LSB of T is 1 and pile 0 contains traces where the bit
is 0. Consider the power consumed by traces in each pile at the moment in time when the card
computes the output of the first S-box:

pile 1 (LSB = 1): mean power 116.9 units, standard deviation 10.7
pile 0 (LSB = 0): mean power 121.9 units, standard deviation 9.7

The two power distributions are shown in Fig. 4.12b. The distributions are close, but clearly
di↵erent. Hence, with enough independent samples we can distinguish one distribution from the
other.

To exploit this observation, consider Fig. 4.12c. The top line shows the power trace averaged
over all traces in pile 1. The second line shows the power trace averaged over all traces in pile 0.
The bottom line shows the di↵erence between the two top traces, magnified by a factor of 15. The
first spike in the bottom line is exactly at the time when the card computed the output of the first
S-box. The size of the spike corresponds exactly to the di↵erence in averages shown in Fig. 4.12b.
This bottom line is called the power di↵erential.
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To attack a target device the attacker must first experiment with a clean device: the attacker
loads a chosen secret key into the device and computes the power di↵erential curve for the device
as shown in Fig. 4.12c. Next, suppose the attacker obtains a device with an unknown embedded
key. It can extract the key as follows:

first, measure the power trace for 4000 random plaintexts
next, for each candidate first byte k 2 {0, 1}8 of the key do:

split the 4000 samples into two piles according to the first bit of T
(this is done using the current guess for k and the 4000 known plaintexts)

if the resulting power di↵erential curve matches the pre-computed curve:
output k as the first byte of the key and stop

Fig. 4.12d shows this attack in action. When using the correct value for the first byte of the
key (k = 103) we obtain the correct power di↵erential curve. When the wrong guess is used
(k = 101, 102, 104, 105) the power di↵erential does not match the expected curve.

Iterating this procedure for all 16 bytes of the AES-128 key recovers the entire key.

Mitigations. A common defense against power analysis uses hardware tweaks. Conceptually,
prior to executing AES the hardware draws a fixed amount of power to charge a capacitor and then
runs the entire AES algorithm using power in the capacitor. Once AES is done the excess power
left in the capacitor is discarded. The next application of AES again charges the capacitor and so
on. This conceptual design (which takes some e↵ort to implement correctly in practice) ensures
that the device’s power consumption is independent of secret keys embedded in the device.

Another mitigation approach concedes that some limited information about the secret key
leaks every time the decryption algorithm runs. The goal is to then preemptively re-randomize the
secret key after each invocation of the algorithm so that the attacker cannot combine the bits of
information he learns from each execution. This approach is studied in an area called leakage-
resilient cryptography.

4.3.3 Fault-injection attacks on AES

Another class of implementation attacks, called fault injection attacks, attempt to deliberately
cause the hardware to introduce errors while running the cryptosystem. An attacker can exploit
the malformed output to learn information about the secret key. Injecting faults can be done
by over-clocking the target hardware, by heating it using a laser, or by directing electromagnetic
interference at the target chip [37].

Fault injection attacks have been used to break vulnerable implementations of AES by causing
the AES engine to malfunction during encryption of a plaintext block. The resulting malformed
ciphertext can reveal information about the secret key [37]. Fault attacks are easiest to describe in
the context of public-key systems and we will come back and discuss them in detail in Section ??
where we show how they result in a complete break of some implementations of RSA.

One defense against fault injection attacks is to always check the result of the computation. For
example, an AES engine could check that the computed AES ciphertext correctly decrypts to the
given input plaintext. If the check fails, the hardware outputs an error and discards the computed
ciphertext. Unfortunately this slows down AES performance by a factor of two and is hardly done
in practice.
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4.3.4 Quantum exhaustive search attacks

All the attacks described so far work on classical computers available today. Our physical world,
however, is governed by the laws of quantum mechanics. In theory, computers can be built to use
these laws to solve problems in much less time than would be required on a classical computer.
Although no one has yet succeeded in building quantum computers, it could be just be a matter
of time before the first quantum computer is built.

Quantum computers have significant implications to cryptography because they can be used to
speed up certain attacks and even completely break some systems. Consider again a block cipher
(E, D) with key space K. Recall that in a classical exhaustive search the attacker is given a few
plaintext/ciphertext pairs created with some key k 2 K and the attacker tries all keys until he finds
a key that maps the given plaintexts to the given ciphertexts. On a classical computer this takes
time proportional to |K|.

Quantum exhaustive search. Surprisingly, on a quantum computer the same exhaustive search
problem can be solved in time proportional to only

p|K|. For block ciphers like AES-128 this means

that exhaustive search will only require about
p

2128 = 264 steps. Computations involving 264 steps
can already be done in a reasonable amount of time using classical computers and therefore one
would expect that once quantum computers are built they will also be capable of carrying out this
scale of computations. As a result, once quantum computers are built, AES-128 will be considered
insecure.

The above discussion suggests that for a block cipher to resist a quantum exhaustive search
attack its key space |K| must have at least 2256 keys, so that the time for quantum exhaustive
search is on the order of 2128. This threat of quantum computers is one reason why AES supports
256-bits keys. Of course, we have no guarantees that there is not a faster quantum algorithm for
breaking the AES-256 block cipher, but at least quantum exhaustive search is out of the question.

Grover’s algorithm. The algorithm for quantum exhaustive search is a special case of a more
general result in quantum computing due to Lov Grover [33]. The result says the following: suppose
we are given a function f : K! {0, 1} defined as follows

f(k) =

(

1 if k = k0

0 otherwise
(4.17)

for some k0 2 K. The goal is to find k0 given only “black-box” access to f , namely by only querying
f at di↵erent inputs. On a classical computer it is clear that the best algorithm is to try all possible
k 2 K and this takes |K| queries to f in the worse case.

Grover’s algorithm shows that k0 can be found on a quantum computer in only O
�

p|K|·time(f)
�

steps, where time(f) is the time to evaluate f(x). This is a very general result that holds for all
functions f of the form shown in (4.17). This can be used to speed-up general hard optimization
problems and is the “killer app” for quantum computers.

To break a block cipher like AES-128 given a few plaintext/ciphertext pairs we would define
the function:

fAES(k) =

(

1 if AES (k, m) = c

0 otherwise
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where m = (m0, . . . , mQ) and c = (c0, . . . , cQ) are the given ciphertext blocks. Assuming enough
block are given, there is a unique key k0 2 K that satisfies AES (k, m) = c and this key can be
found in time proportional to

p|K| using Grover’s algorithm.

4.4 Pseudo-random functions: basic definitions and properties

While secure block ciphers are the building block of many cryptographic systems, a closely related
concept, called a pseudo-random function (or PRF), turns out to be the right tool in many appli-
cations. PRFs are conceptually simpler objects than block ciphers and, as we shall see, they have
a broad range of applications. PRFs and block ciphers are so closely related that we can use secure
block ciphers as a stand in for secure pseudo-random functions (under certain assumptions). This
is quite nice, because as we saw in the previous section, we have available to us a number of very
practical, and plausibly secure block ciphers.

4.4.1 Definitions

A pseudo-random function (PRF) F is a deterministic algorithm that has two inputs: a key k
and an input data block x; its output y := F (k, x) is called an output data block. As usual,
there are associated, finite spaces: the key space K, in which k lies, the input space X , in which x
lies, and the output space Y, in which y lies. We say that F is defined over (K, X , Y).

Intuitively, our notion of security for a pseudo-random function says that for a randomly chosen
key k, the function F (k, ·) should — for all practical purposes — “look like” a random function
from X to Y. To make this idea more precise, let us first introduce some notation:

Funs[X , Y]

denotes the set of all functions f : X ! Y. This is a very big set:

|Funs[X , Y]| = |Y||X |.

We also introduce an attack game:

Attack Game 4.2 (PRF). For a given PRF F , defined over (K, X , Y), and for a given adversary
A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger selects f 2 Funs[X , Y] as follows:

if b = 0: k  R K, f  F (k, ·);
if b = 1: f  R Funs[X , Y].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is an input data block xi 2 X .

The challenger computes yi  f(xi) 2 Y, and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.
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For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to F as

PRFadv[A, F ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. (4.18)

Finally, we say that A is a Q-query PRF adversary if A issues at most Q queries. 2

Definition 4.2 (secure PRF). A PRF F is secure if for all e�cient adversaries A, the value
PRFadv[A, F ] is negligible.

Again, we stress that the queries made by the challenger in Attack Game 4.2 are allowed to be
adaptive: the adversary is allowed to concoct each query in a way that depends on the previous
responses from the challenger (see Exercise 4.7).

Weakly secure PRFs. For certain constructions that use PRFs it su�ces that the PRF satisfy
a weaker security property than Definition 4.2. We say that a PRF is weakly secure if no e�cient
adversary can distinguish the PRF from a random function when its queries are severely restricted:
it can only query the function at random points in the domain. Restricting the adversary’s queries
to random inputs makes it potentially easier to build weakly secure PRFs. In Exercise 4.2 we
examine natural PRF constructions that are weakly secure, but not fully secure.

We define weakly secure PRFs by slightly modifying Attack Game 4.2. Let F be a PRF defined
over (K, X , Y). We modify the way in which an adversary A interacts with the challenger: whenever
the adversary queries the function, the challenger chooses a random x 2 X and sends both x and
f(x) to the adversary. In other words, the adversary sees evaluations of the function f at random
points in X and needs to decide whether the function is truly random or pseudorandom. We define
the adversary’s advantage in this game, denoted wPRFadv[A, F ], as in (4.18).

Definition 4.3 (weakly secure PRF). A PRF F is weakly secure if for all e�cient adver-
saries A, the value wPRFadv[A, F ] is negligible.

4.4.2 E�cient implementation of random functions

Just as in Section 4.1.2, we can implement the random function chosen from Funs[X , Y] used by
the challenger in Experiment 1 of Attack Game 4.2 by a faithful gnome. Just as in the block
cipher case, the challenger keeps track of input/output pairs (xi, yi). When the challenger receives
the ith query xi, he tests whether xi = xj for some j < i; if so, he sets yi  yj (this ensures that
the challenger implements of function); otherwise, he chooses yi at random from the set Y; finally,
he sends yi to the adversary. We can write the logic of this implementation of the challenger as
follows:

upon receiving the ith query xi 2 X from A do:
if xi = xj for some j < i

then yi  yj
else yi  R Y

send yi to A.
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4.4.3 When is a secure block cipher a secure PRF?

In this section, we ask the question: when is a secure block cipher a secure PRF? In answering this
question, we introduce a proof technique that is used heavily throughout cryptography.

Let E = (E, D) be a block cipher defined over (K, X ), and let N := |X |. We may naturally
view E as a PRF, defined over (K, X , X ). Now suppose that E is a secure block cipher; that is,
no e�cient adversary can e↵ectively distinguish E from a random permutation. Does this imply
that E is also a secure PRF? That is, does this imply that no e�cient adversary can e↵ectively
distinguish E from a random function?

The answer to this question is “yes,” provided N is super-poly. Before arguing this, let us argue
that the answer is “no” when N is small.

Consider a PRF adversary playing Attack Game 4.2 with respect to E. Let f be the function
chosen by the challenger: in Experiment 0, f = E(k, ·) for random k 2 K, while in Experiment 1,
f is randomly chosen from Funs[X , X ]. Suppose that N is so small that an e�cient adversary can
a↵ord to obtain the value of f(x) for all x 2 X . Moreover, our adversary A outputs 1 if it sees that
f(x) = f(x0) for two distinct values x, x0 2 X , and outputs 0 otherwise. Clearly, in Experiment 0, A
outputs 1 with probability 0, since E(k, ·) is a permutation. However, in Experiment 1, A outputs
1 with probability 1�N !/NN � 1/2. Thus, PRFadv[A, E] � 1/2, and so E is not a secure PRF.

The above argument can be refined using the Birthday Paradox (see Section B.1). For any poly-
bounded Q, we can define an e�cient PRF adversary A that plays Attack Game 4.2 with respect
to E, as follows. Adversary A simply makes Q distinct queries to its challenger, and outputs 1 i↵
it sees that f(x) = f(x0) for two distinct values x, x0 2 X (from among the Q values given to the
challenger). Again, in Experiment 0, A outputs 1 with probability 0; however, by Theorem B.1, in
Experiment 1, A outputs 1 with probability at least min

�

Q(Q � 1)
�

4N, 0.63
 

. Thus, by making

just O(N1/2) queries, an adversary can easily see that a permutation does not behave like a random
function.

It turns out that the “birthday attack” is about the best that any adversary can do, and when
N is super-poly, this attack becomes infeasible:

Theorem 4.4 (PRF Switching Lemma). Let E = (E, D) be a block cipher defined over (K, X ),
and let N := |X |. Let A be an adversary that makes at most Q queries to its challenger. Then

�

�

�

BCadv[A, E ]� PRFadv[A, E]
�

�

�

 Q2/2N.

Before proving this theorem, we derive the following simple corollary:

Corollary 4.5. Let E = (E, D) be a block cipher defined over (K, X ), and assume that N := |X |
is super-poly. Then E is a secure block cipher if and only if E is a secure PRF.

Proof. By definition, if A is an e�cient adversary, the maximum number of queries Q it makes to
its challenger is poly-bounded. Therefore, by Theorem 4.4, we have

�

�

�

BCadv[A, E ]� PRFadv[A, E]
�

�

�

 Q2/2N

Since N is super-poly and Q is poly-bounded, the value Q2/2N is negligible (see Fact 2.6). It
follows that BCadv[A, E ] is negligible if and only if PRFadv[A, E] is negligible. 2

Actually, the proof of Theorem 4.4 has nothing to do with block ciphers and PRFs — it is
really an argument concerning random permutations and random functions. Let us define a new
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attack game that tests an adversary’s ability to distinguish a random permutation from a random
function.

Attack Game 4.3 (permutation vs. function). For a given finite set X , and for a given
adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger selects f 2 Funs[X , X ] as follows:

if b = 0: f  R Perms[X ];
if b = 1: f  R Funs[X , X ].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is an input data block xi 2 X .

The challenger computes yi  f(xi) 2 Y, and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to X as

PFadv[A, X ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Theorem 4.6. Let X be a finite set of size N . Let A be an adversary that makes at most Q queries
to its challenger. Then

PFadv[A, X ]  Q2/2N.

We first show that the above theorem easily implies Theorem 4.4:

Proof of Theorem 4.4. Let E = (E, D) be a block cipher defined over (K, X ). Let A be an adversary
that makes at most Q queries to its challenger. We define Games 0, 1, and 2, played between A
and a challenger. For j = 0, 1, 2, we define pj to be the probability that A outputs 1 in Game j.
In each game, the challenger chooses a function f : X ! X according to a particular distribution,
and responds to each query x 2 X made by A with the value f(x).

Game 0: The challenger in this game chooses f := E(k, ·), where k 2 K is chosen at random.

Game 1: The challenger in this game chooses f 2 Perms[X ] at random.

Game 2: The challenger in this game chooses f 2 Funs[X , X ] at random.

Observe that by definition,
|p1 � p0| = BCadv[A, E ],

|p2 � p0| = PRFadv[A, E],

and that by Theorem 4.6,
|p2 � p1| = PFadv[A, X ]  Q2/2N.

Putting these together, we get
�

�BCadv[A, E ]� PRFadv[A, E]
�

� =
�

�|p1 � p0|� |p2 � p0|
�

�  |p2 � p1|  Q2/2N,
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which proves the theorem. 2

So it remains to prove Theorem 4.6. Before doing so, we state and prove a very simple, but
extremely useful fact:

Theorem 4.7 (Di↵erence Lemma). Let Z, W0, W1 be events defined over some probability space.
Suppose that W0 ^ Z̄ occurs if and only if W1 ^ Z̄ occurs. Then we have

|Pr[W0]� Pr[W1]|  Pr[Z].

Proof. This is a simple calculation. We have

|Pr[W0]� Pr[W1]| = |Pr[W0 ^ Z] + Pr[W0 ^ Z̄]� Pr[W1 ^ Z]� Pr[W1 ^ Z̄]|
= |Pr[W0 ^ Z]� Pr[W1 ^ Z]|
 Pr[Z].

The second equality follows from the assumption that W0 ^ Z̄ () W1 ^ Z̄, and so in particular,
Pr[W0 ^ Z̄] = Pr[W1 ^ Z̄]. The final inequality follows from the fact that both Pr[W0 ^ Z] and
Pr[W1 ^ Z] are numbers between 0 and Pr[Z]. 2

In most of our applications of the Di↵erence Lemma, W0 will represent the event that a given
adversary outputs 1 in some game against a certain challenger, while W1 will be the event that the
same adversary outputs 1 in a game played against a di↵erent challenger. To apply the Di↵erence
Lemma, we define these two games so that they both operate on the same underlying probability
space. This means that we view the random choices made by both the adversary and the challenger
as the same in both games — all that di↵ers between the two games is the rule used by the challenger
to compute its responses to the adversary’s queries.

Proof of Theorem 4.6. Consider an adversary A that plays Attack Game 4.3 with respect to
X , where N := |X |, and assume that A makes at most Q queries to the challenger. Consider
Experiment 0 of this attack game. Using the “faithful gnome” idea discussed in Section 4.4.2,
we can implement Experiment 0 by keeping track of input/output pairs (xi, yi); moreover, it will
be convenient to choose initial “default” values zi for yi, where the values z1, . . . , zQ are chosen
uniformly and independently at random from X ; these “default” values are over-ridden, if necessary,
to ensure the challenger defines a random permutation. Here are the details:

z1, . . . , zQ  R X
upon receiving the ith query xi from A do:

if xi = xj for some j < i then
yi  yj

else
yi  zi

(⇤) if yi 2 {y1, . . . , yi�1} then yi  R X \ {y1, . . . , yi�1}
send yi to A.

The line marked (⇤) tests if the default value zi needs to be over-ridden to ensure that no output
is for two distinct inputs.

Let W0 be the event that A outputs 1 in this game, which we call Game 0.
We now obtain a di↵erent game by modifying the above implementation of the challenger:
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z1, . . . , zQ  R X
upon receiving the ith query xi from A do:

if xi = xj for some j < i then
yi  yj

else
yi  zi

send yi to A.

All we have done is dropped line marked (⇤) in the original challenger: our “faithful gnome”
becomes a “forgetful gnome,” and simply forgets to make the output consistency check.

Let W1 be the event that A outputs 1 in the game played against this modified challenger,
which we call Game 1.

Observe that Game 1 is equivalent to Experiment 1 of Attack Game 4.3; in particular, Pr[W1]
is equal to the probability that A outputs 1 in Experiment 1 of Attack Game 4.3. Therefore, we
have

PFadv[A, X ] = |Pr[W0]� Pr[W1]|.
We now want to apply the Di↵erence Lemma. To do this, both games are understood to operate

on the same underlying probability space. All of the random choices made by the adversary and
challenger are the same in both games — all that di↵ers is the rule used by the challenger to
compute its responses. In particular, this means that the random choices made by A, as well as the
values z1, . . . , zQ chosen by the challenger, not only have identical distributions, but are literally
the same values in both games.

Define Z to be the event that zi = zj for some i 6= j. Now suppose we run Game 0 and
Game 1, and event Z does not occur. This means that the zi values are all distinct. Now, since
the adversary’s random choices are the same in both games, its first query in both games is the
same, and therefore the challenger’s response is the same in both games. The adversary’s second
query (which is a function of its random choices and the challenger’s first response) is the same in
both games. By the assumption that Z does not occur, the challenger’s response is the same in
both games. Continuing this argument, one sees that each of the adversary’s queries and each of
the challenger’s responses are the same in both games, and therefore the adversary’s output is the
same in both games. Thus, if Z does not occur and the adversary outputs 1 in Game 0, then the
adversary also outputs 1 in Game 1. Likewise, if Z does not occur and the adversary outputs 1 in
Game 1, then the adversary outputs 1 in Game 0. More succinctly, we have W0 ^ Z̄ occurs if and
only if W1 ^ Z̄ occurs. So the Di↵erence Lemma applies, and we obtain

|Pr[W0]� Pr[W1]|  Pr[Z].

It remains to bound Pr[Z]. However, this follows from the union bound: for each pair (i, j) of
distinct indices, Pr[zi = zj ] = 1/N , and as there are less than Q2/2 such pairs, we have

Pr[Z]  Q2/2N.

That proves the theorem. 2

While there are other strategies one might use to prove the previous theorem (see Exercise 4.22),
the forgetful gnome technique that we used in the above proof is very useful and we will see it
again many times in the sequel.
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4.4.4 Constructing PRGs from PRFs

It is easy to construct a PRG from a PRF. Let F be a PRF defined over (K, X , Y), let ` � 1 be
a poly-bounded value, and let x1, . . . , x` be any fixed, distinct elements of X (this requires that
|X | � `). We define a PRG G with seed space K and output space Y`, as follows: for k 2 K,

G(k) := (F (k, x1), . . . , F (k, x`)).

Theorem 4.8. If F is a secure PRF, then the PRG G described above is a secure PRG.

In particular, for very PRG adversary A that plays Attack Game 3.1 with respect to G, there
is a PRF adversary B that plays Attack Game 4.2 with respect to F , where B is an elementary
wrapper around A, such that

PRGadv[A, G] = PRFadv[B, F ].

Proof. Let A be an e�cient PRG adversary that plays Attack Game 3.1 with respect to G. We
describe a corresponding PRF adversary B that plays Attack Game 4.2 with respect to F . Adversary
B works as follows:

B queries its challenger at x1, . . . , x`, obtaining responses y1, . . . , y`. Adversary B then
plays the role of challenger to A, giving A the value (y1, . . . , y`). Adversary B outputs
whatever A outputs.

It is obvious from the construction that for b = 0, 1, the probability that B outputs 1 in
Experiment b of Attack Game 4.2 with respect to F is precisely equal to the probability that
A outputs 1 in Experiment b of Attack Game 3.1 with respect to G. The theorem then follows
immediately. 2

Deterministic counter mode

The above construction gives us another way to build a semantically secure cipher out of a secure
block cipher. Suppose E = (E, D) is a block cipher defined over (K, X ), where X = {0, 1}n. Let
N := |X | = 2n. Assume that N is super-poly and that E is a secure block cipher. Then by
Theorem 4.4, the encryption function E is a secure PRF (defined over (K, X , X )). We can then
apply Theorem 4.8 to E to obtain a secure PRG, and finally apply Theorem 3.1 to this PRG to
obtain a semantically secure stream cipher.

Let us consider this stream cipher in detail. This cipher E 0 = (E0, D0) has key space K, and
message and ciphertext space X`, where ` is a poly-bounded value, and in particular, `  N . We
can define x1, . . . , x` to be any convenient elements of X ; in particular, we can define xi to be the
n-bit binary encoding of i� 1, which we denote hi� 1in. Encryption and decryption for E 0 work as
follows.

• For k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
�

E(k, h0in)�m[0], . . . , E(k, hv � 1in)�m[v � 1]
�

.

• For k 2 K and c 2 X`, with v := |c|, we define

D0(k, c) :=
�

E(k, h0in)� c[0], . . . , E(k, hv � 1in)� c[v � 1]
�

.
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m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]

(a) encryption

(b) decryption

h0in h1in hv � 1in

� � �

E(k, ·) E(k, ·)E(k, ·) · · ·

m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]
h0in h1in hv � 1in

� � �

Figure 4.13: Encryption and decryption for deterministic counter mode

This mode of operation of operation of a block cipher is called deterministic counter mode.
It is illustrated in Fig. 4.13. Notice that unlike ECB mode, the decryption algorithm D is never
used. Putting together Theorems 4.4, 4.8, and 3.1, we see that cipher E 0 is semantically secure; in
particular, for any e�cient SS adversary A, there exists an e�cient BC adversary B such that

SSadv⇤[A, E 0]  BCadv[B, E ] + `2/2N. (4.19)

Clearly, deterministic counter mode has the advantage over ECB mode that it is semantically
secure without making any restrictions on the message space. The only disadvantage is that security
might degrade significantly for very long messages, because of the `2/2N term in (4.19). Indeed,
it is essential that `2/2N is very small. Consider the following attack on E 0. Set m0 to be the
message consisting of ` zero blocks, and set m1 to be a message consisting of ` random blocks. If
the challenger in Attack Game 2.1 encrypts m0 using E0, then the ciphertext will not contain any
duplicate blocks. However, by the birthday paradox (see Theorem B.1), if the challenger encrypts
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m1, the ciphertext will contain duplicate blocks with probability at least min
�

`(`�1)
�

4N, 0.63
 

. So
the adversary A that constructs m0 and m1 in this way, and outputs 1 if and only if the ciphertext
contains duplicate blocks, has an advantage that grows quadratically in `, and is non-negligible for
` ⇡ N1/2.

4.4.5 Mathematical details

As usual, we give a more mathematically precise definition of a PRF, using the terminology defined
in Section 2.4.

Definition 4.4 (pseudo-random function). A pseudo-random function consists of an algo-
rithm F , along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, X = {X�,⇤}�,⇤, and Y = {Y�,⇤}�,⇤,

such that

1. K, X, and Y are e�ciently recognizable.

2. K and Y are e�ciently sampleable.

3. Algorithm F is a deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), k 2 K�,⇤,
and x 2 X�,⇤, runs in time bounded by a polynomial in �, and outputs an element of Y�,⇤.

As usual, in defining security, the attack game is parameterized by security and system param-
eters, and the advantage is a function of the security parameter.

4.5 Constructing block ciphers from PRFs

In this section, we show how to construct a secure block cipher from any secure PRF whose output
space and input space is {0, 1}n, where 2n is super-poly. The construction is called the Luby-Racko↵
construction (after its inventors). The result itself is mainly of theoretical interest, as block ciphers
that are used in practice have a more ad hoc design; however, the result is sometimes seen as a
justification for the design of some practical block ciphers as Feistel networks (see Section 4.2.1).

Let F be a PRF, defined over (K, X , X ), where X = {0, 1}n. We describe a block cipher
E = (E, D) whose key space is K3, and whose data block space is X 2.

Given a key (k1, k2, k3) 2 K3 and a data block (u, v) 2 X 2, the encryption algorithm E runs as
follows:

w  u� F (k1, v)
x v � F (k2, w)
y  w � F (k3, x)
output (x, y).

Given a key (k1, k2, k3) 2 K3 and an data block (x, y) 2 X 2, the decryption algorithm D runs as
follows:

w  y � F (k3, x)
v  x� F (k2, w)
u w � F (k1, v)
output (u, v).
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Figure 4.14: Encryption and decryption with Luby-Racko↵
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See Fig. 4.14 for an illustration of E .
It is easy to see that E is a block cipher. It is useful to see algorithm E as consisting of 3

“rounds.” For k 2 K, let us define the “round function”

�k : X 2 ! X 2

(a, b) 7! (b, a� F (k, b)).

It is easy to see that for any fixed k, the function �k is a permutation on X 2; indeed, if �(a, b) :=
(b, a), then

��1
k = � � �k � �.

Moreover, we see that
E((k1, k2, k3), ·) = �k3 � �k2 � �k1

and
D((k1, k2, k3), ·) = ��1

k1
� ��1

k2
� ��1

k3
= � � �k1 � �k2 � �k3 � �.

Theorem 4.9. If F is a secure PRF and N := |X | = 2n is super-poly, then the Luby-Racko↵
cipher E = (E, D) constructed from F is a secure block cipher.

In particular, for every Q-query BC adversary A that attacks E as in Attack Game 4.1, there
exists a PRF adversary B that plays Attack Game 4.2 with respect to F , where B is an elementary
wrapper around A, such that

BCadv[A, E ]  3 · PRFadv[B, F ] +
Q2

N
+

Q2

2N2

.

Proof idea. By Corollary 4.5, and the assumption that N is super-poly, it su�ces to show that E
is a secure PRF. So we want to show that if an adversary is playing in Experiment 0 of Attack
Game 4.2 with respect to E, the challenger’s responses e↵ectively “look like” completely random
bit strings. We may assume that the adversary never makes the same query twice. Moreover, as F
is a PRF, we can replace F (k1, ·), F (k2, ·), and F (k3, ·) by truly random functions, f1, f2, and f3,
and the adversary should hardly notice the di↵erence.

So now, given a query (ui, vi), the challenger computes its response (xi, yi) as follows:

wi  ui � f1(vi)
xi  vi � f2(wi)
yi  wi � f3(xi).

A rough, intuitive argument goes like this. Suppose that no two wi values are the same. Then
all of the outputs of f2 will be random and independent. From this, we can argue that the xi’s are
also random and independent. Then from this, it will follow that except with negligible probability,
the inputs to f3 will be distinct. From this, we can conclude that the yi’s are essentially random
and independent.

So we will be in good shape if we can show that all of the wi’s are distinct. But the wi’s are
obtained indirectly from the random function f1, and so with some care, one can indeed argue that
the wi will be distinct, except with negligible probability. 2

Proof. Let A be an e�cient BC adversary that plays Attack Game 4.1 with respect to E , and which
makes at most Q queries to its challenger. We want to show that BCadv[A, E ] is negligible. To do
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this, we first show that PRFadv[A, E] is negligible, and the result will then follow from the PRF
Switching Lemma (i.e., Theorem 4.4) and the assumption that N is super-poly.

To simplify things a bit, we replace A with an adversary A0 with the following properties:

• A0 always makes exactly Q queries to its challenger;

• A0 never makes the same query more than once;

• A0 is just as e�cient as A (more precisely, A0 is an elementary wrapper around A);

• PRFadv[A0, E] = PRFadv[A, E].

Adversary A0 simply runs the same protocol as A; however, it keeps a table of query/response
pairs so as to avoid making duplicate queries; moreover, it “pads” the execution of A if necessary,
so as to make exactly Q queries.

The overall strategy of the proof is as follows. First, we define Game 0 to be the game played
between A0 and the challenger of Experiment 0 of Attack Game 4.2 with respect to E. We then
define several more games: Game 1, Game 2, and Game 3. Each of these games is played between
A0 and a di↵erent challenger; moreover, the challenger in Game 3 is equivalent to the challenger
of Experiment 1 of Attack Game 4.2. Also, for j = 0, . . . , 3, we define Wj to be the event that
A0 outputs 1 in Game j. We will show that for j = 1, . . . , 3 that the value |Pr[Wj ]� Pr[Wj�1]| is
negligible, from which it will follow that

|Pr[W3]� Pr[W0]| = PRFadv[A0, E]

is also negligible.

Game 0. Let us begin by giving a detailed description of the challenger in Game 0 that is convenient
for our purposes:

k1, k2, k3  R K
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � F (k1, vi)
xi  vi � F (k2, wi)
yi  wi � F (k3, xi)
send (xi, yi) to the adversary.

Recall that the adversary A0 is guaranteed to always make Q distinct queries (u1, v1), . . . , (uQ, vQ);
that is, the (ui, vi) values are distinct as pairs, so that for i 6= j, we may have ui = uj or vi = vj ,
but not both.

Game 1. We next play the “PRF card,” replacing the three functions F (k1, ·), F (k2, ·), F (k3, ·) by
truly random functions f1, f2, f3. Intuitively, since F is a secure PRF, the adversary A0 should not
notice the di↵erence. Our challenger in Game 1 thus works as follows:

f1, f2, f3  R Funs[X , X ]

upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:
wi  ui � f1(vi)
xi  vi � f2(wi)
yi  wi � f3(xi)
send (xi, yi) to the adversary.
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As discussed in Exercise 4.24, we can model the three PRFs F (k1, ·), F (k2, ·), F (k3, ·) as a single
PRF F 0, called the 3-wise parallel composition of F : the PRF F 0 is defined over (K3, {1, 2, 3} ⇥
X , X ), and F 0((k1, k2, k3), (s, x)) := F (ks, x). We can easily construct an adversary B0, just as
e�cient as A0, such that

|Pr[W1]� Pr[W0]| = PRFadv[B0, F 0]. (4.20)

Adversary B0 simply runs A0 and outputs whatever A0 outputs; when A0 queries its challenger
with a pair (ui, vi), adversary B0 computes the response (xi, yi) for A0 by computing

wi  ui � f 0(1, vi)
xi  vi � f 0(2, wi)
yi  wi � f 0(3, xi).

Here, the f 0 denotes the function chosen by B0’s challenger in Attack Game 4.2 with respect to F 0.
It is clear that B0 outputs 1 with probability Pr[W0] in Experiment 0 of that attack game, while it
outputs 1 with probability Pr[W1] in Experiment 1, from which (4.20) follows.

By Exercise 4.24, there exists an adversary B, just as e�cient as B0, such that

PRFadv[B0, F 0] = 3 · PRFadv[B, F ]. (4.21)

Game 2. We next make a purely conceptual change: we implement the random functions f2 and
f3 using the “faithful gnome” idea discussed in Section 4.4.2. This is not done for e�ciency, but
rather, to set us up so as to be able to make (and easily analyze) a more substantive modification
later, in Game 3. Our challenger in this game works as follows:

f1  R Funs[X , X ]
X1, . . . , XQ  R X
Y1, . . . , YQ  R X
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � f1(vi)

x0
i  Xi; if wi = wj for some j < i then x0

i  x0
j ; xi  vi � x0

i

y0i  Yi; if xi = xj for some j < i then y0i  y0j ; yi  wi � y0i
send (xi, yi) to the adversary.

The idea is that the value x0
i represents f2(wi). By default, x0

i is equal to the random value Xi;
however, the boxed code over-rides this default value if wi is the same as wj for some j < i.
Similarly, the value y0i represents f3(xi). By default, y0i is equal to the random value Yi, and the
boxed code over-rides the default if necessary.

Since the challenger in Game 2 completely equivalent to that of Game 1, we have

Pr[W2] = Pr[W1]. (4.22)

Game 3. We now employ the “forgetful gnome” technique, which we already saw in the proof
of Theorem 4.6. The idea is to simply eliminate the consistency checks made by the challenger in
Game 2. Here is the logic of the challenger in Game 3:
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f1  R Funs[X , X ]
X1, . . . , XQ  R X
Y1, . . . , YQ  R X
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � f1(vi)
x0
i  Xi; xi  vi � x0

i
y0i  Yi; yi  wi � y0i
send (xi, yi) to the adversary.

Note that this description is literally the same as the description of the challenger in Game 2,
except that we have simply erased the underlined code in the latter.

For the purposes of analysis, we view Games 2 and 3 as operating on the same underlying
probability space. This probability space is determined by

• the random choices made by the adversary, which we denote by Coins, and

• the random choices made by the challenger, namely, f1, X1, . . . , XQ, and Y1, . . . , YQ.

What di↵ers between the two games is the rule that the challenger uses to compute its responses
to the queries made by the adversary.

Claim 1: in Game 3, the random variables Coins, f1, x1, y1, . . . , xQ, yQ are mutually independent.
To prove this claim, observe that by construction, the random variables

Coins , f1, X1, . . . , XQ, Y1, . . . , YQ

are mutually independent. Now condition on any fixed values of Coins and f1. The first query
(u1, v1) is now fixed, and hence so is w1; however, in this conditional probability space, X1 and Y1

are still uniformly and independently distributed over X , and so x1 and y1 are also uniformly and
independently distributed. One continues the argument, conditioning on fixed values of x1, y1 (in
addition to fixed values of Coins and f1), observing that now u2, v2, and w2 are also fixed, and that
x2 and y2 are uniformly and independently distributed. It should be clear how the claim follows
by induction.

Let Z1 be the event that wi = wj for some i 6= j in Game 3. Let Z2 be the event that xi = xj

for some i 6= j in Game 3. Let Z := Z1 _ Z2. Note that the event Z is defined in terms of the
variables wi and xi values in Game 3. Indeed, the variables wi and zi may not be computed in the
same way in Games 2 and 3, and so we have explicitly defined the event Z in terms of their values
in Game 3. Nevertheless, it is straightforward to see that Games 2 and 3 proceed identically if Z
does not occur. In particular:

Claim 2: the event W2 ^ Z̄ occurs if and only if the event W3 ^ Z̄ occurs. To prove this claim,
consider any fixed values of the variables

Coins , f1, X1, . . . , XQ, Y1, . . . , YQ

for which Z does not occur. It will su�ce to show that the output of A0 is the same in both
Games 2 and 3. Since the query (u1, v1) depends only on Coins , we see that the variables u1, v1,
and hence also w1, x1, y1 have the same values in both games. Since the query (u2, v2) depends

156



only on Coins and (x1, y1), it follows that the variables u2, v2 and hence w2 have the same values
in both games; since Z does not occur, we see w2 6= w1 and hence the variable x2 has the same
value in both games; again, since Z does not occur, it follows that x2 6= x1, and hence the variable
y2 has the same value in both games. Continuing this argument, we see that for i = 1, . . . , Q, the
variables ui, vi, wi, xi, yi have the same values in both games. Since the output of A0 is a function
of these variables and Coins , the output is the same in both games. That proves the claim.

Claim 2, together with the Di↵erence Lemma (i.e., Theorem 4.7) and the Union Bound, implies

|Pr[W3]� Pr[W2]|  Pr[Z]  Pr[Z1] + Pr[Z2]. (4.23)

By the fact that x1, . . . , xQ are mutually independent (see Claim 1), it is obvious that

Pr[Z2]  Q2

2
· 1

N
, (4.24)

since Z2 is the union of less than Q2/2 events, each of which occurs with probability 1/N .

Let us now analyze the event Z1. We claim that

Pr[Z1]  Q2

2
· 1

N
. (4.25)

To prove this, it su�ces to prove it conditioned on any fixed values of Coins, x1, y1, . . . , xQ, yQ.
If these values are fixed, then so are u1, v1, . . . , uQ, vQ. However, by independence (see Claim 1),
the variable f1 is still uniformly distributed over Funs[X , X ] in this conditional probability space.
Now consider any fixed pair of indices i, j, with i 6= j. Suppose first that vi = vj . Then since A0

never makes the same query twice, we must have ui 6= uj , and it is easy to see that wi 6= wj for
any choice of f1. Next suppose that vi 6= vj . Then the values f1(vi) and f2(vj) are uniformly and
independently distributed over X in this conditional probability space, and

Pr[f1(vi)� f1(vj) = ui � uj ] =
1

N

in this conditional probability space.
Thus, we have shown that in Game 3, for all pairs i, j with i 6= j,

Pr[wi = wj ]  1

N

The inequality (4.25) follows from the Union Bound.

As another consequence of Claim 1, we observe that Game 3 is equivalent to Experiment 1 of
Attack Game 4.2 with respect to E. From this, together with (4.20), (4.21), (4.22), (4.23), (4.24),
and (4.25), we conclude that

PRFadv[A0, E]  3 · PRFadv[B, F ] +
Q2

N
.

Finally, applying Theorem 4.4 to the cipher E , whose data block space has size N2, we have

BCadv[A, E ]  3 · PRFadv[B, F ] +
Q2

N
+

Q2

2N2
.

That concludes the proof of the theorem. 2
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4.6 The tree construction: from PRGs to PRFs

It turns out that given a suitable, secure PRG, one can construct a secure PRF with a technique
called the tree construction. Combining this result with the Luby-Racko↵ construction in Sec-
tion 4.5, we see that from any secure PRG, we can construct a secure block cipher. While this
result is of some theoretical interest, the construction is not very e�cient, and is not really used
in practice. However, we note that a simple generalization of this construction plays an important
role in practical schemes for message authentication; we shall discuss this in Section 6.4.2.

Our starting point is a PRG G defined over (S, S2); that is, the seed space is a set S, and the
output space is the set S2 of all seed pairs. For example, G might stretch n-bit strings to 2n-bit
strings.2 It will be convenient to write G(s) = (G0(s), G1(s)); that is, G0(s) 2 S denotes the first
component of G(s) and G1(s) denotes the second component of G(s). From G, we shall build a
PRF F with key space S, input space {0, 1}` (where ` is an arbitrary, poly-bounded value), and
output space S.

Let us first define the algorithm G⇤, that takes as input s 2 S and x = (a1, . . . , an) 2 {0, 1}⇤,
where ai 2 {0, 1} for i = 1, . . . , n, and outputs an element t 2 S, computed as follows:

t s
for i 1 to n do

t Gai(t)
output t.

For s 2 S and x 2 {0, 1}`, we define

F (s, x) := G⇤(s, x).

We shall call the PRF F derived from G in this way the tree construction.
It is useful to envision the bits of an input x 2 {0, 1}` as tracing out a path through a complete

binary tree of height ` and with 2` leaves, which we call the evaluation tree: a bit value of 0
means branch left and a bit value of 1 means branch right. In this way, any node in the tree can
be uniquely addressed by a bit string of length at most `; strings of length j  ` address nodes
at level j in the tree: the empty string addresses the root (which is at level 0), strings of length 1
address the children of the root (which are at level 1), etc. The nodes in the evaluation tree are
labeled with elements of S, using the following rule:

• the root of the tree is labeled with s;

• the label of any other node is derived from the label t of its parent as follows: if the node is
a left child, its label is G0(t), and if the node is a right child, its label is G1(t).

The value of the F (s, x) is then the label on the leaf addressed by x. See Fig. 4.15.

Theorem 4.10. If G is a secure PRG, then the PRF F obtained from G using the tree construction
is a secure PRF.

In particular, for every PRF adversary A that plays Attack Game 4.2 with respect to F , and
which makes at most Q queries to its challenger, there exists a PRG adversary B that plays
Attack Game 3.1 with respect to G, where B is an elementary wrapper around A, such that

PRFadv[A, F ] = `Q · PRGadv[B, G].

2Indeed, we could even start with a PRG that stretches n bit strings to (n + 1)-bit strings, and then apply the
n-wise sequential construction analyzed in Theorem 3.3 to obtain a suitable G.
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1

0

1

Figure 4.15: Evaluation tree for ` = 3. The highlighted path corresponds to the input x = 101.
The root is shaded to indicate it is assigned a random label. All other nodes are assigned derived
labels.

Proof idea. The basic idea of the proof is a hybrid argument. We build a sequence of games,
Hybrid 0, . . . , Hybrid `. Each of these games is played between a given PRF adversary, attacking
F , and a challenger whose behavior is slightly di↵erent in each game. In Hybrid j, the challenger
builds an evaluation tree whose nodes are labeled as follows:

• nodes at levels 0 through j are assigned random labels;

• the nodes at levels j + 1 through ` are assigned derived labels.

In response to a query x 2 {0, 1}` in Hybrid j, the challenger sends to the adversary the label of
the leaf addressed by x. See Fig. 4.16

Clearly, Hybrid 0 is equivalent to Experiment 0 of Attack Game 4.2, while Hybrid ` is equivalent
to Experiment 1. Intuitively, under the assumption that G is a secure PRG, the adversary should
not be able to tell the di↵erence between Hybrids j and j + 1 for j = 0, . . . , `� 1. In making this
intuition rigorous, we have to be a bit careful: the evaluation tree is huge, and to build an e�cient
PRG adversary that attacks G, we cannot a↵ord to write down the entire tree (or even one level
of the tree). Instead, we use the fact that if the PRF adversary makes at most Q queries to its
challenger (which is a poly-bounded value), then at any level j in the evaluation tree, the paths
traced out by these Q queries touch at most Q nodes at level j (in Fig. 4.16, these would be the
first, third, and fourth nodes at level 2 for the given inputs). The PRG adversary we construct
will use a variation of the faithful gnome idea to e↵ectively maintain the relevant random labels at
level j, as needed. 2

Proof. Let A be an e�cient adversary that plays Attack Game 4.2 with respect to F . Let us assume
that A makes at most a poly-bounded number Q of queries to the challenger.

As discussed above, we define `+1 hybrid games, Hybrid 0, . . . , Hybrid `, each played between
A and a challenger. In Hybrid j, the challenger works as follows:

f  R Funs[{0, 1}j , S]

upon receiving a query x = (a1, . . . , a`) 2 {0, 1}` from A do:
u (a1, . . . , aj), v  (aj+1, . . . , `)
y  G⇤(f(u), v)
send y to A.
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Figure 4.16: Evaluation tree for Hybrid 2 with ` = 4. The shaded nodes are assigned random
labels, while the unshaded nodes are assigned derived labels. The highlighted paths correspond to
inputs 0000, 0011, 1010, and 1111.

Intuitively, for u 2 {0, 1}j , f(u) represents the random label at the node at level j addressed by
u. Thus, each node at level j is assigned a random label, while nodes at levels j + 1 through `
are assigned derived labels. Note that in our description of this game, we do not explicitly assign
labels to nodes at levels 0 through j � 1, as these labels do not a↵ect any outputs.

For j = 0, . . . , `, let pj be the probability that A outputs 1 in Hybrid j. As Hybrid 0 is equivalent
to Experiment 0 of Attack Game 4.2, and Hybrid ` is equivalent to Experiment 1, we have:

PRFadv[A, F ] = |p` � p0|. (4.26)

Let G0 denote the Q-wise parallel composition of G, which we discussed in Section 3.4.1. G0

takes as input (s1, . . . , sQ) 2 SQ and outputs (G(s1), . . . , G(sQ)) 2 (S2)Q. By Theorem 3.2, if G is
a secure PRF, then so is G0.

We now build an e�cient PRG adversary B0 that attacks G0, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|. (4.27)

We first give an overview of how B0 works. In playing Attack Game 4.2 with respect to G0, the
challenger presents to B0 a vector

~r = ((r10, r11), . . . , (rQ0, rQ1)) 2 (S2)Q. (4.28)

In Experiment 0 of the attack game, ~r = G(~s) for random ~s 2 SQ, while in Experiment 1, ~r is
randomly chosen from (S2)Q. To distinguish these two experiments, B0 plays the role of challenger
to A by choosing ! 2 {1, . . . , `} at random, and uses the elements of ~r to label nodes at level ! of
the evaluation tree in a consistent fashion. To do this, B0 maintains a lookup table, which allows it
to associate with each prefix u 2 {0, 1}!�1 of some query x 2 {0, 1}` an index p, so that the children
of the node addressed by u are labeled by the seed pair (rp0, rp1). Finally, when A terminates and
outputs a bit, B0 outputs the same bit. As will be evident from the details of the construction of
B0, conditioned on ! = j for any fixed j = 1, . . . , `, the probability that B0 outputs 1 is:
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• pj�1, if B0 is in Experiment 0 of its attack game, and

• pj , if B0 is in Experiment 1 of its attack game.

Then by the usual telescoping sum calculation, we get (4.27).
Now the details. We implement our lookup table as an associative array Map, indexed by

elements of {0, 1}⇤, and whose entries are positive integers. Here is the logic for B0:

upon receiving ~r as in (4.28) from its challenger, B0 plays the role of challenger to A, as
follows:

!  R {1, . . . , `}
initialize an empty associative array Map
ctr  0
upon receiving a query x = (a1, . . . , a`) 2 {0, 1}` from A do:

u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , a`)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)
send y to A.

Finally, B0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B0 outputs 1 in Experiment b of Attack Game 4.2 with
respect to G0. We claim that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B0 labels nodes in the evaluation tree. On
the one hand, when B0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels
to nodes at level j, and the lookup table ensures that this is done consistently. On the other hand,
when B0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to nodes
at level j, which is the same as assigning random labels to the parents of these nodes at level j� 1,
and assigning derived labels at level j; again, the lookup table ensures a consistent labeling.

From the above claim, equation (4.27) now follows by a familiar, telescoping sum calculation:

PRGadv[B0, G0] = |Pr[W1]� Pr[W0]|
1

`
·
�

�

�

X̀

j=1

Pr[W1 | ! = j]�
X̀

j=1

Pr[W0 | ! = j]
�

�

�

=
1

`
·
�

�

�

X̀

j=1

pj �
X̀

j=1

pj�1

�

�

�

=
1

`
· |p` � p0|.

Finally, by Theorem 3.2, there exists an e�cient PRG adversary B such that

PRGadv[B0, G0] = Q · PRGadv[B, G]. (4.29)

The theorem now follows by combining equations (4.26), (4.27), and (4.29). 2
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4.6.1 Variable length tree construction

It is natural to consider how the tree construction works on variable length inputs. Again, let G
be a PRG defined over (S, S2), and let G⇤ be as defined above. For any poly-bounded value ` we
define the PRF F̃ , with key space S, input space {0, 1}`, and output space S, as follows: for s 2 S
and x 2 {0, 1}`, we define

F̃ (s, x) = G⇤(s, x).

Unfortunately, F̃ is not a secure PRF. The reason is that there is a trivial extension attack.
Suppose u, v 2 {0, 1}` such that u is a proper prefix of v; that is, v = u k w for some non-empty
string w. Then given u and v, along with y := F̃ (s, u), we can easily compute F (s, v) as G⇤(y, w).
Of course, for a truly random function, we could not predict its value at v, given its value at u,
and so it is easy to distinguish F̃ (s, ·) from a random function.

Even though F̃ is not a secure PRF, we can still say something interesting about it. We show
that F̃ is a PRF against restricted set of adversaries called prefix-free adversaries.

Definition 4.5. Let F be a PRF defined over (K, X`, Y). We say that a PRF adversary A playing
Attack Game 4.2 with respect to F is a prefix-free adversary if all of its queries are non-empty
strings over X of length at most `, no one of which is a proper prefix of another.3 We denote A’s
advantage in winning the game by PRFpfadv[A, F ]. Further, let us say that F is a prefix-free
secure PRF if PRFpfadv[A, F ] is negligible for all e�cient, prefix-free adversaries A.

For example, if a prefix-free adversary issues a query for the sequence (a1, a2, a3) then it cannot
issue queries for (a1) or for (a1, a2).

Theorem 4.11. If G is a secure PRG, then the variable length tree construction F̃ derived from
G is a prefix-free secure PRF.

In particular, for every prefix-free adversary A that plays Attack Game 4.2 with respect to F̃ ,
and which makes at most Q queries to its challenger, there exists a PRG adversary B that plays
Attack Game 3.1 with respect to G, where B is an elementary wrapper A, such that

PRFpfadv[A, F̃ ] = `Q · PRGadv[B, G].

Proof. The basic idea of the proof is exactly the same as that of Theorem 4.10. We sketch here the
main ideas, highlighting the di↵erences from that proof.

Let A be an e�cient, prefix-free adversary that plays Attack Game 4.2 with respect to F̃ .
Assume that A makes at most Q queries to its challenger. Moreover, it will be convenient to
assume that A never makes the same query twice. Thus, we are assuming that A never makes two
queries, one of which is equal to, or is a prefix of, another. The challenger in Attack Game 4.2 will
not enforce this assumption — we simply assume that A is playing by the rules.

As before, we view the evaluation of F̃ (s, ·) in terms of an evaluation tree: the root is labeled
by s, and the labels on all other nodes are assigned derived labels. The only di↵erence now is that
inputs to F̃ (s, ·) may address internal nodes of the evaluation tree. However, the prefix-freeness
restriction means that no input can address a node that is an ancestor of a node addressed by a
di↵erent input.

3For sequences x = (a1 . . . as) and y = (b1 . . . bt), if s  t and ai = bi for i = 1, . . . , s, then we say that x is a
prefix of y; moreover, if s < t, then we say x is a proper prefix of y.
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We again define hybrid games, Hybrid 0, . . . , Hybrid `. In these games, the challenger uses an
evaluation tree labeled in exactly the same way as in the proof of Theorem 4.10: in Hybrid j, nodes
at levels 0 through j are assigned random labels, and nodes at other levels are assigned derived
labels. The challenger responds to a query x by returning the label of the node in the tree addressed
by x, which need not be a leaf. More formally, the challenger in Hybrid j works as follows:

f  R Funs[{0, 1}j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}` from A do:
if n < j then

then y  f(x)
else u (a1, . . . , aj), v  (aj+1, . . . , an), y  G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpfadv[A, F̃ ] = |p` � p0|.
Next, we define an e�cient PRG adversary B0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B0 runs as follows:

upon receiving ~r as in (4.28) from its challenger, B0 plays the role of challenger to A, as
follows:

!  R {1, . . . , `}
initialize an empty associative array Map
ctr  0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}` from A do:

if n < ! then
(⇤) y  R S

else
u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)

send y to A.

Finally, B0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B0 outputs 1 in Experiment b of Attack Game 4.2 with
respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B0 labels nodes in the evaluation tree. At
the line marked (⇤), B0 assigns random labels to all nodes in the evaluation tree at levels 0 through
j � 1, and the assumption that A never makes the same query twice guarantees that these labels
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are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level
j � 1; the prefix-freeness assumption ensures that none of these parent nodes are inconsistently
assigned random labels at the line marked (⇤).

The rest of the proof goes through as in the proof of Theorem 4.10. 2

4.7 The ideal cipher model

Block ciphers are used in a variety of cryptographic constructions. Sometimes it is impossible
or di�cult to prove a security theorem for some of these constructions under standard security
assumptions. In these situations, a heuristic technique — called the ideal cipher model — is
sometimes employed. Roughly speaking, in this model, the security analysis is done by treating
the block cipher as if it were a family of random permutations. If E = (E, D) is a block cipher
defined over (K, X ), then the family of random permutations is {⇧k }k 2K, where each ⇧k is a truly
random permutation on X , and the ⇧k ’s collectively are mutually independent. These random
permutations are much too large to write down and cannot be used in a real construction. Rather,
they are used to model a construction based on a real block cipher, to obtain a heuristic security
argument for a given construction. We stress the heuristic nature of the ideal cipher model: while
a proof of security in this model is better than nothing, it does not rule out an attack by an
adversary that exploits the design of a particular block cipher, even one that is secure in the sense
of Definition 4.1.

4.7.1 Formal definitions

Suppose we have some type of cryptographic scheme S whose implementation makes use of a block
cipher E = (E, D) defined over (K, X ). Moreover, suppose the scheme S evaluates E at various
inputs (k , a) 2 K ⇥ X , and D at various inputs (k , b) 2 K ⇥ X , but does not look at the internal
implementation of E . In this case, we say that S uses E as an oracle.

We wish to analyze the security of S. Let us assume that whatever security property we are
interested in, say “property X,” is modeled (as usual) as a game between a challenger (specific
to property X) and an arbitrary adversary A. Presumably, in responding to certain queries, the
challenger computes various functions associated with the scheme S, and these functions may in
turn require the evaluation of E and/or D at certain points. This game defines an advantage
Xadv[A, S], and security with respect to property X means that this advantage should be negligible
for all e�cient adversaries A.

If we wish to analyze S in the ideal cipher model, then the attack game defining security is
modified so that E is e↵ectively replaced by a family of random permutations {⇧k }k 2K, as described
above, to which both the adversary and the challenger have oracle access. More precisely, the game
is modified as follows.

• At the beginning of the game, the challenger chooses ⇧k 2 Perms[K] at random, for each
k 2 K.
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• In addition to its standard queries, the adversary A may submit ideal cipher queries. There
are two types of queries: ⇧-queries and ⇧�1-queries.

– For a ⇧-query, the adversary submits a pair (k , a) 2 K ⇥ X , to which the challenger
responds with ⇧k (a).

– For a ⇧�1-query, the adversary submits a pair (k , b) 2 K ⇥ X , to which the challenger
responds with ⇧�1

k (b).

The adversary may make any number of ideal cipher queries, arbitrarily interleaved with
standard queries.

• In processing standard queries, the challenger performs its computations using ⇧k (a) in place
of E(k , a) and ⇧�1

k (b) in place of D(k , b).

The adversary’s advantage is defined using the same rule as before, but is denoted Xicadv[A, S] to
emphasize that this is an advantage in the ideal cipher model. Security in the ideal cipher model
means that Xicadv[A, S] should be negligible for all e�cient adversaries A.

It is important to understand the role of the ideal cipher queries. Essentially, they model the
ability of an adversary to make “o✏ine” evaluations of E and D.

Ideal permutation model. Some constructions, like Even-Mansour (discussed below), make
use of a permutation ⇡ : X ! X , rather than a block cipher. In the security analysis, one might
heuristically model ⇡ as a random permutation ⇧, to which all parties in the attack game have
oracle access to ⇧ and ⇧�1. We call this the ideal permutation model. One can view this as a
special case of the ideal cipher model by simply defining ⇧ = ⇧k 0

for some fixed, publicly available
key k 0 2 K.

4.7.2 Exhaustive search in the ideal cipher model

Let (E, D) be a block cipher defined over (K, X ) and let k be some random secret key in K. Suppose
an adversary is able to intercept a small number of input/output pairs (xi, yi) generated using k:

yi = E(k, xi) for all i = 1, . . . , Q.

The adversary can now recover k by trying all possible keys in k 2 K until a key k satisfying
yi = E(k , xi) for all i = 1, . . . , Q is found. For block ciphers used in practice it is likely that
this k is equal to the secret key k used to generate the given pairs. This exhaustive search
over the key space recovers the block-cipher secret-key in time O(|K|) using a small number of
input/output pairs. We analyze the number of input/output pairs needed to mount a successful
attack in Theorem 4.12 below.

Exhaustive search is the simplest example of a key-recovery attack. Since we will present a
number of key-recovery attacks, let us first define the key-recovery attack game in more detail. We
will primarily use the key-recovery game as means of presenting attacks.

Attack Game 4.4 (key-recovery). For a given block cipher E = (E, D), defined over (K, X ),
and for a given adversary A, define the following game:

• The challenger picks a random k  R K.
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• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists of a
message xi 2M. The challenger, given xi, computes yi  R E(k, xi), and gives yi
to A.

• Eventually A outputs an candidate key k 2 K.

We say that A wins the game if k = k. We let KRadv[A, E ] denote the probability that A wins the
game. 2

The key-recovery game extends naturally to the ideal cipher model, where E(k , a) = ⇧k (a) and
D(k , b) = ⇧�1

k (b), and {⇧k }k 2K is a family of independent random permutations. In this model,

we allow the adversary to make arbitrary ⇧- and ⇧�1-queries, in addition to its standard queries
to E(k, ·). We let KRicadv[A, E ] denote the adversary’s key-recovery advantage when E is an ideal
cipher.

It is worth noting that security against key-recovery attacks does not imply security in the
sense of indistinguishability (Definition 4.1). The simplest example is the constant block cipher
E(k, x) = x for which key-recovery is not possible (the adversary obtains no information about k),
but the block cipher is easily distinguished from a random permutation.

Exhaustive search. The following theorem bounds the number of input/output pairs needed
for exhaustive search, assuming the cipher is an ideal cipher. For real-world parameters, taking
Q = 3 in the theorem is often su�cient to ensure success.

Theorem 4.12. Let E = (E, D) be a block cipher defined over (K, X ). Then there exists an
adversary AEX that plays Attack Game 4.4 with respect to E, modeled as an ideal cipher, making
Q standard queries and Q|K| ideal cipher queries, such that

KRicadv[AEX , E ] � (1� ✏) where ✏ :=
|K|

(|X |�Q)Q
(4.30)

Proof. In the ideal cipher model, we are modeling the block cipher E = (E, D) as a family {⇧k }k 2K
of random permutations on X . In Attack Game 4.4, the challenger chooses k 2 K at random. An
adversary may make standard queries to obtain the value E(k, x) = ⇧k(x) at points x 2 X of his
choosing. An adversary may also make ideal cipher queries, obtaining the values ⇧k (a) and ⇧�1

k (b)

for points k 2 K and a, b 2 X of his choosing. These ideal cipher queries correspond to “o✏ine”
evaluations of E and D.

Our adversary AEX works as follows:

let {x1, . . . , xQ} be an arbitrary set of distinct messages in X
for i = 1, . . . , Q do:

make a standard query to obtain yi := E(k, xi) = ⇧k(xi)
for each k 2 K do:

for i = 1, . . . , Q do:
make an ideal cipher query to obtain bi := ⇧k (xi)

if yi = bi for all i = 1, . . . , Q then
output k and terminate

Let k be the challenger’s secret-key. We show that AEX outputs k with probability at least 1� ✏,
with ✏ defined as in (4.30). Since AEX tries all keys, this amounts to showing that the probability
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that there is more than one key consistent with the given (xi, yi) pairs is at most ✏. We shall show
that this holds for every possible choice of k, so for the remainder of the proof, we shall view k as
fixed. We shall also view x1, . . . , xQ as fixed, so all the probabilities are with respect to the random
permutations ⇧k for k 2 K.

For each k 2 K, let Wk be the event that yi = ⇧k (xi) for all i = 1, . . . , Q. Note that by
definition, Wk occurs with probability 1. Let W be the event that Wk occurs for some k 6= k. We
want to show that Pr[W ]  ✏.

Fix k 6= k. Since the permutation ⇧k is chosen independently of the permutation ⇧k , we know
that

Pr[Wk ] =
1

|X | · 1

|X |� 1
· · · 1

|X |�Q + 1

✓

1

|X |�Q

◆Q

As this holds for all k 6= k, the result follows from the union bound. 2

Security of the 3E construction

The attack presented in Theorem 4.2 works equally well against the 3E construction. The size of
the key space is |K|3, but one obtains a “meet in the middle” key recovery algorithm that runs in
time O

�|K|2 ·Q�. For Triple-DES this algorithm requires more than 22·56 evaluations of Triple-DES,
which is far beyond our computing power.

One wonders whether better attacks against 3E exist. When E is an ideal cipher we can prove
a lower bound on the amount of work needed to distinguish 3E from a random permutation.

Theorem 4.13. Let E = (E, D) be an ideal block cipher defined over (K, X ), and consider an
attack against the 3E construction in the ideal cipher model. If A is an adversary that makes at
most Q queries (including both standard and ideal cipher queries) in the ideal cipher variant of
Attack Game 4.1, then

BCicadv[A, 3E ]  C1L
Q2

|K|3 + C2
Q2/3

|K|2/3|X |1/3 + C3
1

|K| ,

where L := max(|K|/|X |, log2|X |), and C1, C2, C3 are constants (that do not depend on A or E).

The statement of the theorem is easier to understand if we assume that |K|  |X |, as is the case
with DES. In this case, the bound can be restated as

BCicadv[A, 3E ]  C log2 |X | Q2

|K|3 ,

for a constant C. Ignoring the log X term, this says that an adversary must make roughly |K|1.5
queries to obtain a significant advantage (say, 1/4). Compare this to the meet-in-the-middle attack.
To achieve a significant advantage, that adversary must make roughly |K|2 queries. Thus, meet-in-
the-middle attack may not be the most powerful attack.

To conclude our discussion of Triple-DES, we note that the 3E construction does not always
strengthen the cipher. For example, if E = (E, D) is such that the set of |K| permutations
{E(k , ·) : k 2 K} is a group, then 3E would be no more secure than E . Indeed, in this case
⇡ := E3((k1, k2, k3), ·) is identical to E(k, ·) for some k 2 K. Consequently, distinguishing 3E from
a random permutation is no harder than doing so for E . Of course, block ciphers used in practice
are not groups (as far as we know).
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4.7.3 The Even-Mansour block cipher and the EX construction

Let X = {0, 1}n. Let ⇡ : X ! X be a permutation and let ⇡�1 be its inverse function. Even and
Mansour defined the following simple block cipher E

EM

= (E, D) defined over (X 2, X ):

E
�

(P1, P2), x
�

:= ⇡(x� P1)� P2 and D
�

(P1, P2), y
�

:= ⇡�1(y � P2)� P1 (4.31)

How do we analyze the security of this block cipher? Clearly for some ⇡’s this construction is
insecure, for example when ⇡ is the identity function. For what ⇡ is E

EM

a secure block cipher?
The only way we know to analyze security of E

EM

is by modeling ⇡ as a random permutation
⇧ on the set X (i.e., in the ideal cipher model using a fixed key). We show in Theorem 4.14 below
that in the ideal cipher model, for all adversaries A:

BCicadv[E
EM

, A]  2QsQic

|X | (4.32)

where Qs is the number of queries A makes to E
EM

and Qic is the number of queries A makes to ⇧
and ⇧�1. Hence, the Even-Mansour block cipher is secure (in the ideal cipher model) whenever |X |
is su�ciently large.

The Even-Mansour security theorem (Theorem 4.14) does not require the keys P1 and P2 to
be independent. In fact, the bounds in (4.32) remain unchanged if we set P1 = P2 so that the key
for E

EM

is a single element of X . However, we note that if one leaves out either of P1 or P2, the
construction is completely insecure (see Exercise 4.5).

Iterated Even-Mansour and AES. Looking back at our description of AES (Fig. 4.11) one
observes that the Even-Mansour cipher looks a lot like one round of AES where the round function
f
AES

plays the role of ⇡. Of course one round of AES is not a secure block cipher: the bound
in (4.32) does not imply security because f

AES

is not a random permutation.
Suppose one replaces each occurrence of f

AES

in Fig. 4.11 by a di↵erent permutation: one
function for each round of AES. The resulting structure, called iterated Even-Mansour, can be
analyzed in the ideal cipher model and the resulting security bounds are better than those stated
in (4.32).

These results suggest a theoretical justification for the AES structure in the ideal cipher model.

The EX construction and DESX. If we apply the Even-Mansour construction to a full-fledged
block cipher E = (E, D) defined over (K, X ), we obtain a new block cipher called EX = (EX,DX)
where

EX
�

(k, P1, P2), x
�

:= E(k, x� P1)� P2 , DX
�

(k, P1, P2), y
�

:= D(k, y � P2)� P1. (4.33)

This new cipher EX has a key space K ⇥ X 2 which can be much larger than the key space for the
underlying cipher E .

Theorem 4.14 below shows that — in the ideal cipher model — this larger key space translates to
better security: the maximum advantage against EX is much smaller than the maximum advantage
against E , whenever |X | is su�ciently large.

Applying EX to the DES block cipher gives an e�cient method to immunize DES against
exhaustive search attacks. With P1 = P2 we obtain a block cipher called DESX whose key size
is 56 + 64 = 120 bits: enough to resist exhaustive search. Theorem 4.14 shows that attacks in the
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ideal cipher model on the resulting cipher are impractical. Since evaluating DESX requires only
one call to DES, the DESX block cipher is three times faster than the Triple-DES block cipher and
this makes it seem as if DESX is the preferred way to strengthen DES. However, non black-box
attacks like di↵erential and linear cryptanalysis still apply to DESX where as they are ine↵ective
against Triple-DES. Consequently, DESX should not be used in practice.

4.7.4 Proof of the Even-Mansour and EX theorems

We shall prove security of the Even-Mansour block cipher (4.31) in the ideal permutation model
and of the EX construction (4.33) in the ideal cipher model.

We prove their security in a single theorem below. Taking a single-key block cipher (i.e., |K| = 1)
proves security of Even-Mansour in the ideal permutation model. Taking a block cipher with a
larger key space proves security of EX. Note that the pads P1 and P2 need not be independent and
the theorem holds if we set P2 = P1.

Theorem 4.14. Let E = (E, D) be a block cipher defined over (K, X ). Let EX = (EX,DX) be
the block cipher derived from E as in construction (4.33), where P1 and P2 are each uniformly
distributed over a subset of X 0 of X . If we model E as an ideal cipher, and if A is an adversary in
Attack Game 4.1 for EX that makes at most Qs standard queries (i.e., EX-queries) and Qic ideal
cipher queries (i.e., ⇧- or ⇧�1-queries), then we have

BCicadv[A, EX]  2QsQic

|K||X 0| . 2 (4.34)

To understand the security benefit of the EX construction consider the following: modeling E as
an ideal cipher gives BCicadv[A, E ]  Qic/|K| for all A. Hence, Theorem 4.14 shows that, in the
ideal cipher model, applying EX to E shrinks the maximum advantage by a factor of 2Qs/|X 0|.

The bounds in Theorem 4.14 are tight: there is an adversary A that achieves the advantage
shown in (4.34). The advantage of this A is no smaller even when P1 and P2 are chosen indepen-
dently. Therefore, we might as well always choose P2 = P1.

We also note that it is actually no harder to prove that EX is a strongly secure block cipher (see
Section 4.1.3) in the ideal cipher model, with exactly the same security bounds as in Theorem 4.14.

Proof idea. The basic idea is to show that the ideal cipher queries and the standard queries do not
interact with each other, except with probability as bounded in (4.34). Indeed, to make the two
types of queries interact with each other, the adversary has to make

(k = k and a = x� P1) or (k = k and b = y � P2)

for some input/output pair (x, y) corresponding to a standard query and some input/output triple
(k , a, b) corresponding to an ideal cipher query. Essentially, the adversary will have to simultane-
ously guess the random key k as well as one of the random pads P1 or P2.

Assuming there are no such interactions, we can e↵ectively realize all of the standard queries
as ⇧(x�P1)�P2 using a random permutation ⇧ that is independent of the random permutations
used to realize the ideal cipher queries. But ⇧0(x) := ⇧(x�P1)�P2 is just a random permutation.

Before giving a rigorous proof of Theorem 4.14, we present a technical lemma, called the Do-
main Separation Lemma, that will greatly simplify the proof, and is useful in analyzing other
constructions.
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To motivate the lemma, consider the following two experiments. In the one experiment, called
the “split experiment”, an adversary has oracle access to two random permutations ⇧1, ⇧2 on a
set X . The adversary can make a series of queries, each of the form (µ, d, z), where µ 2 {1, 2}
specifies which of the two permutations to evaluate, d 2 {±1} specifies the direction to evaluate the
permutation, and z 2 X the input to the permutation. On such a query, the challenger responds
with z 0 := ⇧d

µ(z). Another experiment, called the “coalesced experiment”, is exactly the same as
the split experiment, except that there is only a single permutation ⇧, and the challenger answers
the query (µ, d, z) with z 0 := ⇧d(z), ignoring completely the index µ. The question is: under what
condition can the adversary distinguish between these two experiments?

Obviously, if the adversary can submit a query (1, +1, a) and a query (2, +1, a), then in the split
experiment, the results will almost certainly be di↵erent, while in the coalesced experiment, they
will surely be the same. Another type of attack is possible as well: the adversary could make a query
(1, +1, a) obtaining b, and then submit the query (2,�1, b), obtaining a 0. In the split experiment, a
and a 0 will almost certainly be di↵erent, while in the coalesced experiment, they will surely be the
same. Besides these two examples, one could get two more examples which reverse the direction of
all the queries. The Domain Separation Lemma will basically say that unless the adversary makes
queries of one of these four types, he cannot distinguish between these two experiments.

Of course, the Domain Separation Lemma is only useful in contexts where the adversary is
somehow constrained so that he cannot freely make queries of his choice. Indeed, we will only use
it inside of the proof of a security theorem where the “adversary” in the Domain Separation Lemma
comprises components of a challenger and an adversary in a more interesting attack game.

In the more general statement of the lemma, we replace ⇧1 and ⇧2 by a family of permutations
of permutations {⇧µ}µ2U , and we replace ⇧ by a family {⇧⌫}⌫2V . We also introduce a function
f : U ! V that specifies how several permutations in the split experiment are collapsed into
one permutation in the coalesced experiment: for each ⌫ 2 V , all the permutations ⇧µ in the
split experiment for which f(µ) = ⌫ are collapsed into the single permutation ⇧⌫ in the coalesced
experiment.

In the generalized version of the distinguishing game, if the adversary makes a query (µ, d, z),
then in the split experiment, the challenger responds with z 0 := ⇧d

µ(z), while in the coalesced

experiment, the challenger responds with z 0 := ⇧d
f(µ)(z). In the split experiment, we also keep

track of the subset of the domains and ranges of the permutations that correspond to actual

queries made by the adversary in the split experiment. That is, we build up sets Dom(d)
µ for each

µ 2 U and d 2 ±1, so that a 2 Dom(+1)
µ if and only if the adversary issues a query of the form

(µ, +1, a) or a query of the form (µ,�1, b) that yields a. Similarly, b 2 Dom(�1)
µ if and only if the

adversary issues a query of the form (µ,�1, b) or a query of the form (µ, +1, a) that yields b. We

call Dom(+1)
µ the sampled domain of ⇧µ and Dom(�1)

µ the sampled range of ⇧µ.

Attack Game 4.5 (domain separation). Let U, V, X be finite, nonempty sets, and let f :
U ! V be a function. For a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define:

Experiment b:

• For each µ 2 U , and each ⌫ 2 V the challenger sets ⇧µ  R Perms[X ] and ⇧⌫  R Perms[X ]

Also, for each µ 2 U and d 2 {±1} the challenger sets Dom(d)
µ  ;.

• The adversary submits a sequence of queries to the challenger.
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For i = 1, 2, . . . , the ith query is (µi, di, zi) 2 U ⇥ {±1}⇥ X .

If b = 0: the challenger sets z 0
i  ⇧

di
f(µi)(zi).

If b = 1: the challenger sets z 0
i  ⇧di

µi
(zi); the challenger also adds the value zi to the set

Dom(di)
µi , and adds the value z 0

i to the set Dom(�di)
µi .

In either case, the challenger then sends z 0
i to the adversary.

• Finally, the adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s do-
main separation distinguishing advantage as |Pr[W0]� Pr[W1]|. We also define the domain
separation failure event Z to be the event that in Experiment 1, at the end of the game we

have Dom(d)
µ \ Dom(d)

µ0 6= ; for some d 2 {±1} and some pair of distinct indices µ, µ0 2 U with
f(µ) = f(µ0). Finally, we define the domain separation failure probability to be Pr[Z]. 2

Experiment 1 is the above game is the split experiment and Experiment 0 is the coalesced
experiment.

Theorem 4.15 (Domain Separation Lemma). In Attack Game 4.5, an adversary’s domain
separation distinguishing advantage is bounded by the domain separation failure probability.

In the applying the Domain Separation Lemma, we will typically analyze some attack game in
which permutations start out as coalesced, and then force them to be separated. We can bound
the impact of this change on the outcome of the attack by analyzing the domain separation failure
probability in the attack game with the split permutations.

Before proving the Domain Separation Lemma, it is perhaps more instructive to see how it is
used in the proof of Theorem 4.14.

Proof of Theorem 4.14. Let A be an adversary as in the statement of the theorem. For b = 0, 1
let pb be the probability that A outputs 1 in Experiment b of the block cipher attack game in the
ideal cipher model (Attack Game 4.1). So by definition we have

BCicadv[A, EX] = |p0 � p1|. (4.35)

We shall prove the theorem using a sequence of two games, applying the Domain Separation
Lemma.

Game 0. We begin by describing Game 0, which corresponds to Experiment 0 of the block cipher
attack game in the ideal cipher model. Recall that in this model, we have a family of random
permutations, and the encryption function is implemented in terms of this family. Also recall that
in addition to standard queries that probe the function Ek(·), the adversary may also probe the
random permutations.

Initialize:
for each k 2 K, set ⇧k  R Perms[X ]
k  R K, choose P1, P2
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standard EX-query x:
1. a  x� P1

2. b  ⇧k(a)
3. y  b � P2

4. return y

ideal cipher ⇧-query k , a:
1. b  ⇧k (a)
2. return b

ideal cipher ⇧�1-query k , b:
1. a  ⇧�1

k (b)

2. return a

Let W0 be the event that A outputs 1 at the end of Game 0. It should be clear from construction
that

Pr[W0] = p0. (4.36)

Game 1. In this game, we apply the Domain Separation Lemma. The basic idea is that we
will declare “by fiat” that the random permutations used in processing the standard queries are
independent of the random permutations used in processing ideal cipher queries. E↵ectively, each
permutation ⇧k gets split into two independent permutations: ⇧std,k , which is used by the chal-
lenger in responding to standard EX-queries, and ⇧ic,k , which is used in responding to ideal cipher
queries. In detail (changes from Game 0 are highlighted):

Initialize:

for each k 2 K, set ⇧std,k  R Perms[X ] and ⇧ic,k  R Perms[X ]

k  R K, choose P1, P2

standard EX-query x:
1. a  x� P1

2. b  ⇧std,k(a) // add a to sampled domain of ⇧
std,k, add b to sampled range of ⇧

std,k

3. y  b � P2

4. return y

ideal cipher ⇧-query k , a:

1. b  ⇧ic,k (a) // add a to sampled domain of ⇧
ic,k , add b to sampled range of ⇧

ic,k

2. return b

ideal cipher ⇧�1-query k , b:

1. a  ⇧�1
ic,k (b) // add a to sampled domain of ⇧

ic,k , add b to sampled range of ⇧
ic,k

2. return a

Let W1 be the event that A outputs 1 at the end of Game 1. Let Z be the event that in Game 1
there exists k 2 K, such that the sampled domains of ⇧ic,k and ⇧std,k overlap or the sampled ranges
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of ⇧ic,k and ⇧std,k overlap. The Domain Separation Lemma says that

|Pr[W0]� Pr[W1]|  Pr[Z]. (4.37)

In applying the Domain Separation Lemma, the “coalescing function” f maps from {std, ic} ⇥ K
to K, sending the pair (·, k ) to k . Observe that the challenger only makes queries to ⇧k, where k
is the secret key, and so such an overlap can occur only at k = k. Also observe that in Game 1,
the random variables k, P1, and P2 are completely independent of the adversary’s view.

So the event Z occurs if and only if for some input/output triple (k , a, b) triple arising from a
⇧- or ⇧�1-query, and for some input/output pair (x, y) arising from an EX-query, we have

(k = k and a = x� P1) or (k = k and b = y � P2). (4.38)

Using the union bound, we can therefore bound Pr[Z] as a sum of probabilities of 2QsQic events,
each of the form k = k and a = x � P1, or of the form k = k and b = y � P2. By independence,
since k is uniformly distributed over a set of size |K|, and each of P1 and P2 is uniformly distributed
over a set of size |X 0|, each such event occurs with probability at most 1/(|K||X 0|). It follows that

Pr[Z]  2QsQic

|K||X 0| . (4.39)

Finally, observe that Game 1 is equivalent to Experiment 1 of the block cipher attack game in
the ideal cipher model: the EX-queries present to the adversary the random permutation ⇧0(x) :=
⇧std,k(x � P1) � P2 and this permutation is independent of the random permutations used in the
⇧- and ⇧�1-queries. Thus,

Pr[W1] = p1. (4.40)

The bound (4.34) now follows from (4.35), (4.36), (4.37), (4.39), and (4.40). This completes the
proof of the theorem. 2

Finally, we turn to the proof of the Domain Separation Lemma, which is a simple (if tedious)
application of the Di↵erence Lemma and the “forgetful gnome” technique.

Proof of Theorem 4.15. We define a sequence of games.

Game 0. This game will be equivalent to the coalesced experiment in Attack Game 4.5, but
designed in a way that will facilitate the analysis.

In this game, the challenger maintains various sets ⇧ of pairs (a, b). Each set ⇧ represents a
function that can be extended to a permutation on X that sends a to b for every (a, b) in ⇧. We
call such a set ⇧ a partial permutation on X . Define

Domain(⇧) = {a 2 X : (a, b) 2 ⇧ for some b 2 X} ,

Range(⇧) = {b 2 X : (a, b) 2 ⇧ for some a 2 X} .

Also, for a 2 Domain(⇧), define ⇧(a) to be the unique b such that (a, b) 2 ⇧. Likewise, for
b 2 Range(⇧), define ⇧�1(b) to be the unique a such that (a, b) 2 ⇧.

Here is the logic of the challenger in Game 0:

Initialize:
for each ⌫ 2 V , initialize the partial permutation ⇧⌫  ;
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Process query (µ, +1, a):
1. if a 2 Domain(⇧f(µ)) then b  ⇧f(µ)(a), return b
2. b  R X \ Range(⇧f(µ))
3. add (a, b) to ⇧f(µ)

4. return b

Process query (µ,�1, b):

1. if b 2 Range(⇧f(µ)) then a  ⇧
�1
f(µ)(b), return a

2. a  R X \ Domain(⇧f(µ))
3. add (a, b) to ⇧µ

4. return a

This game is clearly equivalent to the coalesced experiment in Attack Game 4.5. Let W0 be the
event that the adversary outputs 1 in this game.

Game 1. Now we modify this game to get an equivalent game, but it will facilitate the application
of the Di↵erence Lemma in moving to the next game. For µ, µ0 2 U , let us write µ ⇠ µ0 if
f(µ) = f(µ0). The is an equivalence relation on U , and we write [µ] for the equivalence class
containing µ.

Here is the logic of the challenger in Game 1:

Initialize:
for each µ 2 U , initialize the partial permutation ⇧µ  ;

Process query (µ, +1, a):
1a. if a 2 Domain(⇧µ) then b  ⇧µ(a), return b

⇤ 1b. if a 2 Domain(⇧µ0) for some µ0 2 [µ] then b  ⇧µ0(a), return b
2a. b  R X \ Range(⇧µ)

⇤ 2b. if b 2 Sµ02[µ] Range(⇧µ0) then b  R X \Sµ02[µ] Range(⇧µ0)

3. add (a, b) to ⇧µ

4. return b

Process query (µ,�1, b):
1a. if b 2 Range(⇧µ) then a  ⇧�1

µ (b), return a
⇤ 1b. if b 2 Range(⇧µ0) for some µ0 2 [µ] then a  ⇧�1

µ0 (b), return a
2a. a  R X \ Domain(⇧µ)

⇤ 2b. if a 2 Sµ02[µ] Domain(⇧µ0) then a  R X \Sµ02[µ] Domain(⇧µ0)

3. add (a, b) to ⇧µ

4. return a

Let W1 be the event that the adversary outputs 1 in this game.
It is not hard to see that the challenger’s behavior in this game is equivalent to that in Game 0,

and so Pr[W0] = Pr[W1]. The idea is that for every ⌫ 2 f(U) ✓ V , the partial permutation ⇧⌫ in
Game 0 is partitioned into a family of disjoint partial permutations {⇧µ}µ2f�1(⌫), so that

⇧⌫ =
[

µ2f�1(⌫)

⇧µ,

174



and

Domain(⇧µ) \Domain(⇧µ0) = ; and Range(⇧µ) \ Range(⇧µ0) = ;
for all µ, µ0 2 f�1(⌫) with µ 6= µ0. (4.41)

Game 2. Now we simply delete the lines marked with a “⇤” in Game 1. Let W2 be the event that
the adversary outputs 1 in this game.

It is clear that this game is equivalent to the split experiment in Attack Game 4.5, and so
|Pr[W2] � Pr[W1]| is equal to the adversary’s advantage in Attack Game 4.5. We want to use the
Di↵erence Lemma to bound |Pr[W2] � Pr[W1]|. To make this entirely rigorous, one models both
games as operating on the same underlying probability space: we define a collection of random
variables representing the coins of the adversary, as well as the various random samples from
di↵erent subsets of X made by the challenger. These random variables completely describe both
Games 1 and 2: the only di↵erence between the two games are the deterministic computation rules
that determine the outcomes. Define Z be to be the event that at the end of Game 2, the condition
(4.41) does not hold. One can verify that Games 1 and 2 proceed identically unless Z holds, so
by the Di↵erence Lemma, we have |Pr[W2] � Pr[W1]|  Pr[Z]. Moreover, it is clear that Pr[Z] is
precisely the failure probability in Attack Game 4.5. 2

4.8 Fun application: comparing information without revealing it

In this section we describe an important application for PRFs called sub-key derivation. Alice
and Bob have a shared key k for a PRF. They wish to generate a sequence of shared keys k1, k2, . . .
so that key number i can be computed without having to compute all earlier keys. Naturally, they
set ki := F (k, i) where F is a secure PRF whose input space is {1, 2, . . . , B} for some bound B.
The generated sequence of keys is indistinguishable from random keys.

As a fun application of this, consider the following problem: Alice is on vacation at the Squaw
valley ski resort and wants to know if her friend Bob is also there. If he is they could ski together.
Alice could call Bob and ask him if he is on the slopes, but this would reveal to Bob where she is
and Alice would rather not do that. Similarly, Bob values his privacy and does not want to tell
Alice where he is, unless Alice happens to be close by.

Abstractly, this problem can be phrased as follows: Alice has a number a 2 Zp and Bob has
a number b 2 Zp for some prime p. These numbers indicate their approximate positions on earth.
Think of dividing the surface of the earth into p squares and the numbers a and b indicate what
square Alice and Bob are currently at. If Bob is at the resort then a = b, otherwise a 6= b.

Alice wants to learn if a = b; however, if a 6= b then Alice should learn nothing else about b.
Bob should learn nothing at all about a.

In a later chapter we will see how to solve this exact problem. Here, we make the problem
easier by allowing Alice and Bob to interact with a server, Sam, that will help Alice learn if a = b,
but will itself learn nothing at all. The only assumption about Sam is that it does not collude with
Alice or Bob, that is, it does not reveal private data that Alice or Bob send to it. Clearly, Alice
and Bob could send a and b to Sam and he will tell Alice if a = b, but then Sam would learn both
a and b. Our goal is that Sam learns nothing, not even if a = b.

To describe the basic protocol, suppose Alice and Bob have a shared secret key (k0, k1) 2 Z2
p.

Moreover, Alice and Bob each have a private channel to Sam. The protocol for comparing a and b
is shown in Fig. 4.17. It begins with Bob choosing a random r in Zp and sending (r, xb) to Sam.
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Alice Server Bob
input: a Sam input: b

r, xb  r(b + k0) + k1 ������������������������ r  R Zpxa  a + k0������������������������!

x + k1
?
= 0

x r xa � xb ������������������������

Figure 4.17: Comparing a and b without revealing them

Bob can do this whenever he wants, even before Alice initiates the protocol. When Alice wants to
test equality, she sends xa to Sam. Sam computes x r xa � xb and sends x back to Alice. Now,
observe that

x + k1 = r(a� b)

so that x + k1 = 0 when a = b and x + k1 is very likely to be non-zero otherwise (assuming p is
su�ciently large so that r 6= 0 with high probability). This lets Alice learn if a = b.

What is revealed by this protocol? Clearly Bob learns nothing. Alice learns r(a � b), but if
a 6= b this quantity is uniformly distributed in Zp. Therefore, when a 6= b Alice just obtains a
uniform element in Zp and this reveals nothing beyond the fact that a 6= b. Sam sees r, xa, xb, but
all three values are independent of a and b: xa and xb are one-time pad encryptions under keys
k0 and k1, respectively. Therefore, Sam learns nothing. Notice that the only privacy assumption
about Sam is that it does not reveal (r, xb) to Alice or xa to Bob.

The trouble, much like with the one-time pad, is that the shared key (k0, k1) can only be used
for a single equality test, otherwise the protocol becomes insecure. If (k0, k1) is used to test if a = b
and later the same key (k0, k1) is used to test if a0 = b0 then Alice and Sam learn information they
are not supposed to. For example, Sam learns a� a0. Moreover, Alice can deduce (a� b)/(a0 � b0)
which reveals information about b and b0 (e.g., if a = a0 = 0 then Alice learns the ratio of b and b0).

Sub-key derivation. What if Alice wants to repeatedly test proximity to Bob? The solution
is to generate a new independent key (k0, k1) for each invocation of the protocol. We do so by
deriving instance-specific sub-keys using a secure PRF.

Let F be a secure PRF defined over (K, {1, . . . , B}, Z2
p) and suppose that Alice and Bob share

a long term key k 2 K. Bob maintains a counter cntb that is initially set to 0. Every time Bob
sends his encrypted location (r, xb) to Sam he increments cntb and derives sub-keys (k0, k1) from
the long-term key k as:

(k0, k1) F (k, cntb). (4.42)

He sends (r, xb, cntb) to Sam. Bob can do this whenever he wants, say every few minutes, or every
time he moves to a new location.

Whenever Alice wants to test proximity to Bob she first asks Sam to send her the value of
the counter in the latest message from Bob. She makes sure the counter value is larger than the
previous value Sam sent her (to prevent a mischievous Sam or Bob from tricking Alice into re-using
an old counter value). Alice then computes (k0, k1) herself using (4.42) and carries out the protocol
with Sam in Fig. 4.17 using these keys.
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Because F is a secure PRF, the sequence of derived sub-keys is indistinguishable from random
independently sampled keys. This ensures that the repeated protocol reveals nothing about the
tested values beyond equality. By using a PRF, Alice is able to quickly compute (k0, k1) for the
latest value of cntb.

4.9 Notes

Citations to the literature to be added.

4.10 Exercises

4.1. Let F be a secure PRF defined over (K, X , Y), where K = X = Y = {0, 1}n.

(a) Show that F1(k, x) = F (k, x) k 0 is not a secure PRF.

(b) Prove that F2
�

k, (x, y)
�

:= F (k, x)� F (k, y) is insecure.

(c) Prove that F3(k, x) := F (k, x)� x is a secure PRF.

(d) Show that F4(k, x) := F (k, x) k F (k, x� 1n) is insecure.

(e) Prove that F5(k, x) := F (F (k, 0n), x) is a secure PRF.

(f) Show that F6(k, x) := F (F (k, 0n), x) k F (k, x) is insecure.

(g) Show that F7(k, x) := F (k, x) k F
�

k, F (k, x)
�

is insecure.

4.2 (Weak PRFs). Let F be a PRF defined over (K, X , Y) where Y := {0, 1}n and |X | is
super-poly. Define

F2
�

k, (x, y)
�

:= F (k, x)� F (k, y).

We showed in Exercise 4.1 part (b) that F2 is not a secure PRF.

(a) Show that F2 is a weakly secure PRF (as in Definition 4.3), assuming F is weakly secure. In
particular, for any Q-query weak PRF adversary A attacking F2 (i.e., an adversary that only
queries the function at random points in X ) there is a weak PRF adversary B attacking F ,
where B is an elementary wrapper around A, such that

wPRFadv[A, F2]  wPRFadv[B, F ] + (Q/|X |)4.

(b) Suppose F is a secure PRF. Show that F2 is weakly secure even if we modify the weak PRF
attack game and allow the adversary A to query F2 at one chosen point in addition to the Q
random points. A PRF that is secure in this sense is su�cient for a popular data integrity
mechanism discussed in Section 7.4.

(c) Show that F2 is no longer secure if we modify the weak PRF attack game and allow the
adversary A to query F2 at two chosen points in addition to the Q random points.

4.3. Suppose we are given a block cipher (E, D) operating on domain X . We want a block cipher
(E0, D0) that operates on a smaller domain X 0 ⇢ X . Define (E0, D0) as follows:
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E0(k, x) := y  E(k, x)
while y 62 X 0 do: y  E(k, y)
output y

D0(k, y) is defined analogously, applying D(k, ·) until the result falls in X 0. Clearly (E0, D0) are
defined on domain X 0.

(a) With t := |X |/|X 0|, how many evaluations of E are needed in expectation to evaluate E0(k, x)
as a function of t? You answer shows that when t is small (e.g., t  2) evaluating E0(k, x)
can be done e�ciently.

(b) Show that if (E, D) is a secure block cipher with domain X then (E0, D0) is a secure block
cipher with domain X 0. Try proving security by induction on |X |� |X 0|.

Discussion: This exercise is used in the context of encrypted 16-digit credit card numbers where
the ciphertext also must be a 16-digit number. This type of encryption, called format preserving
encryption, amounts to constructing a block cipher whose domain size is exactly 1016. This
exercise shows that it su�ces to construct a block cipher (E, D) with domain size 254 which is the
smallest power of 2 larger than 1016. The procedure in the exercise can then be used to shrink the
domain to size 1016.

4.4. Let F be a PRF whose range is Y = {0, 1}n. For some ` < n consider the PRF F 0 with a
range Y 0 = {0, 1}` defined as: F 0(k, x) = x[0 . . . ` � 1]. That is, we truncate the output of F (k, x)
to the first ` bits. Show that if F is a secure PRF then so is F 0.

4.5. In Section 4.7.3 we discussed the Even-Mansour block cipher (EEM, DEM) built from a per-
mutation ⇡ : X ! X where X = {0, 1}n. Recall that EEM

�

(P0, P1), m
�

:= ⇡(m� P0)� P1.

(a) Show that E1(P0, m) := ⇡(m� P0) is not a secure block cipher.

(b) Show that E2(P1, m) := ⇡(m)� P1 is not a secure block cipher.

4.6 (Two-key Triple-DES). Consider the following variant of the 3E construction that uses
only two keys: for a block cipher (E, D) with key space K define 3E 0 as E((k1, k2), m) :=
E(k1, E(k2, E(k1, m))). Show that this block cipher can be defeated by a meet in the middle
attack using O(|K|) evaluation of E and D and using O(|K|) encryption queries to the block cipher
challenger. Further attacks on this method are discussed in [47, 43].

4.7 (adaptive vs non-adaptive security). This exercise develops an argument that shows that
a PRF may be secure against every adversary that makes its queries non-adaptively, (i.e., all at
once) but is insecure against adaptive adversaries (i.e., the kind allowed in Attack Game 4.2).

To be a bit more precise, we define the non-adaptive version of Attack Game 4.2 as follows.
The adversary submits all at once the query (x1, . . . , xQ) to the challenger, who responds with
(y1, . . . , yQ), where y := f(xi). The rest of the attack game is the same: in Experiment 0, k  R K
and f  R F (k, ·), while in Experiment 1, f  R Funs[X , Y]. Security against non-adaptive adversaries
means that all e�cient adversaries have only negligible advantage; advantage is defined as usual:
|Pr[W0]� Pr[W1]|, where Wb is the event that the adversary outputs 1 in Experiment b.

Suppose F is a secure PRF defined over (K, X , X ), where N := |X | is super-poly. We proceed
to “sabotage” F , constructing a new PRF F̃ as follows. Let x0 be some fixed element of X . For
x = F (k, x0) define F̃ (k, x) := x0, and for all other x define F̃ (k, x) := F (k, x).
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(a) Show that F̃ is not a secure PRF against adaptive adversaries.

(b) Show that F̃ is a secure PRF against non-adaptive adversaries.

(c) Show that a similar construction is possible for block ciphers: given a secure block cipher
(E, D) defined over (K, X ) where |X | is super-poly, construct a new, “sabotaged” block
cipher (Ẽ, D̃) that is secure against non-adaptive adversaries, but insecure against adaptive
adversaries.

4.8. This exercise develops an alternative characterization of PRF security for a PRF F defined over
(K, X , Y). As usual, we need to define an attack game between an adversary A and a challenger.
Initially, the challenger generates

b R {0, 1}, k  R K, y1  R Y
Then A makes a series of queries to the challenger. There are two types of queries:

Encryption: In an function query, A submits an x 2 X to the challenger, who responds with
y  F (k, x). The adversary may make any (poly-bounded) number of function queries.

Test: In a test query, A submits an x 2 X to the challenger, who computes y0  F (k, x) and
responds with yb. The adversary is allowed to make only a single test query (with any number
of function queries before and after the test query).

At the end of the game, A outputs a bit b̂ 2 {0, 1}. As usual, we define A’s advantage in the above
attack game to be |Pr[b̂ = b]�1/2|. We say that F is Alt-PRF secure if this advantage is negligible
for all e�cient adversaries. Show that F is a secure PRF if and only if F is Alt-PRF secure.
Discussion: this characterization shows that the value of a secure PRF at a point x0 in X looks
like a random element of Y, even after seeing the value of the PRF at many other points of X .

4.9 (Key malleable PRFs). Let F be a PRF defined over ({0, 1}n, {0, 1}n, Y).

(a) We say that F is XOR-malleable if F (k, x� c) = F (k, x)� c for all k, x, c in {0, 1}n.

(b) We say that F is key XOR-malleable if F (k � c, x) = F (k, x)� c for all k, x, c in {0, 1}n.

Clearly an XOR-malleable PRF cannot be secure: malleability lets an attacker distinguish the PRF
from a random function. Show that the same holds for a key XOR-malleable PRF.
In contrast, we note that there are secure PRFs where F (k1 � k2, x) = F (k1, x)� F (k2, x).

4.10. In Section 4.1.3 we sketched out the notion of a strongly secure block cipher.

(a) Write out the complete definition of a strongly secure block cipher as a game between a
challenger and an adversary.

(b) Consider the following cipher E 0 = (E0, D0) built from a block cipher (E, D) defined over
(K, {0, 1}n):

E0(k, m) := D(k, t� E(k, m) ) and D0(k, c) := E(k, t�D(k, m) )

where t 2 {0, 1}n is a fixed constant. For what values of t is this cipher E 0 semantically
secure? Prove semantic security assuming the underlying block cipher is strongly secure.
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4.11. Let us study the security of the 4E construction where a block cipher (E, D) is iterated four
times using four di↵erent keys: E4( (k1, k2, k3, k4), m) = E

�

k4, E(k3, E(k2, E(k1, m)))
�

where
(E, D) is a block cipher with key space K.

(a) Show that there is a meet in the middle attack on 4E that recovers the secret key in time |K|2
and memory space |K|2.

(b) Show that there is a meet in the middle attack on 4E that recovers the secret key in time
|K|2, but only uses memory space |K|. If you get stuck see [24].

4.12 (Tweakable block ciphers). A tweakable block cipher is a block cipher whose encryption
and decryption algorithm take an additional input t, called a “tweak”, which is drawn from a
“tweak space” T . As usual, keys come from a key space K, and data blocks from a data block
space X . The encryption and decryption functions operate as follows: for k 2 K, x 2 X , t 2 T ,
we have y = E(k, x, t) 2 X and x = D(k, y, t). So for each k 2 K and t 2 T , E(k, ·, t) defines a
permutation on X and D(k, ·, t) defines the inverse permutation. Unlike keys, tweaks are typically
publicly known, and may even be adversarially chosen.

Security is defined by a game with two experiments. In both experiments, the challenger defines
a family of permutations {⇧t}t2T , where each ⇧t is a permutation on X . In Experiment 0, the
challenger sets k  R K, and

⇧t := E(k, ·, t) for all t 2 T .

In Experiment 1, the challenger sets

⇧t  R Perms[X ] for all t 2 T .

Both experiments then proceed identically. The adversary issues a series of queries. Each query is
one of two types:

forward query: the adversary sends (x, t) 2 X ⇥T , and the challenger responds with y := ⇧t(x);

inverse queries: the adversary sends (y, t) 2 X ⇥ T , and the challenger responds with x :=
⇧�1

t (y).

At the end of the game, the adversary outputs a bit. If pb is the probability that the adversary
outputs 1 in Experiment b, the adversary’s advantage is defined to be |p0�p1|. We say that (E, D)
is a secure tweakable block cipher if every e�cient adversary has negligible advantage.

This definition of security generalizes the notion of a strongly secure block cipher (see Sec-
tion 4.1.3 and Exercise 4.10). In applications of tweakable block ciphers, this strong security notion
is more appropriate.

(a) Prove security of the construction Ẽ(k, m, t) := E(E(k, t), m) where (E, D) is a strongly
secure block cipher defined over (K, K).

(b) Show that there is an attack on the construction from part (a) that achieves advantage � 1/2
and which makes Q ⇡p|K| queries.

Hint: in addition to the ⇡p|K| queries, your adversary should make an additional ⇡p|K|
“o✏ine” evaluations of the cipher (E, D).
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(c) Prove security of the construction

E0�(k0, k1), m, t
�

:=
�

p F (k0, t); output p� E(k1, m� p)
 

,

where (E, D) is a strongly secure block cipher and F is a secure PRF. In Exercise 7.12 we
will see a more e�cient variant of this construction.

Hint: use the assumption that (E, D) is a strongly secure block cipher to replace E(k1, ·) in the
challenger by a truly random permutation e⇧; then, use the Domain Separation Lemma (see
Theorem 4.15) to replace e⇧ by a family of independent permutations {e⇧t}t2T , and analyze
the corresponding domain separation failure probability.

Discussion: tweakable block ciphers are used in disk sector encryption where encryption must not
expand the data: the ciphertext size is required to have the same size as the input. The sector
number is used as the tweak to ensure that even if two sectors contain the same data, the resulting
encrypted sectors are di↵erent. The construction in part (c) is usually more e�cient than that in
part (a), as the latter uses a di↵erent block cipher key with every evaluation, which can incur extra
costs. See further discussion in Exercise 7.12.

4.13 (PRF combiners). We want to build a PRF F using two PRFs F1 and F2, so that if at
some future time one of F1 or F2 is broken (but not both) then F is still secure. Put another way,
we want to construct F from F1 and F2 such that F is secure if either F1 or F2 is secure.

Suppose F1 and F2 both have output spaces {0, 1}n, and both have a common input space.
Define

F ( (k1, k2), x) := F1(k1, x)� F2(k2, x).

Show that F is secure if either F1 or F2 is secure.

4.14 (Block cipher combiners). Continuing with Exercise 4.13, we want to build a block cipher
E = (E, D) from two block ciphers E1 = (E1, D1) and E2 = (E2, D2) so that if at some future time
one of E1 or E2 is broken (but not both) then E is still secure. Suppose both E1 and E2 are defined
over (K, X ). Define E as:

E( (k1, k2), x) := E1
�

k1, E2(k2, x)
�

and D( (k1, k2), y) := D2
�

k2, D1(k1, y)
�

.

(a) Show that E is secure if either E1 or E2 is secure.

(b) Show that this is not a secure combiner for PRFs. That is, F ( (k1, k2), x) := F1
�

k1, F2(k2, x)
�

need not be a secure PRF even if one of F1 or F2 is.

4.15. Let F be a secure PRF defined over (K, X , Y), where K = X = Y = {0, 1}n.

(a) Let K1 = {0, 1}n+1. Construct a new PRF F1, defined over (K1, X , Y), with the following
property: the PRF F1 is secure; however, if the adversary learns the last bit of the key then
the PRF is no longer secure. This shows that leaking even a single bit of the secret key can
completely destroy the PRF security property.
Hint: Let k1 = k k b where k 2 {0, 1}n and b 2 {0, 1}. Set F1(k1, x) to be the same as
F (k, x) for all x 6= 0n. Define F1(k1, 0n) so that F1 is a secure PRF, but becomes easily
distinguishable from a random function if the last bit of the secret key k1 is known to the
adversary.
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(b) Construct a new PRF F2, defined over (K ⇥ K, X , Y), that remains secure if the attacker
learns any single bit of the key. Your function F2 may only call F once.

4.16. Let F be a secure PRF defined over (K, X , X ).

(a) Show that two-round Luby-Racko↵ is not a secure block cipher.

(b) Show that three-round Luby-Racko↵ is not a strongly secure block cipher.

4.17. In the tree construction for building a PRF from a PRG (see Section 4.6), the secret key is
used at the root of the tree and the input is used to trace a path through the tree. Show that a
construction that does the opposite is not a secure PRF. That is, using the input at the root and
using the key to trace through the tree is not a secure PRF.

4.18. Show how the tree construction in Section 4.6 gives a PRG with large expansion rate and
which can be evaluated with a highly parallel algorithm.

4.19 (Augmented tree construction). Suppose we are given a PRG G defined over (K⇥S, S2).
Write G(k, s) = (G0(k, s), G1(k, s)). Let us define the PRF G⇤ with key space Kn ⇥ S and input
space {0, 1}n as follows:

G⇤�(k0, . . . , kn�1, s), x 2 {0, 1}n� :=
t s
for i 0 to n� 1 do

b x[i]
t Gb(ki, t)

output t.

(a) Given an example secure PRG G for which G⇤ is insecure as a PRF.

(b) Show that G⇤ is a secure PRF if for every poly-bounded Q the following PRG is secure:

G0(k, s0, . . . , sQ�1) := (G(k, s0), . . . , G(k, sQ�1)) .

4.20 (A variant of the Even-Mansour cipher). Let M := {0, 1}m, K := {0, 1}n, and X :=
{0, 1}n+m. Consider the following cipher (E, D) defined over (K, M, X ) built from a permutation
⇡ : X ! X :

E(k, x) := (k k 0m)� ⇡(k k x) (4.43)

D(k, c) is defined analogously. Show that if we model ⇡ as an ideal permutation ⇧, then for every
block cipher adversary A attacking (E, D) we have

BCicadv[A, E]  2Qic

|K| . (4.44)

Here Qic is the number of queries A makes to ⇧- and ⇧�1-oracles.

4.21 (Analysis of Salsa and ChaCha). In this exercise we analyze the Salsa and ChaCha
stream ciphers from Section 3.6 in the ideal permutation model. Let ⇡ : X ! X be a permutation,
where X = {0, 1}n+m. Let K := {0, 1}n and define the PRF F , which is defined over (K, {0, 1}m, X ),
as

F (k, x) := (k k x)� ⇡(k k x) . (4.45)
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This PRF is an abstraction of the PRF underlying the Salsa and ChaCha stream ciphers. Use
Exercise 4.20 to show that if we model ⇡ as an ideal permutation ⇧, then for every PRF adversary
A attacking F we have

PRFicadv[A, F ]  2Qic

|K| +
Q2

F

2|X | (4.46)

where QF is the number of queries that A makes to an F (k, ·) oracle and Qic is the number of

queries A makes to ⇧- and ⇧�1-oracles. In Salsa and ChaCha, QF is at most |X |1/4 so that
Q2

F
2|X | is

“negligible.”

4.22 (Alternative proof of Theorem 4.6). Let X and Y be random variables as defined in
Exercise 3.14. Consider an adversary A in Attack Game 4.3 that makes at most Q queries to its
challenger. Show that PFadv[A, X ]  �[X,Y]  Q2/2N .

4.23 (A one-sided switching lemma). Following up on the previous exercise, one can use
part (b) of Exercise 3.14 to get a “one sided” version of Theorem 4.6, which can be useful in
some settings. Consider an adversary A in Attack Game 4.3 that makes at most Q queries to its
challenger. Let W0 and W1 be as defined in that game: W0 is the event that A outputs 1 when
probing a random permutation, and W1 is the event that A outputs 1 when probing a random
function. Assume Q2 < N . Show that Pr[W0]  ⇢[X,Y] · Pr[W1]  2 Pr[W1].

4.24 (Parallel composition of PRFs). Just as we can compose PRGs in parallel, while main-
taining security (see Section 3.4.1), we can also compose PRFs in parallel, while maintaining secu-
rity.

Suppose we have a PRF F , defined over (K, X , Y). We want to model the situation where
an adversary is given n black boxes (where n � 1 is poly-bounded): the boxes either contain
F (k1, ·), . . . , F (kn, ·), where the ki are random (and independent) keys, or they contain f1, . . . , fn,
where the fi are random elements of Funs[X , Y], and the adversary should not be able to tell the
di↵erence.

A convenient way to model this situation is to consider the n-wise parallel composition of
F , which is a PRF F 0 whose key space is Kn, whose input space is {1, . . . , n} ⇥ X , and whose
output space is Y. Given a key k0 = (k1, . . . , kn), and an input x0 = (s, x), with s 2 {1, . . . , n} and
x 2 X , we define F 0(k0, x0) := F (ks, x).

Show that if F is a secure PRF, then so is F 0. In particular, show that for every PRF adver-
sary A, then exist a PRF adversary B, where B is an elementary wrapper around A, such that
PRFadv[A, F 0] = n · PRFadv[B, F ].

4.25 (Universal attacker on PRFs). Let F be a PRF defined over (K, X , Y) where |K| < |X |.
Let Q < |K|. Show that there is a PRF adversary A that runs in time proportional to Q, makes
one query to the PRF challenger, and has advantage

PRFadv[A, F ] �
�

�

�

�

Q

|K| �
Q

|X |
�

�

�

�

.
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Chapter 5

Chosen Plaintext Attack

This chapter focuses on the problem of securely encrypting several messages in the presence of an
adversary who eavesdrops, and who may even may influence the choice of some messages in order
to glean information about other messages. This leads us to the notion of semantic security against
a chosen plaintext attack.

5.1 Introduction

In Chapter 2, we focused on the problem of encrypting a single message. Now we consider the
problem of encrypting several messages. To make things more concrete, suppose Alice wants to use
a cipher to encrypt her files on some file server, while keeping her secret keys for the cipher stored
securely on her USB memory stick.

One possible approach is for Alice to encrypt each individual file using a di↵erent key. This
entails that for each file, she stores an encryption of that file on the file server, as well as a
corresponding secret key on her memory stick. As we will explore in detail in Section 5.2, this
approach will provide Alice will reasonable security, provided she uses a semantically secure cipher.
Now, although a file may be several megabytes long, a key for any practical cipher is just a few bytes
long. However, if Alice has many thousands of files to encrypt, she must store many thousands of
keys on her memory stick, which may not have su�cient storage for all these keys.

As we see, the above approach, while secure, is not very space e�cient, as it requires one key per
file. Faced with this problem, Alice may simply decide to encrypt all her files with the same key.
While more e�cient, this approach may be insecure. Indeed, if Alice uses a cipher that provides only
semantic security (as in Definition 2.3), this may not provide Alice with any meaningful security
guarantee, and may very well expose her to a realistic attack.

For example, suppose Alice uses the stream cipher E discussed in Section 3.2. Here, Alice’s key
is a seed s for a PRG G, and viewing a file m as a bit string, Alice encrypts m by computing the
ciphertext c := m��, where � consists of the first |m| bits of the “key stream” G(s). But if Alice
uses this same seed s to encrypt many files, an adversary can easily mount an attack. For example,
if an adversary knows some of the bits of one file, he can directly compute the corresponding bits
of the key stream, and hence obtain the corresponding bits of any file. How might an adversary
know some bits of a given file? Well, certain files, like email messages, contain standard header
information (see Example 2.6), and so if the adversary knows that a given ciphertext is an encryption
of an email, he can get the bits of the key stream that correspond to the location of the bits in this
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standard header. To mount an even more devastating attack, the adversary may try something even
more devious: he could simply send Alice a large email, say one megabyte in length; assuming that
Alice’s software automatically stores an encryption of this email on her server, when the adversary
snoops her file server, he can recover a corresponding one megabyte chunk of the key stream, and
now he decrypt any one megabyte file stored on Alice’s server! This email may even be caught in
Alice’s spam filter, and never actually seen by Alice, although her encryption software may very
well diligently encrypt this email along with everything else. This type of an attack is called a
chosen plaintext attack, because the adversary forces Alice to give him the encryption of one or
more plaintexts of his choice during his attack on the system.

Clearly, the stream cipher above is inadequate for the job. In fact, the stream cipher, as well
as any other deterministic cipher, should not be used to encrypt multiple files with the same key.
Why? Any deterministic cipher that is used to encrypt several files with the same key will su↵er
from an inherent weakness: an adversary will always be able to tell when two files are identical
or not. Indeed, with a deterministic cipher, if the same key is used to encrypt the same message,
the resulting ciphertext will always be the same (and conversely, for any cipher, if the same key
is used to encrypt two di↵erent messages, the resulting ciphertexts must be di↵erent). While this
type of attack is certainly not as dramatic as those discussed above, in which the adversary can
read Alice’s files almost at will, it is still a serious vulnerability. For example, while the discussion
in Section 4.1.4 about ECB mode was technically about encrypting a single message consisting of
many data blocks, it applies equally well to the problem of encrypting many single-block messages
under the same key.

In fact, it is possible for Alice to use a cipher to securely encrypt all of her files under a single,
short key, but she will need to use a cipher that is better suited to this task. In particular, because of
the above inherent weakness of any deterministic cipher, she will have to use a probabilistic cipher,
that is, a cipher that uses a probabilistic encryption algorithm, so that di↵erent encryptions of the
same plaintext under the same key will (generally) produce di↵erent encryptions. For her task, she
will want a cipher that achieves a level of security stronger than semantic security. The appropriate
notion of security is called semantic security against chosen plaintext attack. In Section 5.3 and the
sections following, we formally define this concept, look at some constructions based on semantically
secure ciphers, PRFs, and block ciphers, and look at a few case studies of “real world” systems.

While the above discussion motivated the topics in this chapter using the example of the “file
encryption” problem, one can also motivate these topics by considering the “secure network com-
munication” problem. In this setting, one considers the situation where Alice and Bob share a
secret key (or keys), and Alice wants to secretly transmit several of messages to Bob over an inse-
cure network. Now, if Alice can conveniently concatenate all of her messages into one long message,
then she can just use a stream cipher to encrypt the whole lot, and be done with it. However, for
a variety of technical reasons, this may not be feasible: if she wants to be able to transmit the
messages in an arbitrary order and at arbitrary times, then she is faced with a problem very similar
to that of the “file encryption” problem. Again, if Alice and Bob want to use a single, short key,
the right tool for the job is a cipher semantically secure against chosen plaintext attack.

We stress again that just like in Chapter 2, the techniques covered in this chapter do not provide
any data integrity, nor do they address the problem of how two parties come to share a secret key
to begin with. These issues are dealt with in coming chapters.
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5.2 Security against multi-key attacks

Consider again the “file encryption” problem discussed in the introduction to this chapter. Suppose
Alice chooses to encrypt each of her files under di↵erent, independently generated keys using a
semantically secure cipher. Does semantic security imply a corresponding security property in this
“multi-key” setting?

The answer to this question is “yes.” We begin by stating the natural security property corre-
sponding to semantic security in the multi-key setting.

Attack Game 5.1 (multi-key semantic security). For a given cipher E = (E, D), defined over
(K, M, C), and for a given adversary A, we define two experiments, Experiment 0 and Experiment 1.
For b = 0, 1, we define

Experiment b:

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ki  R K, ci  R E(ki, mib), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

MSSadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

We stress that in the above attack game, the adversary’s queries are adaptively chosen, in the
sense that for each i = 1, 2, . . . , the message pair (mi0, mi1) may be computed by the adversary in
some way that depends somehow on the previous encryptions c1, . . . , ci�1 output by the challenger.

Definition 5.1 (Multi-key semantic security). A cipher E is called multi-key semantically
secure if for all e�cient adversaries A, the value MSSadv[A, E ] is negligible.

As discussed in Section 2.3.5, Attack Game 5.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
MSSadv⇤[A, E ] as |Pr[b̂ = b]� 1/2|, and as usual, we have MSSadv[A, E ] = 2 · MSSadv⇤[A, E ].

As the next theorem shows, semantic security implies multi-key semantic security.

Theorem 5.1. If a cipher E is semantically secure, it is also multi-key semantically secure.

In particular, for every MSS adversary A that attacks E as in Attack Game 5.1, and which
makes at most Q queries to its challenger, there exists an SS adversary B that attacks E as in
Attack Game 2.1, where B is an elementary wrapper around A, such that

MSSadv[A, E ] = Q · SSadv[B, E ].

Proof idea. The proof is a straightforward hybrid argument, which is a proof technique we intro-
duced in the proofs of Theorem 3.2 and 3.3 (the reader is advised to review those proofs, if neces-
sary). In Experiment 0 of the MSS attack game, the challenger is encrypting m10, m20, . . . , mQ0.
Intuitively, since the key k1 is only used to encrypt the first message, and E is semantically secure,
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if we modify the challenger so that it encrypts m11 instead of m10, the adversary should not behave
significantly di↵erently. Similarly, we may modify the challenger so that it encrypts m21 instead
of m20, and the adversary should not notice the di↵erence. If we continue in this way, making a
total of Q modifications to the challenger, we end up in Experiment 1 of the MSS game, and the
adversary should not notice the di↵erence. 2

Proof. Suppose E = (E, D) is defined over (K, X , Y). Let A be an MSS adversary that plays Attack
Game 5.1 with respect to E , and which makes at most Q queries to its challenger in that game.

First, we introduce Q + 1 hybrid games, Hybrid 0, . . . , Hybrid Q, played between a challenger
and A. For j = 0, 1, . . . , Q, when A makes its ith query (mi0, mi1), the challenger in Hybrid j
computes its response ci as follows:

ki  R K
if i > j then ci  R E(ki, mi0) else ci  R E(ki, mi1).

Put another way, the challenger in Hybrid j encrypts

m11, . . . , mj1, m(j+1)0, . . . , mQ0,

generating di↵erent keys for each of these encryptions.
For j = 0, 1, . . . , Q, let pj denote the probability that A outputs 1 in Hybrid j. Observe that

p0 is equal to the probability that A outputs 1 in Experiment 0 of Attack Game 5.1 with respect
to E , while pQ is equal to the probability that A outputs 1 in Experiment 1 of Attack Game 5.1
with respect to E . Therefore, we have

MSSadv[A, E ] = |pQ � p0|. (5.1)

We next devise an SS adversary B that plays Attack Game 2.1 with respect to E , as follows:

First, B chooses ! 2 {1, . . . , Q} at random.

Then, B plays the role of challenger to A — when A makes its ith query (mi0, mi1), B
computes its response ci as follows:

if i > ! then
ki  R K, ci  R E(ki, mi0)

else if i = ! then
B submits (mi0, mi1) to its own challenger
ci is set to the challenger’s response

else // i < !
ki  R K, ci  R E(ki, mi1).

Finally, B outputs whatever A outputs.

Put another way, adversary B encrypts

m11, . . . , m(!�1)1,

generating its own keys for this purpose, submits (m!0, m!1) to its own encryption oracle, and
encrypts

m(!+1)0, . . . , mQ0,
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again, generating its own keys.
We claim that

MSSadv[A, E ] = Q · SSadv[B, E ]. (5.2)

To prove this claim, for b = 0, 1, let Wb be the event that B outputs 1 in Experiment b of its
attack game. If ! denotes the random number chosen by B, then the key observation is that for
j = 1, . . . , Q, we have:

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Equation (5.2) now follows from this observation, together with (5.1), via the usual telescoping sum
calculation:

SSadv[B, E ] = |Pr[W1]� Pr[W0]|

=
1

Q
·
�

�

�

�

Q
X

j=1

Pr[W1 | ! = j]�
Q
X

j=1

Pr[W0 | ! = j]

�

�

�

�

=
1

Q
· |pQ � p0|

=
1

Q
· MSSadv[A, E ],

and the claim, and hence the theorem, is proved. 2

Let us return now to the “file encryption” problem discussed in the introduction to this chapter.
What this theorem says is that if Alice uses independent keys to encrypt each of her files with a
semantically secure cipher, then an adversary who sees the ciphertexts stored on the file server will
e↵ectively learn about Alice’s files (except possibly some information about their lengths). Notice
that this holds even if the adversary plays an active role in determining the contents of some of the
files (e.g., by sending Alice an email, as discussed in the introduction).

5.3 Semantic security against chosen plaintext attack

Now we consider the problem that Alice faced in introduction of this chapter, where she wants
to encrypt all of her files on her system using a single, and hopefully short, secret key. The right
notion of security for this task is semantic security against chosen plaintext attack, or CPA
security for short.

Attack Game 5.2 (CPA security). For a given cipher E = (E, D), defined over (K, M, C), and
for a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1,
we define

Experiment b:

• The challenger selects k  R K.

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ci  R E(k, mib), and sends ci to the adversary.

188



• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

CPAadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

The only di↵erence between the CPA attack game and the MSS Attack Game 5.1 is that in the
CPA game, the same key is used for all encryptions, whereas in the MSS attack game, a di↵erent
key is chosen for each encryption. In particular, the adversary’s queries may adaptively chosen in
the CPA game, just as in the MSS game.

Definition 5.2 (CPA security). A cipher E is called semantically secure against chosen
plaintext attack, or simply CPA secure, if for all e�cient adversaries A, the value CPAadv[A, E ]
is negligible.

As in Section 2.3.5, Attack Game 5.2 can be recast as a “bit guessing” game, where instead
of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then runs
Experiment b against the adversary A; we define A’s bit-guessing advantage as CPAadv⇤[A, E ] :=
|Pr[b̂ = b]� 1/2|, and as usual, we have CPAadv[A, E ] = 2 · CPAadv⇤[A, E ].

Again, we return to the “file encryption” problem discussed in the introduction to this chapter.
What this definition says is that if Alice uses just a single key to encrypt each of her files with
a CPA secure cipher, then an adversary who sees the ciphertexts stored on the file server will
e↵ectively learn nothing about Alice’s files (except possibly some information about their lengths).
Again, notice that this holds even if the adversary plays an active role in determining the contents
of some of the files.

Example 5.1. Just to exercise the definition a bit, let us show that no deterministic cipher can
possibly satisfy the definition of CPA security. Suppose that E = (E, D) is a deterministic cipher.
We construct a CPA adversary A as follows. Let m, m0 be any two, distinct messages in the
message space of E . The adversary A makes two queries to its challenger: the first is (m, m0),
and the second is (m, m). Suppose c1 is the challenger’s response to the first query and c2 is the
challenger’s response to the second query. Adversary A outputs 1 if c1 = c2, and 0 otherwise.

Let us calculate CPAadv[A, E ]. On then one hand, in Experiment 0 of Attack Game 5.2,
the challenger encrypts m in responding to both queries, and so c1 = c2; hence, A outputs 1
with probability 1 in this experiment (this is precisely where we use the assumption that E is
deterministic). On the other hand, in Experiment 1, the challenger encrypts m0 and m, and so
c1 6= c2; hence, A outputs 1 with probability 0 in this experiment. It follows that CPAadv[A, E ] = 1.
2

Remark 5.1. Analogous to Theorem 5.1, it is straightforward to show that if a cipher is CPA-
secure, it is also CPA-secure in the multi-key setting. See Exercise 5.2. 2

5.4 Building CPA secure ciphers

In this section, we describe a number of ways of building ciphers that are semantically secure
against chosen plaintext attack. As we have already discussed in Example 5.1, any such cipher
must be probabilistic. We begin in Section 5.4.1 with a generic construction that combines any
semantically secure cipher with a pseudo-random function (PRF). The PRF is used to generate

189



“one time” keys. Next, in Section 5.4.2, we develop a probabilistic variant of the counter mode
cipher discussed in Section 4.4.4. While this scheme can be based on any PRF, in practice, the
PRF is usually instantiated with a block cipher. Finally, in Section 5.4.3, we present a cipher that
is constructed from a block cipher using a method called cipher block chaining (CBC) mode.

These last two constructions, counter mode and CBC mode, are called modes of operation of a
block cipher. Another mode of operation we have already seen in Section 4.1.4 is electronic codebook
(ECB) mode. However, because of the lack of security provided by this mode of operation, its is
seldom used. There are other modes of operations that provide CPA security, which we develop in
the exercises.

5.4.1 A generic hybrid construction

In this section, we show how to turn any semantically secure cipher E = (E, D) into a CPA secure
cipher E 0 using an appropriate PRF F .

The basic idea is this. A key for E 0 is a key k0 for F . To encrypt a single message m, a random
input x for F is chosen, and a key k for E is derived by computing k  F (k0, x). Then m is
encrypted using this key k: c  R E(k, m). The ciphertext is c0 := (x, c). Note that we need to
include x as part of c0 so that we can decrypt: the decryption algorithm first derives the key k by
computing k  F (k0, x), and then recovers m by computing m D(k, c).

For all of this to work, the output space of F must match the key space of E . Also, the input
space of F must be super-poly, so that the chances of accidentally generating the same x value
twice is negligible.

Now the details. Let E = (E, D) be a cipher, defined over (K, M, C). Let F be a PRF defined
over (K0, X , K); that is, the output space of F should be equal to the key space of E . We define a
new cipher E 0 = (E0, D0), defined over (K0, M, X ⇥ C), as follows:

• for k0 2 K0 and m 2M, we define

E0(k0, m) := x R X , k  F (k0, x), c R E(k, m)
output (x, c);

• for k0 2 K0 and c0 = (x, c) 2 X ⇥ C, we define

D0(k0, c0) := k  F (k0, x), m D(k, c)
output m.

It is easy to verify that E 0 is indeed a cipher, and is our first example of a probabilistic cipher.

Example 5.2. Before proving CPA security of E 0 let us first see the construction in action. Suppose
E is the one-time pad, namely E(k, m) := k�m where K = M = C = {0, 1}L. Applying the generic
hybrid construction above to the one-time pad results in the following popular cipher E0 = (E0, D0):

• for k0 2 K0 and m 2M, define

E0(k0, m) := x R X , output (x, F (k0, x)�m)

• for k0 2 K0 and c0 = (x, c) 2 X ⇥ C, define

D0(k0, c0) := output F (k0, x)� c
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CPA security of this cipher follows from the CPA security of the generic hybrid construction E 0

which is proved in Theorem 5.2 below. 2

Theorem 5.2. If F is a secure PRF, E is a semantically secure cipher, and N := |X | is super-poly,
then the cipher E 0 described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.2, and which makes at most Q queries to its challenger, there exists a PRF adversary
BF that attacks F as in Attack Game 4.2, and an SS adversary BE that attacks E as in the bit-
guessing version of Attack Game 2.1, where both BF and BE are elementary wrappers around
A, such that

CPAadv⇤[A, E 0]  Q2

2N
+ PRFadv[BF , F ] + Q · SSadv⇤[BE , E ]. (5.3)

Proof idea. Suppose we start with an adversary that plays the bit-guessing version of the CPA
attack game with respect to E 0. First, using the assumption that F is a PRF, we can e↵ectively
replace F by a truly random function. Second, using the assumption that N is super-poly, we argue
that except with negligible probability, no two x values are ever the same. But in this scenario, the
challenger’s keys are now all independently generated, and so the challenger is really playing the
same role as the challenger in the bit-guessing version of Attack Game 5.1. Therefore, we can use
the assumption that E is semantically secure, and hence (by Theorem 5.1) multi-key semantically
secure, to argue that the adversary’s advantage in the original CPA attack game must be negligible.
2

Proof. Let A be an e�cient CPA adversary that attacks E 0 as in the bit-guessing version of Attack
Game 5.2. Assume that A makes at most Q queries to its challenger. Our goal is to show that
CPAadv⇤[A, E 0] is negligible, assuming that F is a secure PRF, that N is super-poly, and that E is
semantically secure.

The basic strategy of the proof is as follows. First, we define Game 0 to be the game played
between A and the challenger in the bit-guessing version of Attack Game 5.2 with respect to E 0.
We then define several more games: Game 1, Game 2, and Game 3. Each of these games is played
between A and a di↵erent challenger; moreover, as we shall see, Game 3 is equivalent to the bit-
guessing version of Attack Game 5.1 with respect to E . In each of these games, b denotes the
random bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3,
we define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ] � Pr[Wj�1]| is negligible; moreover, from the assumption that E is semantically secure,
and from Theorem 5.1, it will follow that |Pr[W3] � 1/2| is negligible; from this, it follows that
CPAadv⇤[A, E 0] := |Pr[W0]� 1/2| is negligible.

Game 0. Let us begin by giving a detailed description of the challenger in Game 0 that is convenient
for our purposes:

b R {0, 1}
k0  R K0

for i 1 to Q do
xi  R X
ki  F (k0, xi)

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.
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By construction, we have

CPAadv⇤[A, E 0] =
�

�

�

Pr[W0]� 1/2
�

�

�

, (5.4)

Game 1. Next, we play our “PRF card,” replacing F (k0, ·) by a truly random function f 2
Funs[X , K]. The challenger in this game looks like this:

b R {0, 1}
f  R Funs[X , K]
for i 1 to Q do

xi  R X
ki  f(xi)

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

We claim that
|Pr[W1]� Pr[W0]| = PRFadv[BF , F ], (5.5)

where BF is an e�cient PRF adversary; moreover, since we are assuming that F is a secure PRF,
it must be the case that PRFadv[BF , F ] is negligible.

The design of BF is naturally suggested by the syntax of Games 0 and 1. If f 2 Funs[X , K]
denotes the function chosen by its challenger in Attack Game 4.2 with respect to F , adversary BF

runs as follows:

First, BF makes the following computations:

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R f(xi).

Here, BF obtains the value f(xi) by querying its own challenger with xi.

Next, adversary BF plays the role of challenger to A; specifically, when A makes its ith
query (mi0, mi1), adversary BF computes

ci  R E(ki, mib)

and sends (xi, ci) to A.

Eventually, A halts and outputs a bit b̂, at which time adversary BF halts and outputs
1 if b̂ = b, and outputs 0 otherwise.

See Fig. 5.1 for a picture of adversary BF . As usual, �(x, y) is defined to be 1 if x = y, and 0
otherwise.

Game 2. Next, we use our “faithful gnome” idea (see Section 4.4.2) to implement the random
function f . Our “gnome” has to keep track of the inputs to f , and detect if the same input is used
twice. In the following logic, our gnome uses a truly random key as the “default” value for ki, but
over-rides this default value if necessary, as indicated in the line marked (⇤):
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PRF Challenger

ki

b
R {0, 1}

mi0,mi1

ci
R E(ki,mib)

b̂

�(b̂, b)

xi
R X

xi, ci

BF

A

Figure 5.1: Adversary BF in the proof of Theorem 5.2

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R K

(⇤) if xi = xj for some j < i then ki  kj

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

As this is a faithful implementation of the random function f , we have

Pr[W2] = Pr[W1]. (5.6)

Game 3. Next, we make our gnome “forgetful,” simply dropping the line marked (⇤) in the
previous game:

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R K

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.
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To analyze the quantity |Pr[W3] � Pr[W2]|, we use the Di↵erence Lemma (i.e., Theorem 4.7).
To this end, we view Games 2 and 3 as operating on the same underlying probability space: the
random choices made by the adversary and the challenger are identical in both games — all that
di↵ers is the rule used by the challenger to compute its responses. In particular, the variables xi

are identical in both games. Define Z to be the event that xi = xj for some i 6= j. Clearly, Games 2
and 3 proceed identically unless Z occurs; in particular, W2^ Z̄ occurs if and only if W3^ Z̄ occurs.
Applying the Di↵erence Lemma, we therefore have

|Pr[W3]� Pr[W2]|  Pr[Z]. (5.7)

Moreover, it is easy to see that

Pr[Z]  Q2

2N
, (5.8)

since Z is the union of less that Q2/2 events, each of which occurs with probability 1/N .

Observe that in Game 3, di↵erent, independent encryption keys ki are used to encrypt each
message. So next, we play our “semantic security card,” claiming that

|Pr[W3]� 1/2| = MSSadv⇤[B̄E , E ], (5.9)

where B̄E is an e�cient adversary that plays the bit-guessing version of Attack Game 5.1 with
respect to E , making at most Q queries to its challenger in that game.

The design of B̄E is naturally suggested by the syntactic form of Game 3. It works as follows:

Playing the role of challenger to A, upon receiving the ith query (mi0, mi1) from A,
adversary B̄E submits (mi0, mi1) to its own challenger, obtaining a ciphertext ci 2 C;
then B̄E selects xi at random from X , and sends (xi, ci) to A in response to the latter’s
query.

When A finally outputs a bit b̂, B̄E outputs this same bit.

See Fig. 5.2 for a picture of adversary B̄E .
It is evident from the construction (and (2.12)) that (5.9) holds. Moreover, by Theorem 5.1, we

have
MSSadv⇤[B̄E , E ] = Q · SSadv⇤[BE , E ], (5.10)

where BE is an e�cient adversary playing the bit-guessing version of Attack Game 2.1 with respect
to E .

Putting together (5.4) through (5.10), we obtain (5.3). Also, one can check that the running
times of both BF and BE are roughly the same as that of A; indeed, they are elementary wrappers
around A, and (5.3) holds without assuming that A is e�cient. 2

While the above proof was a bit long, we hope the reader agrees that it was in fact quite natural,
and that all of the steps were fairly easy to follow. Also, this proof illustrates how one typically
employs more than one security assumption in devising a security proof as a sequence of games.

Remark 5.2. We briefly mention that the hybrid construction E 0 in Theorem 5.2 is CPA secure
even if the PRF F used in the construction is only weakly secure (as in Definition 4.3). To prove
Theorem 5.2 under this weaker assumption observe that in both Games 0 and 1 the challenger only
evaluates the PRF at random points in X . Therefore, the adversary’s advantage in distinguishing
Games 0 and 1 is bounded even if F is only weakly secure. 2
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mi0,mi1

b̂

MSS Challenger

mi0,mi1

ci

xi
R X

xi, ci

A

B̄E

Figure 5.2: Adversary B̄E in the proof of Theorem 5.2

5.4.2 Counter mode

We can build a CPA secure cipher directly out of a secure PRF, as follows. Suppose F is a PRF
defined over (K, X , Y). We shall assume that X = {0, . . . , N � 1}, and that Y = {0, 1}n.

For any poly-bounded ` � 1, we define a cipher E = (E, D), with key space K, message space
Y`, and ciphertext space X ⇥ Y`, as follows:

• for k 2 K and m 2 Y`, with v := |m|, we define

E(k, m) :=
x R X
compute c 2 Yv as follows:

for j  0 to v � 1 do
c[j] F (k, x + j mod N)�m[j]

output (x, c);

• for k 2 K and c0 = (x, c) 2 X ⇥ Y`, with v := |c|, we define

D(k, c0) :=
compute m 2 Yv as follows:

for j  0 to v � 1 do
m[j] F (k, x + j mod N)� c[j]

output m.
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This cipher is much like the stream cipher one would get by building a PRG out of F using
the construction in Section 4.4.4. The di↵erence is that instead of using a fixed sequence of inputs
to F to derive a key stream, we use a random starting point, which we then increment to obtain
successive inputs to F . The x component of the ciphertext is typically called an initial value, or
IV for short.

In practice, F is typically implemented using the encryption function of a block cipher, and
X = Y = {0, 1}n, where we naturally view n-bit strings as numbers in the range 0, . . . , 2n � 1. As
it happens, the decryption function of the block cipher is not needed at all in this construction.

It is easy to verify that E is indeed a (probabilistic) cipher. Also, note that the message space
of E is variable length, and that for the purposes of defining CPA security using Attack Game 5.2,
the length of a message m 2 Y` is its natural length |m|.
Theorem 5.3. If F is a secure PRF and N is super-poly, then for any poly-bounded ` � 1, the
cipher E described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E as in Attack Game 5.2, and which
makes at most Q queries to its challenger, there exists a PRF adversary B that attacks F as in
Attack Game 4.2, where B is an elementary wrapper around A, such that

CPAadv⇤[A, E ]  2Q2`

N
+ PRFadv[B, F ]. (5.11)

Proof idea. Suppose we start with an adversary that plays the CPA attack game with respect to
E . First, using the assumption that F is a PRF, we can e↵ectively replace F by a truly random
function f . Second, using the assumption that N is super-poly, and the fact that each IV is chosen
at random, we can argue that except with negligible probability, the challenger never evaluates f
at the same point twice. But in this case, the challenger is e↵ectively encrypting each message
using an independent one-time pad, and so we can conclude that the adversary’s advantage in the
original CPA attack game is negligible. 2

Proof. Let A be an e�cient adversary that plays Attack Game 5.2 with respect to E , and which
makes at most Q queries to its challenger in that game. We want to show that CPAadv[A, E ] is
negligible, assuming that F is a secure PRF and that N is super-poly. We shall work with the
bit-guessing version of Attack Game 5.2 (again, see Section 2.3.5).

The basic strategy of the proof is as follows. First, we define Game 0 to be the game played
between A and the challenger in the bit-guessing version of Attack Game 5.2 with respect to
E . We then define several more games: Game 1, Game 2, and Game 3. Each of these games
is played between A and a di↵erent challenger. In each of these games, b denotes the random
bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3, we
define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ]�Pr[Wj�1]| is negligible; moreover, it will be evident that Pr[W3] = 1/2, from which it will
follow that CPAadv⇤[A, E ] := |Pr[W0]� 1/2| is negligible.

Game 0. We may describe the challenger in Game 0 as follows:
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b R {0, 1}
k  R K
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  F (k, x0
ij)

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 Yvi as follows:

for j  0 to vi � 1 do: ci[j] yij �mib[j]
send (xi, ci) to the adversary.

By construction, we have we have

CPAadv⇤[A, E ] =
�

�

�

Pr[W0]� 1/2
�

�

�

. (5.12)

Game 1. Next, we play our “PRF card,” replacing F (k, ·) by a truly random function f 2
Funs[X , Y]. The challenger in this game looks like this:

b R {0, 1}
f  R Funs[X , Y]
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  f(x0
ij)

· · ·
We have left out part of the code for the challenger, as it will not change in any of our games.

We claim that
|Pr[W1]� Pr[W0]| = PRFadv[B, F ], (5.13)

where B is an e�cient adversary; moreover, since we are assuming that F is a secure PRF, it must
be the case that PRFadv[B, F ] is negligible. This is hopefully (by now) a routine argument, and
we leave the details of this to the reader.

Game 2. Next, we use our “faithful gnome” idea to implement the random function f . In
describing the logic of our challenger in this game, we use the standard lexicographic ordering on
pairs of indices (i, j); that is, (i0, j0) < (i, j) if and only if

i0 < i or i0 = i and j0 < j.

In the following logic, our “gnome” uses a truly random value as the “default” value for each yij ,
but over-rides this default value if necessary, as indicated in the line marked (⇤):
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b R {0, 1}
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  R Y
(⇤) if x0

ij = x0
i0j0 for some (i0, j0) < (i, j) then yij  yi0j0

· · ·
As this is a faithful implementation of the random function f , we have

Pr[W2] = Pr[W1]. (5.14)

Game 3. Now we make our gnome “forgetful,” dropping the line marked (⇤) in the previous game:

b R {0, 1}
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  R Y
· · ·

To analyze the quantity |Pr[W3] � Pr[W2]|, we use the Di↵erence Lemma (i.e., Theorem 4.7).
To this end, we view Games 2 and 3 as operating on the same underlying probability space: the
random choices made by the adversary and the challenger are identical in both games — all that
di↵ers is the rule used by the challenger to compute its responses. In particular, the variables x0

ij
are identical in both games. Define Z to be the event that x0

ij = x0
i0j0 for some (i, j) 6= (i0, j0).

Clearly, Games 2 and 3 proceed identically unless Z occurs; in particular, W2 ^ Z̄ occurs if and
only if W3 ^ Z̄ occurs. Applying the Di↵erence Lemma, we therefore have

|Pr[W3]� Pr[W2]|  Pr[Z]. (5.15)

We claim that

Pr[Z]  2Q2`

N
. (5.16)

To prove this claim, we may assume that N � 2` (this should anyway generally hold, since we are
assuming that ` is poly-bounded and N is super-poly). Observe that Z occurs if and only if

{xi, . . . , xi + `� 1} \ {xi0 , . . . , xi0 + `� 1} 6= ;

for some pair of indices i and i0 with i 6= i0 (and arithmetic is done mod N). Consider any fixed
such pair of indices. Conditioned on any fixed value of xi, the value xi0 is uniformly distributed
over {0, . . . , N � 1}, and the intervals overlap if and only if

xi0 2 {xi + j : �` + 1  j  `� 1},

which happens with probability (2`� 1)/N . The inequality (5.16) now follows.
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Finally, observe that in Game 3 the yij values are uniformly and independently distributed over
Y, and thus the challenger is essentially using independent one-time pads to encrypt. In particular,
it is easy to see that the adversary’s output in this game is independent of b. Therefore,

Pr[W3] = 1/2. (5.17)

Putting together (5.12) through (5.17), the theorem follows. 2

Remark 5.3. One can also view randomized counter mode as a special case of the generic hybrid
construction in Section 5.4.1. See Exercise 5.4. 2

Case study: AES counter mode

The IPsec protocol uses a particular variants of AES counter mode, as specified in RFC 3686.
Recall that AES uses a 128 bit block. Rather than picking a random 128-bit IV for every message,
RFC 3686 picks the IV as follows:

• The most significant 32 bits are chosen at random at the time that the secret key is generated
and are fixed for the life of the key. The same 32 bit value is used for all messages encrypted
using this key.

• The next 64 bits are chosen at random in {0, 1}64.
• The least significant 32 bits are set to the number 1.

This resulting 128-bit IV is used as the initial value of the counter. When encryption a message
the least significant 32 bits are incremented by one for every block of the message. Consequently,
the maximum message length that can be encrypted is 232 AES blocks or 236 bytes.

With this choice of IV the decryptor knows the 32 most significant bits of the IV as well as
the 32 least significant bits. Hence, only 64 bits of the IV need to be sent with the ciphertext.

The proof of Theorem 5.3 can be adapted to show that this method of choosing IVs is secure.
The slight advantage of this method over picking a random 128-bit IV is that the resulting ciphertext
is a little shorter. A random IV forces the encryptor to include all 128 bits in the ciphertext. With
the method of RFC 3686 only 64 bits are needed, thus shrinking the ciphertext by 8 bytes.

5.4.3 CBC mode

An historically important encryption method is to use a block cipher in cipher block chaining (CBC)
mode. This method is used in older versions of the TLS protocol (e.g., TLS 1.0). It is inferior to
counter mode encryption as discussed in the next section.

Suppose E = (E, D) is a block cipher defined over (K, X ), where X = {0, 1}n. Let N := |X | =
2n. For any poly-bounded ` � 1, we define a cipher E 0 = (E0, D0), with key space K, message
space X`, and ciphertext space X`+1 \ X 0; that is, the ciphertext space consists of all nonempty
sequences of at most ` + 1 data blocks. Encryption and decryption are defined as follows:

• for k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
compute c 2 X v+1 as follows:

c[0] R X
for j  0 to v � 1 do

c[j + 1] E(k, c[j]�m[j])
output c;
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• for k 2 K and c 2 X`+1 \ X 0, with v := |c|� 1, we define

D0(k, c) :=
compute m 2 X v as follows:

for j  0 to v � 1 do
m[j] D(k, c[j + 1])� c[j]

output m.

See Fig. 5.3 for an illustration of the encryption and decryption algorithm in the case |m| = 3.
Here, the first component c[0] of the ciphertext is also called an initial value, or IV. Note that
unlike the counter mode construction in Section 5.4.2, in CBC mode, we must use a block cipher,
as we actually need to use the decryption algorithm of the block cipher.

It is easy to verify that E 0 is indeed a (probabilistic) cipher. Also, note that the message space
of E is variable length, and that for the purposes of defining CPA security using Attack Game 5.2,
the length of a message m 2 X` is its natural length |m|.
Theorem 5.4. If E = (E, D) is a secure block cipher defined over (K, X ), and N := |X | is
super-poly, then for any poly-bounded ` � 1, the cipher E 0 described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.2, and which makes at most Q queries to its challenger, there exists BC adversary B
that attacks E as in Attack Game 4.1, where B is an elementary wrapper around A, such that

CPAadv⇤[A, E 0]  Q2`2

N
+ BCadv[B, E ]. (5.18)

Proof idea. The basic idea of the proof is very similar to that of Theorem 5.3. We start with an
adversary that plays the CPA attack game with respect to E 0. We then replace E by a truly random
function f . Then we argue that except with negligible probability, the challenger never evaluates f
at the same point twice. But then what the adversary sees is nothing but a bunch of random bits,
and so learns nothing at all about the message being encrypted. 2

Proof. Let A be an e�cient CPA adversary that attacks E 0 as in the bit-guessing version of Attack
Game 5.2. Assume that A makes at most Q queries to its challenger in that game. We want to
show that CPAadv⇤[A, E 0] is negligible, assuming that E is a secure block cipher and that N is
super-poly. Under these assumptions, by Corollary 4.5, the encryption function E is a secure PRF,
defined over (K, X , X ).

As usual, we define a sequence of games: Game 0, Game 1, Game 2, Game 3. Each of these
games is played between A and a challenger. The challenger in Game 0 is the one from the bit-
guessing version of Attack Game 5.2 with respect to E 0. In each of these games, b denotes the
random bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3,
we define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ]�Pr[Wj�1]| is negligible; moreover, it will be evident that Pr[W3] = 1/2, from which it will
follow that |Pr[W0]� 1/2| is negligible.

Here we go!

Game 0. We may describe the challenger in Game 0 as follows:
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� ��

m[0] m[1] m[2]

c[1] c[2] c[3]c[0]

E(k, ·) E(k, ·) E(k, ·)

(a) encryption

� ��

m[0] m[1] m[2]

c[1] c[2] c[3]c[0]

D(k, ·) D(k, ·) D(k, ·)

(b) decryption

Figure 5.3: Encryption and decryption for CBC mode with ` = 3
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b R {0, 1}, k  R K
upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:

compute ci 2 X vi+1 as follows:
ci[0] R X
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] E(k, xij)

send ci to the adversary.

By construction, we have

CPAadv⇤[A, E 0] =
�

�

�

Pr[W0]� 1/2
�

�

�

. (5.19)

Game 1. We now play the “PRF card,” replacing E(k, ·) by a truly random function f 2
Funs[X , X ]. Our challenger in this game looks like this:

b R {0, 1}, f  R Funs[X , X ]

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X vi+1 as follows:

ci[0] R X
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] f(xij)

send ci to the adversary.

We claim that
|Pr[W1]� Pr[W0]| = PRFadv[B, E], (5.20)

where B is an e�cient adversary; moreover, since we are assuming that E is a secure block cipher,
and that N is super-poly, it must be the case that PRFadv[B, E] is negligible. This is hopefully
(by now) a routine argument, and we leave the details of this to the reader.

Game 2. The next step in this dance should by now be familiar: we implement f using a faithful
gnome. We do so by introducing random variables yij which represent the “default” values for ci[j],
which get over-ridden if necessary in the line marked (⇤) below:

b R {0, 1}
set yij  R X for i = 1, . . . , Q and j = 0, . . . , `

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X vi+1 as follows:

ci[0] yi0
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] yi(j+1)

(⇤) if xij = xi0j0 for some (i0, j0) < (i, j) then ci[j + 1] ci0 [j0 + 1]
send ci to the adversary.
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We clearly have
Pr[W2] = Pr[W1]. (5.21)

Game 3. Now we make gnome forgetful, removing the check in the line marked (⇤):
b R {0, 1}
set yij  R X for i = 1, . . . , Q and j = 0, . . . , `

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X vi+1 as follows:

ci[0] yi0
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] R yi(j+1)

send ci to the adversary.

To analyze the quantity |Pr[W3] � Pr[W2]|, we use the Di↵erence Lemma (i.e., Theorem 4.7).
To this end, we view Games 2 and 3 as operating on the same underlying probability space: the
random choices made by the adversary and the challenger are identical in both games — all that
di↵ers is the rule used by the challenger to compute its responses.

We define Z to be the event that xij = xi0j0 in Game 3. Note that the event Z is defined in
terms of the xij values in Game 3. Indeed, the xij values may not be computed in the same way in
Games 2 and 3, and so we have explicitly defined the event Z in terms of their values in Game 3.
Nevertheless, it is clear that Games 2 and 3 proceed identically unless Z occurs; in particular,
W2 ^ Z̄ occurs if and only if W3 ^ Z̄ occurs. Applying the Di↵erence Lemma, we therefore have

|Pr[W3]� Pr[W2]|  Pr[Z]. (5.22)

We claim that

Pr[Z]  Q2`2

2N
. (5.23)

To prove this, let Coins denote the random choices made by A. Observe that in Game 3, the values

Coins , b, yij (i = 1, . . . Q, j = 0, . . . , `)

are independently distributed.
Consider any fixed index i = 1, . . . , Q. Let us condition on any fixed values of Coins, b, and

yi0j for i0 = 1, . . . , i � 1 and j = 0, . . . , `. In this conditional probability space, the values of
mi0, mi1, and vi are completely determined, as are the values vi0 and xi0j for i0 = 1, . . . , i� 1 and
j = 0, . . . , vi0�1; however, the values of yi0, . . . , yi` are still uniformly and independently distributed
over X . Moreover, as xij = yij �mib[j] for j = 0, . . . , vi� 1, it follows that these xij values are also
uniformly and independently distributed over X . Thus, for any fixed index j = 0, . . . , vi � 1, and
any fixed indices i0 and j0, with (i0, j0) < (i, j), the probability that xij = xi0j0 in this conditional
probability space is 1/N . The bound (5.23) now follows from an easy calculation.

Finally, we claim that
Pr[W3] = 1/2. (5.24)

This follows from the fact that

Coins , b, yij (i = 1, . . . Q, j = 0, . . . , `)
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are independently distributed, and the fact that the adversary’s output b̂ is a function of

Coins, yij (i = 1, . . . Q, j = 0, . . . , `).

From this, we see that b̂ and b are independent, and so (5.24) follows immediately.
Putting together (5.19) through (5.24), we have

CPAadv⇤[A, E 0]  Q2`2

2N
+ PRFadv[B, E].

By Theorem 4.4, we have

�

�

�

BCadv[B, E ]� PRFadv[B, E]
�

�

�

 Q2`2

2N
,

and the theorem follows. 2

5.4.4 Case study: CBC padding in TLS 1.0

Let E = (E, D) be a block cipher with domain X . Our description of CBC mode encryption using E
assumes that messages to be encrypted are elements of X`. When the domain is X = {0, 1}128,
as in the case of AES, this implies that the length of messages to be encrypted must be a multiple
of 16 bytes. Since the length of messages in practice need not be a multiple of 16 we need a way
augment CBC to handle messages whose length is not necessarily a multiple of the block size.

Suppose we wish to encrypt a v-byte message m using AES in CBC mode when v is not
necessarily a multiple of 16. The first thing that comes to mind is to somehow pad the message m
so that its length in bytes is a multiple of 16. Clearly the padding function needs to be invertible
so that during decryption the padding can be removed.

The TLS 1.0 protocol defines the following padding function for encrypting a v-byte message
with AES in CBC mode: let p := 16 � (v mod 16), then append p bytes to the message m where
the content of each byte is value p� 1. For example, consider the following two cases:

• if m is 29 bytes long then p = 3 and the pad consists of the three bytes “222” so that the
padded message is 32 bytes long which is exactly two AES blocks.

• if the length of m is a multiple of the block size, say 32 bytes, then p = 16 and the pad
consists of 16 bytes. The padded message is then 48 bytes long which is three AES blocks.

It may seem odd that when the message is a multiple of the block size we add a full dummy block at
the end. This is necessary so that the decryption procedure can properly remove the pad. Indeed,
it should be clear that this padding method is invertible for all input message lengths.

It is an easy fact to prove that every invertible padding scheme for CBC mode encryption built
from a secure block cipher gives a CPA secure cipher for messages of arbitrary length.

Padding in CBC mode can be avoided using a method called ciphertext stealing as long as
the plaintext is longer than a single block. The ciphertext stealing variant of CBC is the topic
of Exercise 5.15. When encrypting messages whose length is less than a block, say single byte
messages, there is still a need to pad.
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5.4.5 Concrete parameters and a comparison of counter and CBC modes

We conclude this section with a comparison of the counter and CBC mode constructions. We
assume that counter mode is implemented with a PRF F that maps n-bit blocks to n-bit blocks,
and that CBC is implemented with an n-bit block cipher. In each case, the message space consists
of sequences of at most ` n-bit data blocks. With the security theorems proved in this section, we
have the following bounds:

CPAadv⇤[A, Ectr]  2Q2`

2n
+ PRFadv[BF , F ],

CPAadv⇤[A, Ecbc]  Q2`2

2n
+ BCadv[BE , E ].

Here, A is any CPA adversary making at most Q queries to its challenger, ` is the maximum length
(in data blocks) of any one message. For the purposes of this discussion, let us simply ignore the
terms PRFadv[BF , F ] and BCadv[BE , E ].

One can immediately see that counter mode has a quantitative advantage. To make things more
concrete, suppose the block size is n = 128, and that each message is 1MB (223 bits) so that ` = 216

blocks. If we want to keep the adversary’s advantage below 2�32, then for counter mode, we can
encrypt up to Q = 239.5 messages, while for CBC we can encrypt only up to 232 messages. Once
Q message are encrypted with a given key, a fresh key must be generated and used for subsequent
messages. Therefore, with counter mode a single key can be used to securely encrypt many more
messages as compared with CBC.

Counter mode has several other advantages over CBC:

• Parallelism and pipelining. Encryption and decryption for counter mode is trivial to paral-
lelize, whereas encryption in CBC mode is inherently sequential (decryption in CBC mode
is parallelizable). Modes that support parallelism greatly improve performance when the un-
derlying hardware can execute many instructions in parallel as is often the case in modern
processors. More importantly, consider a hardware implementation of a single block cipher
round that supports pipelining, as in Intel’s implementation of AES-128 (page 132). Pipelin-
ing enables multiple encryption instructions to execute at the same time. A parallel mode
such as counter mode keeps the pipeline busy, where as in CBC encryption the pipeline is
mostly unused due to the sequential nature of this mode. As a result, counter mode encryp-
tion on Intel’s Haswell processors is about seven times faster than CBC mode encryption,
assuming the plaintext data is already loaded into L1 cache.

• Shorter ciphertext length. For very short messages, counter mode ciphertexts are significantly
shorter than CBC mode ciphertexts. Consider, for example, a one-byte plaintext (which arises
naturally when encrypting individual key strokes as in SSH). A counter mode ciphertext need
only be one block plus one byte: one block for the random IV plus one byte for the encrypted
plaintext. In contrast, a CBC ciphertext is two full blocks. This results in 15 redundant bytes
per CBC ciphertext assuming 128-bit blocks.

• Encryption only. CBC mode uses both algorithms E and D of the block cipher where as
counter mode uses only algorithm E. This can reduce an implementation code size.
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Remark 5.4. Both randomized counter mode and CBC require a random IV. Some crypto libraries
actually leave it to the higher-level application to supply the IV. This can lead to problems if the
higher-level applications do not take pains to ensure the IVs are su�ciently random. For example,
for counter mode, it is necessary that the IVs are su�ciently spread out, so that the corresponding
intervals do not overlap. In fact, this property is su�cient as well. In contrast, for CBC mode,
more is required: it is essential that IVs be unpredictable — see Exercise 5.11.

Leaving it to the higher-level application to supply the IV is actually an example of nonce-based
encryption, which we will explore in detail next, in Section 5.5. 2

5.5 Nonce-based encryption

All of the CPA-secure encryption schemes we have seen so far su↵er from ciphertext expansion:
ciphertexts are longer than plaintexts. For example, the generic hybrid construction in Section 5.4.1
generates ciphertexts (x, c), where x belongs to the input space of some PRF and c encrypts
the actual message; the counter mode construction in Section 5.4.2 generates ciphertexts of the
essentially same form (x, c); similarly, the CBC mode construction in Section 5.4.3 includes the IV
as a part of the ciphertext.

For very long messages, the expansion is not too bad. For example, with AES and counter
mode or CBC mode, a 1MB message results is a ciphertext that is just 16 bytes longer, which may
be a perfectly acceptable expansion rate. However, for messages of 16 bytes or less, ciphertexts are
at least twice as long as plaintexts.

The bad news is, some amount of ciphertext expansion is inevitable for any CPA-secure encryp-
tion scheme (see Exercise 5.9). The good news is, in certain settings, one can get by without any
ciphertext expansion. For example, suppose Alice and Bob are fully synchronized, so that Alice first
sends an encryption m1, then an encryption m2, and so on, while Bob first decrypts the encryption
of m1, and then decrypts the encryption of m2, and so on. For concreteness, assume Alice and Bob
are using the generic hybrid construction of Section 5.4.1. Recall that the encryption of message
mi is (xi, ci), where ci := E(ki, mi) and ki := F (xi). The essential property of the xi’s needed
to ensure security was simply that they are distinct. When Alice and Bob are fully synchronized
(i.e., ciphertexts sent by Alice reach Bob in-order), they simply have to agree on a fixed sequence
x1, x2, . . . , of distinct elements in the input space of the PRF F . For example, xi might simply be
the binary encoding of i.

This mode of operation of an encryption scheme does not really fit into our definitional frame-
work. Historically, there are two ways to modify the framework to allow for this type of operation.
One approach is to allow for stateful encryption schemes, where both the encryption and decryption
algorithms maintain some internal state that evolves with each application of the algorithm. In the
example of the previous paragraph, the state would just consist of a counter that is incremented
with each application of the algorithm. This approach requires encryptor and decryptor to be fully
synchronized, which limits its applicability, and we shall not discuss it further.

The second, and more popular, approach is called nonce-based encryption. Instead of main-
taining internal states, both the encryption and decryption algorithms take an additional input N ,
called a nonce. The syntax for nonce-based encryption becomes

c = E(k, m, N ),

where c 2 C is the ciphertext, k 2 K is the key, m 2M is the message, and N 2 N is the nonce.
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Moreover, the encryption algorithm E is required to be deterministic. Likewise, the decryption
syntax becomes

m = D(k, c, N ).

The intention is that a message encrypted with a particular nonce should be decrypted with the
same nonce — it is up to the application using the encryption scheme to enforce this. More formally,
the correctness requirement is that

D(k, E(k, m, N ), N ) = m

for all k 2 K, m 2M, and N 2 N . We say that such a nonce-based cipher E = (E, D) is defined
over (K, M, C, N ).

Intuitively, a nonce-based encryption scheme is CPA secure if it does not leak any useful in-
formation to an eavesdropper, assuming that no nonce is used more than once in the encryption
process — again, it is up to the application using the scheme to enforce this. Note that this require-
ment on how nonces are used is very weak, much weaker than requiring that they are unpredictable,
let alone randomly chosen.

We can readily formalize this notion of security by slightly tweaking our original definition of
CPA security.

Attack Game 5.3 (nonce-based CPA security). For a given cipher E = (E, D), defined
over (K, M, C, N ), and for a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define

Experiment b:

• The challenger selects k  R K.

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length, and
a nonce N i 2 N \ {N 1, . . . , N i�1}.

The challenger computes ci  E(k, mib, N i), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

nCPAadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

Note that in the above game, the nonces are completely under the adversary’s control, subject
only to the constraint that they are unique.

Definition 5.3 (nonce-based CPA security). A nonce-based cipher E is called semantically
secure against chosen plaintext attack, or simply CPA secure, if for all e�cient adversaries
A, the value nCPAadv[A, E ] is negligible.

As usual, as in Section 2.3.5, Attack Game 5.3 can be recast as a “bit guessing” game, and we
have nCPAadv[A, E ] = 2 · nCPAadv⇤[A, E ], where nCPAadv⇤[A, E ] := |Pr[b̂ = b]� 1/2| in a version
of Attack Game 5.3 where the challenger just chooses b at random.
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5.5.1 Nonce-based generic hybrid encryption

Let us recast the generic hybrid construction in Section 5.4.1 as a nonce-based encryption scheme.
As in that section, E is a cipher, which we shall now insist is deterministic, defined over (K, M, C),
and F is a PRF defined over (K0, X , K). We define the nonce-based cipher E 0, which is defined over
(K0, M, C, X ), as follows:

• for k0 2 K0, m 2M, and x 2 X , we define E0(k0, m, x) := E(k, m), where k := F (k0, x);

• for k0 2 K0, c 2 C, x 2 X , we define D0(k0, c) := D(k, c), where k := F (k0, x).

All we have done is to treat the value x 2 X as a nonce; otherwise, the scheme is exactly the same
as that defined in Section 5.4.1.

One can easily verify the correctness requirement for E 0. Moreover, one can easily adapt the
proof of Theorem 5.2 to prove that the following:

Theorem 5.5. If F is a secure PRF and E is a semantically secure cipher, then the cipher E 0

described above is a CPA secure cipher.

In particular, for every nCPA adversary A that attacks E 0 as in the bit-guessing version of
Attack Game 5.3, and which makes at most Q queries to its challenger, there exists a PRF
adversary BF that attacks F as in Attack Game 4.2, and an SS adversary BE that attacks E as
in the bit-guessing version of Attack Game 2.1, where both BF and BE are elementary wrappers
around A, such that

nCPAadv⇤[A, E 0]  PRFadv[BF , F ] + Q · SSadv⇤[BE , E ]. (5.25)

We leave the proof as an exercise for the reader. Note that the term Q2

2N in (5.3), which represent
the probability of a collision on the input to F , is missing from (5.25), simply because by definition,
no collisions can occur.

5.5.2 Nonce-based Counter mode

Next, we recast the counter-mode cipher from Section 5.4.2 to the nonce-based encryption setting.
Let us make a first attempt, by simply treating the value x 2 X in that construction as a nonce.

Unfortunately, this scheme cannot satisfy the definition of nonce-based CPA security. The
problem is, an attacker could choose two distinct nonces x1, x2 2 X , such that the intervals
{x1, . . . , x1 + ` � 1} and {x2, . . . , x2 + ` � 1} overlap (again, arithmetic is done mod N). In this
case, the security proof will break down; indeed, it is easy to mount a quite devastating attack, as
discussed in Section 5.1, since that attacker can essentially force the encryptor to re-use some of
the same bits of the “key stream”.

Fortunately, the fix is easy. Let us assume that ` divides N (in practice, both ` and N will be
powers of 2, so this is not an issue). Then we use as the nonce space {0, . . . , N/`�1}, and translate
the nonce N to the PRF input x := N `. It is easy to see that for any two distinct nonces N 1 and
N 2, for x1 := N 1` and x2 := N 2`, the intervals {x1, . . . , x1 + `� 1} and {x2, . . . , x2 + `� 1} do not
overlap.

With E modified in this way, we can easily adapt the proof of Theorem 5.3 to prove the following:

Theorem 5.6. If F is a secure PRF, then the nonce-based cipher E described above is CPA secure.
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In particular, for every nCPA adversary A that attacks E as in Attack Game 5.3, there exists
a PRF adversary B that attacks F as in Attack Game 4.2, where B is an elementary wrapper
around A, such that

nCPAadv⇤[A, E ]  PRFadv[B, F ]. (5.26)

We again leave the proof as an exercise for the reader.

5.5.3 Nonce-based CBC mode

Finally, we consider how to recast the CBC-mode encryption scheme in Section 5.4.3 as a nonce-
based encryption scheme. As a first attempt, one might simply try to view the IV c[0] as a nonce.
Unfortunately, this does not yield a CPA secure nonce-based encryption scheme. In the nCPA
attack game, the adversary could make two queries:

(m10, m11, N 1),
(m20, m21, N 2),

where
m10 = N 1 6= N 2 = m20, m11 = m21.

Here, all messages are one-block messages. In Experiment 0 of the attack game, the resulting
ciphertexts will be the same, whereas in Experiment 1, they will be di↵erent. Thus, we can
perfectly distinguish between the two experiments.

Again, the fix is fairly straightforward. The idea is to map nonces to pseudo-random IV’s by
passing them through a PRF. So let us assume that we have a PRF F defined over (K0, N , X ).
Here, the key space K0 and input space N of F may be arbitrary sets, but the output space X of
F must match the block space of the underlying block cipher E = (E, D), which is defined over
(K, X ). In the nonce-based CBC scheme E 0, the key space is K ⇥ K0, and in the encryption and
decryption algorithms, the IV is computed from the nonce N and key k0 as c[0] := F (k0, N ).

With these modifications, we can now prove the following variant of Theorem 5.4:

Theorem 5.7. If E = (E, D) is a secure block cipher defined over (K, X ), and N := |X | is
super-poly, and F is a secure PRF defined over (K0, N , X ), then for any poly-bounded ` � 1, the
nonce-based cipher E 0 described above is CPA secure.

In particular, for every nCPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.3, and which makes at most Q queries to its challenger, there exists BC adversary B
that attacks E as in Attack Game 4.1, and a PRF adversary BF that attacks F as in Attack
Game 4.2, where B and BF are elementary wrappers around A, such that

nCPAadv⇤[A, E 0]  Q2`2

N
+ PRFadv[BF , F ] + BCadv[B, E ]. (5.27)

Again, we leave the proof as an exercise for the reader. Note that in the above construction,
we may use the underlying block cipher E for the PRF F ; however, it is essential that independent
keys k and k0 are used (see Exercise 5.13).

5.6 A fun application: revocation schemes

To be written.
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5.7 Notes

Citations to the literature to be added.

5.8 Exercises

5.1 (Double encryption). Let E = (E, D) be a cipher. Consider the cipher E2 = (E2, D2), where
E2(k, m) = E(k, E(k, m)). One would expect that if encrypting a message once with E is secure
then encrypting it twice as in E2 should be no less secure. However, that is not always true.

(a) Show that there is a semantically secure cipher E such that E2 is not semantically secure.

(b) Prove that for every CPA secure ciphers E , the cipher E2 is also CPA secure. That is, show
that for every CPA adversary A attacking E2 there is a CPA adversary B attacking E with
about the same advantage and running time.

5.2. Generalize the definition of CPA-security to the multi-key setting, analogous to Definition 5.1.
Using a hybrid argument, prove that CPA-security implies CPA-security in the multi-key setting.

5.3. This exercise develops an alternative characterization of CPA security for a cipher E = (E, D),
defined over (K, M, C). As usual, we need to define an attack game between an adversary A and
a challenger. Initially, the challenger generates

b R {0, 1}, k  R K.

Then A makes a series of queries to the challenger. There are two types of queries:

Encryption: In an encryption query, A submits a message m 2M to the challenger, who responds
with a ciphertext c  R E(k, m). The adversary may make any (poly-bounded) number of
encryption queries.

Test: In a test query, A submits a pair of messages m0, m1 2M to the challenger, who responds
with a ciphertext c  R E(k, mb). The adversary is allowed to make only a single test query
(with any number of encryption queries before and after the test query).

At the end of the game, A outputs a bit b̂ 2 {0, 1}.
As usual, we define A’s advantage in the above attack game to be |Pr[b̂ = b] � 1/2|. We say

that E is Alt-CPA secure if this advantage is negligible for all e�cient adversaries.
Show that E is CPA secure if and only if E is Alt-CPA secure.

5.4. As mentioned in Remark 5.3, we can view randomized counter mode as a special case of the
generic hybrid construction in Section 5.4.1. To this end, let F be a PRF defined over (K, X , Y),
where X = {0, . . . , N � 1} and Y = {0, 1}n, where N is super-poly. For poly-bounded ` � 1,
consider the PRF F 0 defined over (K, X , Y`) as follows:

F 0(k, x) :=
⇣

F (k, x), F (k, x + 1 mod N), . . . , F (k, x + `� 1 mod N)
⌘

.

(a) Show that F 0 is a weakly secure PRF, as in Definition 4.3.
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(b) Using part (a) and Remark 5.2, give a short proof that randomized counter mode is CPA
secure.

5.5. Let E = (E, D) be a block cipher defined over (K, M⇥R). Consider the probabilistic cipher
E 0 = (E0, D0), where

E0(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output c
 

D0(k, c) :=
�

(m, r0) D(k, c), output m
 

This cipher is defined over (K, M, M ⇥R). Show that if E is a secure block cipher and 1/|R| is
negligible, then E 0 is CPA secure.

5.6 (pseudo-random ciphertext security). In Exercise 3.5, we developed a notion of security
called pseudo-random ciphertext security. This notion naturally extends to multiple ciphertexts.
For a cipher E = (E, D) defined over (K, M, C), we define two experiments: in Experiment 0
the challenger first picks a random key k  R K and then the adversary submits a sequence of
queries, where the ith query is a message mi 2M, to which the challenger responds with E(k, mi).
Experiment 1 is the same as Experiment 0 except that the challenger responds to the adversary’s
queries with random, independent elements of C. We say that E is psuedo-random multi-ciphertext
secure if no e�cient adversary can distinguish between these two experiments with a non-negligible
advantage.

(a) Consider the counter-mode construction in Section 5.4.2, based on a PRF F defined over
(K, X , Y), but with a fixed-length plaintext space Y` and a corresponding fixed-length ci-
phertext space X ⇥ Y`. Under the assumptions that F is a secure PRF, |X | is super-poly,
and ` is poly-bounded, show that this cipher is psuedo-random multi-ciphertext secure.

(b) Consider the CBC construction Section 5.4.3, based on a block cipher E = (E, D) defined over
(K, X ), but with a fixed-length plaintext space X ` and corresponding fixed-length ciphertext
space X `+1. Under the assumptions that E is a secure block cipher, |X | is super-poly, and `
is poly-bounded, show that this cipher is psuedo-random multi-ciphertext secure.

(c) Show that a psuedo-random multi-ciphertext secure cipher is also CPA secure.

(d) Give an example of a CPA secure cipher that is not psuedo-random multi-ciphertext secure.

5.7 (Deterministic CPA and SIV). We have seen that any cipher that is CPA secure must
be probabilistic, since for a deterministic cipher, an adversary can always see if the same message
is encrypted twice. We may define a relaxed notion of CPA security that says that this is the only
thing the adversary can see. This is easily done by placing the following restriction on the adversary
in Attack Game 5.2: for all indices i, j, we insist that mi0 = mj0 if and only if mi1 = mj1. We say
that a cipher is deterministic CPA secure if every e�cient adversary has negligible advantage
in this restricted CPA attack game. In this exercise, we develop a general approach for building
deterministic ciphers that are deterministic CPA secure.

Let E = (E, D) be a CPA-secure cipher defined over (K, M, C). We let E(k, m; r) denote running
algorithm E(k, m) with randomness r  R R (for example, if E implements counter mode or CBC
encryption then r is the random IV used by algorithm E). Let F be a secure PRF defined over
(K0, M, R). Define the deterministic cipher E 0 = (E0, D0), defined over (K ⇥K0, M, C) as follows:
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E0�(k, k0), m
�

:= E(k, m; F (k0, m)),
D0�(k, k0), c

�

:= D(k, c) .

Show that E 0 is deterministic CPA secure. This construction is known as the Synthetic IV (or
SIV) construction.

5.8 (Generic nonce-based encryption and nonce re-use resilience). In the previous exer-
cise, we saw how we could generically convert a probabilistic CPA-secure cipher into a deterministic
cipher that satisfies a somewhat weaker notion of security called deterministic CPA security.

(a) Show how to modify that construction so that we can convert any CPA-secure probabilistic
cipher into a nonce-based CPA-secure cipher.

(b) Show how to combine the two approaches to get a cipher that is nonce-based CPA secure,
but also satisfies the definition of deterministic CPA security if we drop the uniqueness re-
quirement on nonces.

Discussion: This is an instance of a more general security property called nonce re-use
resilience: the scheme provides full security if nonces are unique, and even if they are not,
a weaker and still useful security guarantee is provided.

5.9 (Ciphertext expansion vs. security). Let E = (E, D) be an encryption scheme messages
and ciphertexts are bit strings.

(a) Suppose that for all keys and all messages m, the encryption of m is the exact same length
as m. Show that (E, D) cannot be semantically secure under a chosen plaintext attack.

(b) Suppose that for all keys and all messages m, the encryption of m is exactly ` bits longer
than the length of m. Show an attacker that can win the CPA security game using ⇡ 2`/2

queries and advantage ⇡ 1/2. You may assume the message space contains more than ⇡ 2`/2

messages.

5.10 (Repeating ciphertexts). Let E = (E, D) be a cipher defined over (K, M, C). Assume that
there are at least two messages in M, that all messages have the same length, and that we can
e�ciently generate messages in M uniformly at random. Show that if E is CPA secure, then it is
infeasible for an adversary to make an encryptor generate the same ciphertext twice. The precise
attack game is as follows. The challenger chooses k 2 K at random and the adversary make a series
of queries; the ith query is a message mi, to which the challenger’ responds with ci  R E(k, mi).
The adversary wins the game if any two ci’s are the same. Show that if E is CPA secure, then every
e�cient adversary wins this game with negligible probability.

5.11 (Predictable IVs). Let us see why in CBC mode an unpredictable IV is necessary for CPA
security. Suppose a defective implementation of CBC encrypts a sequence of messages by always
using the last ciphertext block of the ith message as the IV for the (i+1)-st message. The TLS 1.0
protocol, used to protect Web tra�c, implements CBC encryption this way. Construct an e�cient
adversary that wins the CPA game against this implementation with advantage close to 1. We note
that the Web-based BEAST attack [?] exploits this defect to completely break CBC encryption in
TLS 1.0.
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5.12. Suppose the block cipher used for CBC encryption has a block size of n bits. Construct an
attacker that wins the CPA game against CBC that makes ⇡ 2n/2 queries to its challenger and
gains an advantage ⇡ 1/2. Your answer explains why CBC cannot be used with a block cipher that
has a small block size (e.g. n = 64 bits). This is one reason why AES has a block size of 128 bits.

5.13. Consider the nonce-based CBC scheme E 0 described in Section 5.5.3. Suppose that the nonce
space N is equal to block space X of the underlying block cipher E = (E, D), and the PRF F is just
the encryption algorithm E. If the two keys k and k0 in the construction are chosen independently,
the scheme is secure. Your task is to show that if only one key k is chosen, and other key k0 is just
set to k, then the scheme is insecure.

5.14. Suppose F is a PRF defined over (K, X ), and ` � 1 is poly-bounded.

(a) Consider the following PRG G : K ! X `. Let x0 be an arbitrary, fixed element of X . For
k 2 K, let G(k) := (x1, . . . , x`), where xi := F (k, xi�1) for i = 1, . . . , `. Show that G is a
secure PRG, assuming F is a secure PRF and that |X | is super-poly.

(b) Next, assume that X = {0, 1}n. We define a cipher E = (E, D), defined over (K, X `, X `+1),
as follows. Given a key k 2 K and a message (m1, . . . , m`) 2 X `, the encryption algorithm E
generates the ciphertext (c0, c1, . . . , c`) 2 X `+1 as follows: it chooses x0 2 X at random, and
sets c0 = x0; it then computes xi = F (k, xi�1) and ci = mi � xi for i = 1, . . . , `. Describe
the corresponding decryption algorithm D, and show that E is CPA secure, assuming F is a
secure PRF and that |X | is super-poly. Note: this construction is called output feedback
mode (or OFB).

5.15. One problem with CBC encryption is that messages need to be padded to a multiple of the
block length and sometimes a dummy block needs to be added. The following figure describes a
variant of CBC that eliminates the need to pad:

The method pads the last block with zeros if needed (a dummy block is never added), but the
output ciphertext contains only the shaded parts of C1, C2, C3, C4. Note that, ignoring the IV, the
ciphertext is the same length as the plaintext. This technique is called ciphertext stealing.

(a) Explain how decryption works.

(b) Can this method be used if the plaintext contains only one block?

5.16. Suppose that one block of a CBC-encrypted ciphertext is corrupted, and is then decrypted.
How many blocks of the decrypted plaintext are corrupted?

5.17 (Online ciphers). In practice there is a strong desire to encrypt one block of plaintext at
a time, outputting the corresponding block of ciphertext right away. This lets the system transmit
ciphertext blocks as soon as they are ready without having to wait until the entire message is
processed by the encryption algorithm.
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(a) Define a CPA-like security game that captures this method of encryption. Instead of forcing
the adversary to submit a complete pair of messages in every encryption query, the adversary
should be allowed to issue a query indicating the beginning of a message, then repeatedly
issue more queries containing message blocks, and finally issue a query indicating the end of a
message. Responses to these queries will include all ciphertext blocks that can be computed
given the information given.

(b) Show that randomized CBC encryption is not CPA secure in this model.

(c) Show that randomized counter mode is online CPA secure.

5.18. Suppose you are given an CBC encryption of a message m 2 X `. You do not know m, but
you are given � 2 X . Show how to modify the ciphertext to obtain a new ciphertext that decrypts
to m0, where m0[0] = m[0]�� and m0[i] = m[i] for i = 1, . . . , `� 1. That is, you can e↵ectively flip
any bit in the first block of the message, without a↵ecting any bits in any of the other blocks.

5.19. Let E = (E, D) be a CPA-secure cipher defined over (K, M, C). Show that appending
to a ciphertext additional data computed from the ciphertext does not damage CPA security.
Specifically, let g : C ! Y be some e�ciently computable function. Show that the following
modified cipher E 0 = (E0, D0) is CPA-secure:

E0(k, m) :=
�

c E(k, m), t g(c), output (c, t)
 

D0�k, (c, t)
�

:= D(k, c)
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Chapter 6

Message integrity

In previous chapters we focused on security against an eavesdropping adversary. The adversary
had the ability to eavesdrop on transmitted messages, but could not change messages en-route.
We showed that chosen plaintext security is the natural security property needed to defend against
such attacks.

In this chapter we turn our attention to active adversaries. We start with the basic question
of message integrity: Bob receives a message m from Alice and wants to convince himself that the
message was not modified en-route. We will design a mechanism that lets Alice compute a short
message integrity tag t for the message m and send the pair (m, t) to Bob, as shown in Fig. 6.1.
Upon receipt, Bob checks the tag t and rejects the message if the tag fails to verify. If the tag
verifies then Bob is assured that the message was not modified in transmission.

We emphasize that in this chapter the message itself need not be secret. Unlike previous
chapters, our goal here is not to conceal the message. Instead, we only focus on message integrity.
In Chapter 9 we will discuss the more general question of simultaneously providing message secrecy
and message integrity. There are many applications where message integrity is needed, but message
secrecy is not. We give two examples.

Example 6.1. Consider the problem of delivering financial news or stock quotes over the Internet.
Although the news items themselves are public information, it is vital that no third party modify
the data on its way to the user. Here message secrecy is irrelevant, but message integrity is critical.
Our constructions will ensure that if user Bob rejects all messages with an invalid message integrity
tag then an attacker cannot inject modified content that will look legitimate. One caveat is that
an attacker can still change the order in which news reports reach Bob. For example, Bob might
see report number 2 before seeing report number 1. In some settings this may cause the user to
take an incorrect action. To defend against this, the news service may wish to include a sequence
number with each report so that the user’s machine can bu↵er reports and ensure that the user
always sees news items in the correct order. 2

In this chapter we are only concerned with attacks that attempt to modify data. We do not
consider Denial of Service (DoS) aattacks, where the attacker delays or prevents news items from
reaching the user. DoS attacks are often handled by ensuring that the network contains redundant
paths from the sender to the receiver so that an attacker cannot block all paths. We will not discuss
these issues here.

Example 6.2. Consider an application program — such as a word processor or mail client —
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Figure 6.1: Short message integrity tag added to messages

stored on disk. Although the application code is not secret (it might even be in the public domain),
its integrity is important. Before running the program the user wants to ensure that a virus did not
modify the code stored on disk. To do so, when the program is first installed, the user computes a
message integrity tag for the code and stores the tag on disk alongside the program. Then, every
time, before starting the application the user can validate this message integrity tag. If the tag is
valid, the user is assured that the code has not been modified since the tag was initially generated.
Clearly a virus can overwrite both the application code and the integrity tag. Nevertheless, our
constructions will ensure that no virus can fool the user into running unauthenticated code. As
in our first example, the attacker can swap two authenticated programs — when the user starts
application A he will instead be running application B. If both applications have a valid tag the
system will not detect the swap. The standard defense against this is to include the program name
in the executable file. That way, when an application is started the system can display to the user
an authenticated application name. 2

The question, then, is how to design a secure message integrity mechanism. We first argue the
following basic principle:

Providing message integrity between two communicating parties requires that the send-
ing party has a secret key unknown to the adversary.

Without a secret key, ensuring message integrity is not possible: the adversary has enough infor-
mation to compute tags for arbitrary messages of its choice — it knows how the message integrity
algorithm works and needs no other information to compute tags. For this reason all cryptographic
message integrity mechanisms require a secret key unknown to the adversary. In this chapter,
we will assume that both sender and receiver will share the secret key; later in the book, this
assumption will be relaxed.

We note that communication protocols not designed for security often use keyless integrity
mechanisms. For example, the Ethernet protocol uses CRC32 as its message integrity algorithm.
This algorithm, which is publicly available, outputs 32-bit tags embedded in every Ethernet frame.
The TCP protocol uses a keyless 16-bit checksum which is embedded in every packet. We emphasize
that these keyless integrity mechanisms are designed to detect random transmission errors, not
malicious errors. The argument in the previous paragraph shows that an adversary can easily defeat
these mechanisms and generate legitimate-looking tra�c. For example, in the case of Ethernet, the
adversary knows exactly how the CRC32 algorithm works and this lets him compute valid tags for
arbitrary messages. He can then tamper with Ethernet tra�c without being detected.
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6.1 Definition of a message authentication code

We begin by defining what is a message integrity system based on a shared secret key between the
sender and receiver. For historical reasons such systems are called Message Authentication Codes
or MACs for short.

Definition 6.1. A MAC system I = (S, V ) is a pair of e�cient algorithms, S and V , where S
is called a signing algorithm and V is called a verification algorithm. Algorithm S is used to
generate tags and algorithm V is used to verify tags.

• S is a probabilistic algorithm that is invoked as t R S(k, m), where k is a key, m is a message,
and the output t is called a tag.

• V is a deterministic algorithm that is invoked as r  V (k, m, t), where k is a key, m is a
message, t is a tag, and the output r us either accept or reject.

• We require that tags generated by S are always accepted by V ; that is, the MAC must satisfy
the following correctness property: for all keys k and all messages m,

Pr[V (k, m, S(k, m) ) = accept] = 1.

As usual, we say that keys lie in some finite key space K, messages lie in a finite message space
M, and tags lie in some finite tag space T . We say that I = (S, V ) is defined over (K, M, T ).

Fig. 6.1 illustrates how algorithms S and V are used for protecting network communications
between two parties. Whenever algorithm V outputs accept for some message-tag pair (m, t), we
say that t is a valid tag for m under key k, or that (m, t) is a valid pair under k. Naturally, we
want MAC systems where tags are as short as possible so that the overhead of transmitting the
tag is minimal.

We will explore a variety of MAC systems. The simplest type of system is one in which the
signing algorithm S is deterministic, and the verification algorithm is defined as

V (k, m, t) =

(

accept if S(k, m) = t,

reject otherwise.

We shall call such a MAC system a deterministic MAC system. One property of a deterministic
MAC system is that it has unique tags: for a given key k, and a given message m, there is a
unique valid tag for m under k. Not all MAC systems we explore will have such a simple design:
some have a randomized signing algorithm, so that for a given key k and message m, the output of
S(k, m) may be one of many possible valid tags, and the verification algorithm works some other
way. As we shall see, such randomized MAC systems are not necessary to achieve security, but
they can yield better e�ciency/security trade-o↵s.

Secure MACs. Next, we turn to describing what it means for a MAC to be secure. To construct
MACs that remain secure in a variety of applications we will insist on security in a very hostile
environment. Since most real-world systems that use MACs operate in less hostile settings, our
conservative security definitions will imply security for all these systems.

We first intuitively explain the definition and then motivate why this conservative definition
makes sense. Suppose an adversary is attacking a MAC system I = (S, V ). Let k be some
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Figure 6.2: MAC attack game (Attack Game 6.1)

randomly chosen MAC key, which is unknown to the attacker. We allow the attacker to request
tags t := S(k, m) for arbitrary messages m of its choice. This attack, called a chosen message
attack, enables the attacker to collect millions of valid message-tag pairs. Clearly we are giving
the attacker considerable power — it is hard to imagine that a user would be foolish enough to sign
arbitrary messages supplied by an attacker. Nevertheless, we will see that chosen message attacks
come up in real world settings. We refer to message-tag pairs (m, t) that the adversary obtains
using the chosen message attack as signed pairs.

Using the chosen message attack we ask the attacker to come up with an existential MAC
forgery. That is, the attacker need only come up with some new valid message-tag pair (m, t).
By “new”, we mean a message-tag pair that is di↵erent from all of the signed pairs. The attacker
is free to choose m arbitrarily; indeed, m need not have any special format or meaning and can be
complete gibberish.

We say that a MAC system is secure if even an adversary who can mount a chosen message
attack cannot create an existential forgery. This definition gives the adversary more power than it
typically has in the real world and yet we ask it to do something that will normally be harmless;
forging the MAC for a meaningless message seems to be of little use. Nevertheless, as we will
see, this conservative definition is very natural and enables us to use MACs for lots of di↵erent
applications.

More precisely, we define secure MACs using an attack game between a challenger and an
adversary A. The game is described below and in Fig. 6.2.

Attack Game 6.1 (MAC security). For a given MAC system I = (S, V ), defined over
(K, M, T ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith signing query is a
message mi 2 M. The challenger, given mi, computes a tag ti  R S(k, mi), and
gives ti to A.

• Eventually A outputs a candidate forgery pair (m, t) 2M⇥ T that is not among
the signed pairs, i.e.,

(m, t) 62 �(m1, t1), (m2, t2), . . .
 

.

We say that A wins the above game if (m, t) is a valid pair under k (i.e., V (k, m, t) = accept).
We define A’s advantage with respect to I, denoted MACadv[A, I], as the probability that A wins
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the game. Finally, we say that A is a Q-query MAC adversary if A issues at most Q signing
queries. 2

Definition 6.2. We say that a MAC system I is secure if for all e�cient adversaries A, the value
MACadv[A, I] is negligible.

In case the adversary wins Attack Game 6.1, the pair (m, t) it sends the challenger is called
an existential forgery. MAC systems that satisfy Definition 6.2 are said to be existentially
unforgeable under a chosen message attack.

In the case of a deterministic MAC system, the only way for A to win Attack Game 6.1 is to
produce a valid message-tag pair (m, t) for some new message m /2 {m1, m2, . . .}. Indeed, security
in this case just means that S is unpredictable, in the sense described in Section 4.1.1; that is, given
S(k, m1), S(k, m2), . . . , it is hard to predict S(k, m) for any m /2 {m1, m2, . . .}.

In the case of a randomized MAC system, our security definition captures a stronger property.
There may be many valid tags for a given message. Let m be some message and suppose the
adversary requests one or more valid tags t1, t2, . . . for m. Can the adversary produce a new valid
tag t0 for m? (i.e. a tag satisfying t0 /2 {t1, t2, . . .}). Our definition says that a valid pair (m, t0),
where t0 is new, is a valid existential forgery. Therefore, for a MAC to be secure it must be di�cult
for an adversary to produce a new valid tag t0 for a previously signed message m. This may seem like
an odd thing to require of a MAC. If the adversary already has valid tags for m, why should we care
if it can produce another one? As we will see in Chapter 9, our security definition, which prevents
the adversary from producing new tags on signed messages, is necessary for the applications we
have in mind.

Going back to the examples in the introduction, observe that existential unforgeability implies
that an attacker cannot create a fake news report with a valid tag. Similarly, the attacker cannot
tamper with a program on disk without invalidating the tag for the program. Note, however, that
when using MACs to protect application code, users must provide their secret MAC key every time
they want to run the application. This will quickly annoy most users. In Chapter 8 we will discuss
a keyless method to protect public application code.

To exercise the definition of secure MACs let us first see a few consequences of it. Let I = (S, V )
be a MAC defined over (K, M, T ), and let k be a random key in K.

Example 6.3. Suppose m1 and m2 are almost identical messages. Say m1 is a money transfer
order for $100 and m2 is a transfer order for $101. Clearly, an adversary who intercepts a valid
tag for m1 should not be able to deduce from it a valid tag for m2. A MAC system that satisfies
Definition 6.2 ensures this. To see why, suppose an adversary A can forge the tag for m2 given the
tag for m1. Then A can win Attack Game 6.1: it uses the chosen message attack to request a tag
for m1, deduces a forged tag t2 for m2, and outputs (m2, t2) as a valid existential forgery. Clearly
A wins Attack Game 6.1. Hence, existential unforgeability captures the fact that a tag for one
message m1 gives no useful information for producing a tag for another message m2, even when m2

is almost identical to m1. 2

Example 6.4. Our definition of secure MACs gives the adversary the ability to obtain the tag for
arbitrary messages. This may seem like giving the adversary too much power. In practice, however,
there are many scenarios where chosen message attacks are feasible. The reason is that the MAC
signer often does not know the source of the data being signed. For example, consider a backup
system that dumps the contents of disk to backup tapes. Since backup integrity is important, the
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system computes an integrity tag on every disk block that it writes to tape. The tag is stored on
tape along with the data block. Now, suppose an attacker writes data to a low security part of disk.
The attacker’s data will be backed up and the system will compute a tag over it. By examining
the resulting backup tape the attacker obtains a tag on his chosen message. If the MAC system is
secure against a chosen message attack then this does not help the attacker break the system. 2

Remark 6.1. Just as we did for other security primitives, one can generalize the notion of a secure
MAC to the multi-key setting, and prove that a secure MAC is also secure in the multi-key setting.
See Exercise 6.3. 2

6.1.1 Mathematical details

As usual, we give a more mathematically precise definition of a MAC, using the terminology defined
in Section 2.4. This section may be safely skipped on first reading.

Definition 6.3 (MAC). A MAC system is a pair of e�cient algorithms, S and V , along with
three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

As usual, � 2 Z�1 is a security parameter and ⇤ 2 Supp(P (�)) is a domain parameter. We require
that

1. K, M, and T are e�ciently recognizable.

2. K is e�ciently sampleable.

3. Algorithm S is a randomized algorithm that on input �, ⇤, k, m, where � 2 Z�1, ⇤ 2
Supp(P (�)), k 2 K�,⇤, and m 2 M�,⇤, runs in time bounded by a polynomial in �, and
outputs an element of T�,⇤.

4. Algorithm V is a deterministic algorithm that on input �, ⇤, k, m, t, where � 2 Z�1, ⇤ 2
Supp(P (�)), k 2 K�,⇤, m 2M�,⇤, and t 2 T�,⇤, runs in time bounded by a polynomial in �,
and outputs either accept or reject.

In defining security, we parameterize Attack Game 6.1 by the security parameter �, which is
given to both the adversary and the challenger. The advantage MACadv[A, I] is then a function
of �. Definition 6.2 should be read as saying that MACadv[A, I](�) is a negligible function.

6.2 MAC verification queries do not help the attacker

In our definition of secure MACs (Attack Game 6.1) the adversary has no way of testing whether a
given message-tag pair is valid. In fact, the adversary cannot even tell if it wins the game, since only
the challenger has the secret key needed to run the verification algorithm. In real life, an attacker
capable of mounting a chosen message attack can probably also test whether a given message-tag
pair is valid. For example, the attacker could build a packet containing the message-tag pair in
question and send this packet to the victim’s machine. Then, by examining the machine’s behavior
the attacker can tell whether the packet was accepted or dropped, indicating whether the tag was
valid or not.
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Consequently, it makes sense to extend Attack Game 6.1 by giving the adversary the extra
power to verify message-tag pairs. Of course, we continue to allow the adversary to request tags
for arbitrary messages of his choice.

Attack Game 6.2 (MAC security with verification queries). For a given MAC system
I = (S, V ), defined over (K, M, T ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. Each query can be one of two types:

– Signing query: for i = 1, 2, . . . , the ith signing query consists of a message
mi 2M. The challenger computes a tag ti  R S(k, mi), and gives ti to A.

– Verification query: for j = 1, 2, . . . , the jth verification query consists of a
message-tag pair (m̂j , t̂j) 2 M ⇥ T that is not among the previously signed
pairs, i.e.,

(m̂j , t̂j) 62
�

(m1, t1), (m2, t2), . . .
 

.

The challenger responds to A with V (k, m̂j , t̂j).

We say that A wins the above game if the challenger ever responds to a verification query with
accept. We define A’s advantage with respect to I, denoted MACvqadv[A, I], as the probability
that A wins the game. 2

The two definitions are equivalent. Attack Game 6.2 is essentially the same as the original
Attack Game 6.1, except that A can issue MAC verification queries. We prove that this extra
power does not help the adversary.

Theorem 6.1. If I is a secure MAC system, then it is also secure in the presence of verification
queries.

In particular, for every MAC adversary A that attacks I as in Attack Game 6.2, and which
makes at most Q

v

verification queries and at most Q
s

signing queries, there exists a Q
s

-query
MAC adversary B that attacks I as in Attack Game 6.1, where B is an elementary wrapper
around A, such that

MACvqadv[A, I]  MACadv[B, I] · Q
v

.

Proof idea. Let A be a MAC adversary that attacks I as in Attack Game 6.2, and which makes
at most Qv verification queries and at most Qs signing queries. From adversary A, we build an
adversary B that attacks I as in Attack Game 6.1 and makes at most Qs signing queries. Adversary
B can easily answer A’s signing queries by forwarding them to B’s challenger and relaying the
resulting tags back to A.

The question is how to respond to A’s verification queries. Note that A by definition, A only
submits verification queries on message pairs that are not among the previously signed pairs. So
B adopts a simple strategy: it responds with reject to all verification queries from A. If B answers
incorrectly, it has a forgery which would let it win Attack Game 6.1. Unfortunately, B does not
know which of these verification queries is a forgery, so it simply guesses, choosing one at random.
Since A makes at most Qv verifcation queries, B will guess correctly with probability at least 1/Qv.
This is the source of the Qv factor in the error term. 2
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Proof. In more detail, adversary B plays the role of challenger to A in Attack Game 6.2, while
at the same time, it plays the role of adversary in Attack Game 6.1, interacting with the MAC
challenger in that game. The logic is as follows:

initialization:
!  R {1, . . . , Qv}

upon receiving a signing query mi 2M from A do:
forward mi to the MAC challenger, obtaining the tag ti
send ti to A

upon receiving a verification query (m̂j , t̂j) 2M⇥ T from A do:
if j = !

then output (m̂j , t̂j) as a candidate forgery pair and halt
else send reject to A

To rigorously justify the construction of adversary B, we analyze the the behavior of A in three
closely related games.

Game 0. This is the original attack game, as played between the challenger in Attack Game 6.2
and adversary A. Here is the logic of the challenger in this game:

initialization:
k  R K

upon receiving a signing query mi 2M from A do:
ti  R S(k, mi)
send ti to A

upon receiving a verification query (m̂j , t̂j) 2M⇥ T from A do:
rj  V (k, m̂j , t̂j)

(⇤) send rj to A
Let W0 be the event that in Game 0, rj = accept for some j. Evidently,

Pr[W0] = MACvqadv[A, I]. (6.1)

Game 1. This is the same as Game 1, except that the line marked (⇤) above is changed to:

send reject to A
That is, when responding to a verification query, the challenger always responds to A with reject.
We also define W1 to be the event that in Game 1, rj = accept for some j. Even though the
challenger does not notify A that W1 occurs, both Games 0 and 1 proceed identically until this
event happens, and so events W0 and W1 are really the same; therefore,

Pr[W1] = Pr[W0]. (6.2)

Also note that in Game 1, although the rj values are used to define the winning condition, they
are not used for any other purpose, and so do not influence the attack in any way.
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Game 2. This is the same as Game 1, except that at the beginning of the game, the challenger
chooses !  R {1, . . . , Qv}. We define W2 to be the event that in Game 2, r! = accept. Since the
choice of ! is independent of the attack itself, we have

Pr[W2] � Pr[W1]/Qv. (6.3)

Evidently, by construction, we have

Pr[W2] = MACadv[B, I]. (6.4)

The theorem now follows from (6.1)–(6.3). 2

In summary, we showed that Attack Game 6.2, which gives the adversary more power, is
equivalent to Attack Game 6.1 used in defining secure MACs. The reduction introduces a factor of
Qv in the error term. Throughout the book we will make use of both attack games:

• When constructing secure MACs it easier to use Attack Game 6.1 which restricts the adversary
to signing queries only. This makes it easier to prove security since we only have to worry
about one type of query. We will use this attack game throughout the chapter.

• When using secure MACs to build higher level systems (such as authenticated encryption) it
is more convenient to assume that the MAC is secure with respect to the stronger adversary
described in Attack Game 6.2.

We also point out that if we had used a weaker notion of security, in which the adversary only
wins by presenting a valid tag on a new message (rather than new valid message-tag pair), then
the analogs of Attack Game 6.1 and Attack Game 6.2 are not equivalent (see Exercise 6.7).

6.3 Constructing MACs from PRFs

We now turn to constructing secure MACs using the tools at our disposal. In previous chapters we
used pseudo random functions (PRFs) to build various encryption systems. We gave examples of
practical PRFs such as AES (while AES is a block cipher it can be viewed as a PRF thanks to the
PRF switching lemma, Theorem 4.4). Here we show that any secure PRF can be directly used to
build a secure MAC.

Recall that a PRF is an algorithm F that takes two inputs, a key k and an input data block
x, and outputs a value y := F (k, x). As usual, we say that F is defined over (K, X , Y), where keys
are in K, inputs are in X , and outputs are in Y. For a PRF F we define the deterministic MAC
system I = (S, V ) derived from F as:

S(k, m) := F (k, m);

V (k, m, t) :=

(

accept if F (k, m) = t,

reject otherwise.

As already discussed, any PRF with a large (i.e., super-poly) output space is unpredictable (see
Section 4.1.1), and therefore, as discussed in Section 6.1, the above construction yields a secure
MAC. For completeness, we state this as a theorem:
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Theorem 6.2. Let F be a secure PRF defined over (K, X , Y), where |Y| is super-poly. Then the
deterministic MAC system I derived from F is a secure MAC.

In particular, for every Q-query MAC adversary A that attacks I as in Attack Game 6.1, there
exists a (Q + 1)-query PRF adversary B that attacks F as in Attack Game 4.2, where B is an
elementary wrapper around A, such that

MACadv[A, I]  PRFadv[B, F ] + 1/|Y|

Proof idea. Let A be an e�cient MAC adversary. We derive an upper bound on MACadv[A, I]
by bounding A’s ability to generate forged message-tag pairs. As usual, replacing the underlying
secure PRF F with a truly random function f in Funs[X , Y] does not change A’s advantage much.
But now that the adversary A is interacting with a truly random function it is faced with a hopeless
task: using the chosen message attack it obtains the value of f at a few points of his choice. He then
needs to guess the value of f(m) 2 Y at some new point m. But since f is a truly random function,
A has no information about f(m), and therefore has little chance of guessing f(m) correctly. 2

Proof. We make this intuition rigorous by letting A interact with two closely related challengers.

Game 0. As usual, we begin by reviewing the challenger in the MAC Attack Game 6.1 as it applies
to I. We implement the challenger in this game as follows:

(⇤) k  R K, f  F (k, ·)
upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:

ti  f(mi)
send ti to the adversary

At the end of the game, the adversary outputs a message-tag pair (m, t). We define W0 to be the
event that the condition

t = f(m) and m 62 {m1, m2, . . .} (6.5)

holds in Game 0. Clearly, Pr[W0] = MACadv[A, I].

Game 1. We next play the usual “PRF card,” replacing the function F (k, ·) by a truly random
function f in Funs[X , Y]. Intuitively, since F is a secure PRF, the adversary A should not notice
the di↵erence. Our challenger in Game 1 is the same as in Game 0 except that we change line (*)
as follows:

(⇤) f  R Funs[X , Y]

We define W1 to be the event that condition (6.5) holds in Game 1. It should be clear how to
design the corresponding PRF adversary B such that:

|Pr[W1]� Pr[W0]| = PRFadv[B, F ].

Next, we directly bound Pr[W1]. The adversary A sees the values of f at various points
m1, m2, . . . and is then required to guess the value of f at some new point m. But since f is a
truly random function, the value f(m) is independent of its value at all other points. Hence, since
m 62 {m1, m2, . . .}, adversary A will guess f(m) with probability 1/|Y|. Therefore, Pr[W1]  1/|Y|.
Putting it all together, we obtain

MACadv[A, I] = Pr[W0]  |Pr[W0]� Pr[W1]| + Pr[W1]  PRFadv[B, F ] +
1

|Y|
as required. 2

224



Concrete tag lengths. The theorem shows that to ensure MACadv[A, I] < 2�128 we need a
PRF whose output space Y satisfies |Y| > 2128. If the output space Y is {0, 1}n for some n, then
the resulting tags must be at least 128 bits long.

6.4 Prefix-free PRFs for long messages

In the previous section we saw that any secure PRF is also a secure MAC. However, the concrete
examples of PRFs from Chapter 4 only take short inputs and can therefore only be used to provide
integrity for very short messages. For example, viewing AES as a PRF gives a MAC for 128-bit
messages. Clearly, we want to build MACs for much longer messages.

All the MAC constructions in this chapter follow the same paradigm: they start from a PRF
for short inputs (like AES) and produce a PRF, and therefore a MAC, for much longer inputs.
Hence, our goal for the remainder of the chapter is the following:

given a secure PRF on short inputs construct a secure PRF on long inputs.

We solve this problem in three steps:

• First, in this section we construct prefix-free secure PRFs for long inputs. More precisely,
given a secure PRF that operates on single-block (e.g., 128-bit) inputs, we construct a prefix-
free secure PRF that operates on variable-length sequences of blocks. Recall that a prefix-free
secure PRF (Definition 4.5) is only secure in a limited sense: we only require that prefix-free
adversaries cannot distinguish the PRF from a random function. A prefix-free PRF adversary
issues queries that are non-empty sequences of blocks, and no query can be a proper prefix
of another.

• Second, in the next few sections we show how to convert prefix-free secure PRFs for long
inputs into fully secure PRFs for long inputs. Thus, by the end of these sections we will have
several secure PRFs, and therefore secure MACs, that operate on long inputs.

• Third, in Section 6.8 we show how to convert a PRF that operates on messages that are
strings of blocks into a PRF that operates on strings of bits.

Prefix-free PRFs. We begin with two classic constructions for prefix-free secure PRFs. The
CBC construction is shown in Fig. 6.3a. The cascade construction is shown in Fig. 6.3b. We
show that when the underlying F is a secure PRF, both CBC and cascade are prefix-free secure
PRFs.

6.4.1 The CBC prefix-free secure PRF

Let F be a PRF that maps n-bit inputs to n-bit outputs. In symbols, F is defined over (K, X , X )
where X = {0, 1}n. For any poly-bounded value `, we build a new PRF, denoted FCBC, that maps
messages in X` to outputs in X . The function FCBC, described in Fig. 6.3a, works as follows:
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Figure 6.3: Two prefix-free secure PRFs

input: k 2 K and m = (a1, . . . , av) 2 X` for some v 2 {0, . . . , `}
output: a tag in X

t 0n

for i 1 to v do:
t F (k, ai � t )

output t

FCBC is similar to CBC mode encryption from Fig. 5.3, but with two important di↵erences. First,
FCBC does not output any intermediate values along the CBC chain. Second, FCBC uses a fixed IV,
namely 0n, where as CBC mode encryption uses a random IV per message.

The following theorem shows that FCBC is a prefix-free secure PRF defined over (K, X`, X ).

Theorem 6.3. Let F be a secure PRF defined over (K, X , X ) where X = {0, 1}n and |X | = 2n

is super-poly. Then for any poly-bounded value `, we have that FCBC is a prefix-free secure PRF
defined over (K, X`, X ).

In particular, for every prefix-free PRF adversary A that attacks FCBC as in Attack Game 4.2,
and issues at most Q queries, there exists a PRF adversary B that attacks F as in Attack
Game 4.2, where B is an elementary wrapper around A, such that

PRFpfadv[A, FCBC]  PRFadv[B, F ] +
(Q`)2

2|X | . (6.6)

Exercise 6.6 develops an attack on fixed-length FCBC that demonstrates that security degrades
quadratically in Q. This shows that the quadratic dependence on Q in (6.6) is necessary. A more
di�cult proof of security shows that security only degrades linearly in ` (see Section 6.13). In
particular, the error term in (6.6) can be reduced to an expression dominated by O(Q2`/|X |)
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Proof idea. We represent the adversary’s queries in a rooted tree, where edges in the tree are labeled
by message blocks (i.e., elements of X ). A query for FCBC(k, m), where m = (a1, . . . , av) 2 X v and
1  v  `, defines a path in the tree, starting at the root, as follows:

root
a1�! p1

a2�! p2
a3�! · · · av�! pv. (6.7)

Thus, two messages m and m0 correspond to paths in the tree which both start at the root; these
two paths may share a common initial subpath corresponding to the longest common prefix of m
and m0.

With each node p in this tree, we associate a value �p 2 X which represents the computed value
in the CBC chain. More precisely, we define �

root

:= 0n, and for any non-root node q with parent
p, if the corresponding edge in the tree is p

a�! q, then �q := F (k, �p � a). With these conventions,
we see that if a message m traces out a path as in (6.7), then �pv = FCBC(k, m).

The crux of the proof is to argue that if F behaves like a random function, then for every

pair of distinct edges in the tree, say p
a�! q and p0 a0�! q0, we have �p � a 6= �p0 � a0 with

overwhelming probability. To prove that there are no collisions of this type, the prefix-freeness
restriction is critical, as it guarantees that the adversary never sees �p and �p0 , and hence a and
a0 are independent of these values. Once we have established that there are no collisions of these
types, it will follow that all values associated with non-root nodes are random and independent,
and this holds in particular for the values associated with the leaves, which represent the outputs
of FCBC seen by the adversary. Therefore, the adversary cannot distinguish FCBC from a random
function. 2

Proof. We make this intuition rigorous by letting A interact with three closely related challengers
in three games. For j = 0, 1, 2, 3, we let Wj be the event that A outputs 1 at the end of Game j.

Game 0. This is Experiment 0 of Attack Game 4.2.

Game 1. We next play the usual “PRF card,” replacing the function F (k, ·) by a truly random
function f in Funs[X , X ]. Clearly, we have

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[B, F ] (6.8)

for an e�cient adversary B.

Game 2. We now make a purely conceptual change, implementing the random function f as a
“faithful gnome” (as in Section 4.4.2). However, it will be convenient for us to do this is a particular
way, using the “query tree” discussed above.

To this end, first let B := Q`, which represents an upper bound on how many points at which
f will evaluated. Our challenger first prepares random values

�i  R X (i = 1, . . . , B).

These will be the only random values used by our challenger.
As the adversary makes queries, our challenger will dynamically build up the query tree. Ini-

tially, the tree contains only the root. Whenever the adversary makes a query, the challenger traces
out the corresponding path in the existing query tree; at some point, this path will extend beyond
the existing query tree, and our challenger adds the necessary nodes and edges so that the query
tree grows to include the new path.
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Our challenger must also compute the values �p associated with each node. Initially, �
root

= 0n.

When adding a new edge p
a�! q to the tree, if this is the ith edge being added (for i = 1, . . . , B),

our challenger does the following:

�q  �i

(⇤) if 9 another edge p0 a0�! q0 with �p0 � a0 = �p � a then �q  �q0

The idea is that we use the next unused value in our prepared list �1, . . . , �B as the “default”
value for �q. The line marked (⇤) performs the necessary consistency check, which ensures that our
gnome is indeed faithful.

Because this change is purely conceptual, we have

Pr[W2] = Pr[W1]. (6.9)

Game 3. Next, we make our gnome forgetful, by removing the consistency check marked (⇤) in
the logic in Game 2.

To analyze the e↵ect of this change, let Z be the event that in Game 3, for some distinct pair

of edges p
a�! q and p0 a0�! q0, we have �p0 � a0 = �p � a.

Now, the only randomly chosen values in Games 2 and 3 are the random choices of the ad-
versary, Coins , and the list of values �1, . . . , �B. Observe that for any fixed choice of values
Coins , �1, . . . , �B, if Z does not occur, then in fact Games 2 and 3 proceed identically. Therefore,
we may apply the Di↵erence Lemma (Theorem 4.7), obtaining

�

�Pr[W3]� Pr[W2]
�

�  Pr[Z]. (6.10)

We next bound Pr[Z]. Consider two distinct edges p
a�! q and p0 a0�! q0. We want to bound the

probability that �p0 � a0 = �p � a, which is equivalent to

�p0 � �p = a0 � a. (6.11)

There are two cases to consider.
Case 1: p = p0. Since the edges are distinct, we must have a0 6= a, and hence (6.11) holds with

probability 0.
Case 2: p 6= p0. The requirement that the adversary’s queries are prefix free implies that in

Game 3, the adversary never sees — or learns anything about — the values �p and �p0 . One of p or
p0 could be the root, but not both. It follows that the value �p � �p0 is uniformly distributed over
X and is independent of a� a0. From this, it follows that (6.11) holds with probability 1/|X |.

By the union bound, it follows that

Pr[Z]  B2

2|X | . (6.12)

Combining (6.8), (6.9), (6.10), and (6.12), we obtain

PRFpfadv[A, FCBC] =
�

�Pr[W3]� Pr[W0]
�

�  PRFadv[B, F ] +
B2

2|X | . (6.13)

Moreover, Game 3 corresponds exactly to Experiment 1 of Attack Game 4.2, from which the
theorem follows. 2
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6.4.2 The cascade prefix-free secure PRF

Let F be a PRF that takes keys in K and produces outputs in K. In symbols, F is defined over
(K, X , K). For any poly-bounded value `, we build a new PRF F ⇤, called the cascade of F , that
maps messages in X` to outputs in K. The function F ⇤, illustrated in Fig. 6.3b, works as follows:

input: k 2 K and m = (a1, . . . , av) 2 X` for some v 2 {0, . . . , `}
output: a tag in K

t k
for i 1 to v do:

t F (t, ai)
output t

The following theorem shows that F ⇤ is a prefix-free secure PRF.

Theorem 6.4. Let F be a secure PRF defined over (K, X , K). Then for any poly-bounded value `,
the cascade F ⇤ of F is a prefix-free secure PRF defined over (K, X`, K).

In particular, for every prefix-free PRF adversary A that attacks F ⇤ as in Attack Game 4.2, and
issues at most Q queries, there exists a PRF adversary B that attacks F as in Attack Game 4.2,
where B is an elementary wrapper around A, such that

PRFpfadv[A, F ⇤]  Q` · PRFadv[B, F ]. (6.14)

Exercise 6.6 develops an attack on fixed-length F ⇤ that demonstrates that security degrades
quadratically in Q. This is disturbing as it appears to contradict the linear dependence on Q in
(6.14). However, rest assured there is no contradiction here. The adversary A from Exercise 6.6,
which uses ` = 3, has advantage about 1/2 when Q is about

p|K|. Plugging A into the proof of
Theorem 6.4 we obtain a PRF adversary B that attacks the PRF F making about Q queries to
gain an advantage about 1/Q. Note that 1/Q ⇡ Q/|K| when Q is close to

p|K|. There is nothing
suprising about this adversary B: it is essentially the universal PRF attacker from Exercise 4.25.
Hence, (6.14) is consistent with the attack from Exercise 6.6. Another way to view this is that
the quadratic dependence on Q is already present in (6.14) because there is an implicit factor of Q
hiding in the quantity PRFadv[B, F ].

The proof of Theorem 6.4 is similar to the proof that the variable-length tree construction in
Section 4.6 is a prefix-free secure PRF (Theorem 4.11). Let us briefly explain how to extend the
proof of Theorem 4.11 to prove Theorem 6.4.

Relation to the tree construction. The cascade construction is a generalization of the variable-
length tree construction of Section 4.6. Recall that the tree construction builds a secure PRF from
a secure PRG that maps a seed to a pair of seeds. It is easy to see that when F is a PRF defined
over (K, {0, 1}, K) then Theorem 6.4 is an immediate corollary of Theorem 4.11: simply define the
PRG G mapping k 2 K to G(k) := (F (k, 0), F (k, 1)) 2 K2, and observe that cascade applied to F
is the same as the variable-length tree construction applied to G.

The proof of Theorem 4.11 generalizes easily to prove Theorem 6.4 for any PRF. For example,
suppose that F is defined over (K, {0, 1, 2}, K). This corresponds to a PRG G mapping k 2 K to
G(k) := (F (k, 0), F (k, 1), F (k, 2)) 2 K3. The cascade construction construction applied to F can
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be viewed as a ternary tree, instead of a binary tree, and the proof of Theorem 4.11 carries over
with no essential changes.

But why stop at width three? We can make the tree as wide as we wish. The cascade construc-
tion using a PRF F defined over (K, X , K) corresponds to a tree of width |X |. Again, the proof
of Theorem 4.11 carries over with no essential changes. We leave the details as an exercise for the
interested reader (Exercise 4.24 may be convenient here).

Comparing the CBC and cascade PRFs. Note that CBC uses a fixed key k for all applications
of F while cascade uses a di↵erent key in each round. Since block ciphers are typically optimized
to encrypt many blocks using the same key, the constant rekeying in cascade may result in worse
performance than CBC. Hence, CBC is the more natural choice when using an o↵ the shelf block
cipher like AES.

An advantage of cascade is that there is no additive error term in Theorem 6.4. Consequently,
the cascade construction remains secure even if the underlying PRF has a small domain X . CBC,
in contrast, is secure only when X is large. As a result, cascade can be used to convert a PRG into
a PRF for large inputs while CBC cannot.

6.4.3 Extension attacks: CBC and cascade are insecure MACs

We show that the MACs derived from CBC and cascade are insecure. This will imply that CBC
and cascade are not secure PRFs. All we showed in the previous section is that CBC and cascade
are prefix-free secure PRFs.

Extension attack on cascade. Given F ⇤(k, m) for some message m in X`, anyone can compute

t0 := F ⇤(k, m k m0) (6.15)

for any m0 2 X ⇤, without knowledge of k. Once F ⇤(k, m) is known, anyone can continue evaluating
the chain using blocks of the message m0 and obtain t0. We refer to this as the extension property
of cascade.

The extension property immediately implies that the MAC derived from F ⇤ is terribly insecure.
The forger can request the MAC on message m and then deduce the MAC on m k m0 for any m0

of his choice. It follows, by Theorem 6.2, that F ⇤ is not a secure PRF.

An attack on CBC. We describe a simple MAC forger on the MAC derived from CBC. The
forger works as follows:

1. pick an arbitrary a1 2 X ;
2. request the tag t on the one-block message (a1);
3. define a2 := a1 � t and output t as a MAC forgery for the two-block message (a1, a2) 2 X 2.

Observe that t = F (k, a1) and a1 = F (k, a1)� a2. By definition of CBC we have:

FCBC

�

k, (a1, a2)
�

= F
�

k, F (k, a1)� a2
�

= F (k, a1
�

= t.

Hence,
�

(a1, a2), t
�

is an existential forgery for the MAC derived from CBC. Consequently, FCBC

cannot be a secure PRF. Note that the attack on the cascade MAC is far more devastating than
on the CBC MAC. But in any case, these attacks show that neither CBC nor cascade should be
used directly as MACs.
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6.5 From prefix-free secure PRF to fully secure PRF (method 1):
encrypted PRF

We show how to convert the prefix-free secure PRFs FCBC and F ⇤ into secure PRFs, which will give
us secure MACs for variable length inputs. More generally, we show how to convert a prefix-free
secure PRF PF to a secure PRF. We present three methods:

• Encrypted PRF: encrypt the short output of PF with another PRF.

• Prefix-free encoding: encode the input to PF so that no input is a prefix of another.

• CMAC: a more e�cient prefix-free encoding using randomizaton.

In this section we discuss the encrypted PRF method. The construction is straightforward. Let
PF be a PRF mapping X` to Y and let F be a PRF mapping Y to T . Define

EF
�

(k1, k2), m
�

:= F
�

k2, PF (k1, m)
�

(6.16)

The construction is shown in Fig. 6.4.
We claim that when PF is either CBC or cascade then EF is a secure PRF. More generally, we

show that EF is secure whenever PF is an extendable PRF, defined as follows:

Definition 6.4. Let PF be a PRF defined over (K, X`, Y). We say that PF is an extendable
PRF if for all k 2 K, x, y 2 X`�1, and a 2 X we have:

if PF (k, x) = PF (k, y) then PF (k, x k a) = PF (k, y k a).

It is easy to see that both CBC and cascade are extendable PRFs. The next theorem shows
that when PF is an extendable, prefix-free secure PRF then EF is a secure PRF.

Theorem 6.5. Let PF be an extendable and prefix-free secure PRF defined over (K1, X`+1, Y),
where |Y| is super-poly and ` is poly-bounded. Let F be a secure PRF defined over (K2, Y, T ). Then
EF, as defined in (6.16), is a secure PRF defined over (K1 ⇥K2, X`, T ).

In particular, for every PRF adversary A that attacks EF as in Attack Game 4.2, and issues
at most Q queries, there exist a PRF adversary B

1

attacking F as in Attack Game 4.2, and
a prefix-free PRF adversary B

2

attacking PF as in Attack Game 4.2, where B
1

and B
2

are
elementary wrappers around A, such that

PRFadv[A,EF ]  PRFadv[B
1

, F ] + PRFpfadv[B
2

,PF ] +
Q2

2|Y| . (6.17)
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We prove Theorem 6.5 in the next chapter (Section 7.3.1) after we develop the necessary tools.
Note that to make EF a secure PRF on inputs of length up to `, this theorem requires that PF is
prefix-free secure on inputs of length ` + 1.

The bound in (6.17) is tight. Although not entirely necessary, let us assume that Y = T ,
that F is a block cipher, and that |X | is not too small. These assumptions will greatly simplify the
argument. We exhibit an attack that breaks EF with constant probability after Q ⇡p|Y| queries.
Our attack will, in fact, break EF as a MAC. The adversary picks Q random inputs x1, . . . , xQ 2 X 2

and queries its MAC challenger at all Q inputs to obtain t1, . . . , tQ 2 T . By the birthday paradox
(Corollary B.2), for any fixed key k1, with constant probability there will be distinct indices i, j
such that xi 6= xj and PF (k1, xi) = PF (k1, xj). On the one hand, if such a collision occurs, we will
detect it, because ti = tj for such a pair of indices. On the other hand, if ti = tj for some pair of
indices i, j, then our assumption that F is a block cipher guarantees that PF (k1, xi) = PF (k1, xj).
Now, assuming that xi 6= xj and PF (k1, xi) = PF (k1, xj), and since PF is extendable, we know
that for all a 2 X , we have PF

�

k1, (xi k a)
�

= PF
�

k1, (xj k a)
�

. Therefore, our adversary can
obtain the MAC tag t for xi k a, and this tag t will also be a valid tag for xj k a. This attack easily
generalizes to show the necessity of the term Q2/(2|Y|) in (6.17).

6.5.1 ECBC and NMAC: MACs for variable length inputs

Figures 6.5a and 6.5b show the result of applying the EF construction (6.16) to CBC and cascade.

The Encrypted-CBC PRF

Applying EF to CBC results in a classic PRF (and hence a MAC) called encrypted-CBC or
ECBC for short. This MAC is standardized by ANSI (see Section 6.9) and is used in the banking
industry. The ECBC PRF uses the same underlying PRF F for both CBC and the final encryption.
Consequently, ECBC is defined over (K2, X`, X ).

Theorem 6.6 (ECBC security). Let F be a secure PRF defined over (K, X , X ). Suppose X is
super-poly, and let ` be a poly-bounded length parameter. Then ECBC is a secure PRF defined over
(K2, X`, X ).

In particular, for every PRF adversary A that attacks ECBC as in Attack Game 4.2, and issues
at most Q queries, there exist PRF adversaries B

1

, B
2

that attack F as in Attack Game 4.2,
and which are elementary wrappers around A, such that

PRFadv[A, ECBC]  PRFadv[B
1

, F ] + PRFadv[B
2

, F ] +
(Q(` + 1))2 + Q2

2|X | . (6.18)

Proof. CBC is clearly extendable and is a prefix-free secure PRF by Theorem 6.3. Hence, if the
underlying PRF F is secure, then ECBC is a secure PRF by Theorem 6.5. 2

The argument given after Theorem 6.5 shows that there is an attacker that after Q ⇡ p|X |
queries breaks this PRF with constant advantage. Recall that for 3DES we have X = {0, 1}64.
Hence, after about a billion queries (or more precisely, 232 queries) an attacker can break the
ECBC-3DES MAC with constant probability.
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Figure 6.5: Secure PRF constructions for variable length inputs
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The NMAC PRF

Applying EF to cascade results in a PRF (and hence a MAC) called Nested MAC or NMAC
for short. A variant of this MAC is standardized by the IETF (see Section 8.7.2) and is widely
used in Internet protocols.

We wish to use the same underlying PRF F for the cascade construction and for the final
encryption. Unfortunately, the output of cascade is in K while the message input to F is in X . To
solve this problem we need to embed the output of cascade into X . More precisely, we assume that
|K|  |X | and that there is an e�ciently computable one-to-one function g that maps K into X .
For example, suppose K := {0, 1} and X := {0, 1}n where   n. Define g(t) := t k fpad where
fpad is a fixed pad of length n �  bits. This fpad can be as simple as a string of 0s. With this
translation, all of NMAC can be built from a single secure PRF F , as shown in Fig. 6.5b.

Theorem 6.7 (NMAC security). Let F be a secure PRF defined over (K, X , K), where K can
be embedded into X . Then NMAC is a secure PRF defined over (K2, X`, K).

In particular, for every PRF adversary A that attacks NMAC as in Attack Game 4.2, and issues
at most Q queries, there exist PRF adversares B

1

, B
2

that attack F as in Attack Game 4.2, and
which are elementary wrappers around A, such that

PRFadv[A, NMAC]  (Q(` + 1)) · PRFadv[B
1

, F ] + PRFadv[B
2

, F ] +
Q2

2|K| . (6.19)

Proof. NMAC is clearly extendable and is a prefix-free secure PRF by Theorem 6.4. Hence, if the
underlying PRF F is secure, then NMAC is a secure PRF by Theorem 6.5. 2

ECBC and NMAC are streaming MACs. Both ECBC and NMAC can be used to authenticate
variable size messages in X`. Moreover, there is no need for the message length to be known ahead
of time. A MAC that has this property is said to be a streaming MAC. This property enables
applications to feed message blocks to the MAC one block at a time and at some arbitrary point
decide that the message is complete. This is important for applications like streaming video, where
the message length may not be known ahead of time.

In contrast, some MAC systems require that the message length be prepended to the message
body (see Section 6.6). Such MACs are harder to use in practice since they require applications to
determine the message length before starting the MAC calculations.

6.6 From prefix-free secure PRF to fully secure PRF (method 2):
prefix-free encodings

Another approach to converting a prefix-free secure PRF into a secure PRF is to encode the input
to the PRF so that no encoded input is a prefix of another. We use the following terminology:

• We say that a set S ✓ X` is a prefix-free set if no element in S is a proper prefix of any
other. For example, if (x1, x2, x3) belongs to a prefix-free set S, then neither x1 nor (x1, x2)
are in S.

• Let X`
>0

denote the set of all non-empty strings over X of length at most `. We say that a
function pf : M! X`

>0
is a prefix-free encoding if pf is injective (i.e., one-to-one) and the

image of pf in is a prefix-free set.
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Let PF be a prefix-free secure PRF defined over (K, X`, Y) and pf : M! X`
>0

be a prefix-free
encoding. Define the derived PRF F as

F (k, m) := PF (k, pf (m)).

Then F is defined over (K, M, Y). We obtain the following trivial theorem.

Theorem 6.8. If PF is a prefix-free secure PRF and pf is a prefix-free encoding then F is a secure
PRF.

6.6.1 Prefix free encodings

To construct PRFs using Theorem 6.8 we describe two prefix-free encodings pf : M ! X`. We
assume that X = {0, 1}n for some n.

Method 1: prepend length. Set M := X`�1 and let m = (a1, . . . , av) 2M. Define

pf (m) := (hvi, a1, . . . , av) 2 X`
>0

where hvi 2 X is the binary representation of v, the length of m. We assume that ` < 2n so that
the message length can be encoded as an n-bit binary string.

We argue that pf is a prefix-free encoding. Clearly pf is injective. To see that the image of
pf is a prefix-free set let pf (x) and pf (y) be two elements in the image of pf . If pf (x) and pf (y)
contain the same number of blocks, then neither is a proper prefix of the other. Otherwise, pf (x)
and pf (y) contain a di↵erent number of blocks and must therefore di↵er in the first block. But
then, again, neither is a proper prefix of the other. Hence, pf is a prefix-free encoding.

This prefix-free encoding is not often used in practice since the resulting MAC is not a streaming
MAC: an application using this MAC must commit to the length of the message to MAC ahead of
time. This is undesirable for streaming applications such as streaming video where the length of
packets may not be known ahead of time.

Method 2: stop bits. Let X̄ := {0, 1}n�1 and let M = X̄`
>0

. For m = (a1, . . . , av) 2M, define

pf (m) :=
�

(a1 k 0), (a2 k 0), . . . , (av�1 k 0), (av k 1)
� 2 X`

>0

Clearly pf is injective. To see that the image of pf is a prefix-free set let pf (x) and pf (y) be two
elements in the image of pf . Let v be the number of blocks in pf (x). If pf (y) contains v or fewer
blocks then pf (x) is not a proper prefix of pf (y). If pf (y) contains more than v blocks then block
number v in pf (y) ends in 0, but block number v in pf (x) ends in 1. Hence, pf (x) and pf (y) di↵er
in block v and therefore pf (x) is not a proper prefix of pf (y).

The MAC resulting from this prefix-free encoding is a streaming MAC. This encoding, however,
increases the length of the message to MAC by v bits. When computing the MAC on a long message
using either CBC or cascade, this encoding will result in additional evaluations of the underlying
PRF (e.g. AES). In contrast, the encrypted PRF method of Section 6.5 only adds one additional
application of the underlying PRF. For example, to MAC a megabyte message (220 bytes) using
ECBC-AES and pf one would need an additional 511 evaluations of AES beyond what is needed
for the encrypted PRF method. In practice, things are even worse. Since computers prefer byte-
aligned data, one would most likely need to append an entire byte to every block, rather than just
a bit. Then to MAC a megabyte message using ECBC-AES and pf would result in 4096 additional
evaluations of AES over the encrypted PRF method — an overhead of about 6%.
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6.7 From prefix-free secure PRF to fully secure PRF (method 3):
CMAC

Both prefix free encoding methods from the previous section are problematic. The first resulted in
a non-streaming MAC. The second required more evaluations of the underlying PRF for long mes-
sages. We can do better by randomizing the prefix free encoding. We build a streaming secure PRF
that introduces no overhead beyond the underlying prefix-free secure PRF. The resulting MACs,
shown in Fig. 6.6, are superior to those obtained from encrypted PRFs and deterministic encodings.
This approach is used in a NIST MAC standard called CMAC and described in Section 6.10.

First, we introduce some convenient notation:

Definition 6.5. For two strings x, y 2 X`, let us write x ⇠ y if x is a prefix of y or y is a prefix
of x.

Definition 6.6. Let ✏ be a real number, with 0  ✏  1. A randomized ✏-prefix-free encoding
is a function rpf : K ⇥M! X`

>0
such that for all m0, m1 2M with m0 6= m1, we have

Pr
⇥

rpf (k, m0) ⇠ rpf (k, m1)
⇤  ✏,

where the probability is over the random choice of k in K.

Note that the image of rpf (k, ·) need not be a prefix-free set. However, without knowledge of k it
is di�cult to find messages m0, m1 2M such that rpf (k, m0) is a proper prefix of rpf (k, m1) (or
vice versa). The function rpf (k, ·) need not even be injective.

A simple rpf . Let K := X and M := X`
>0

. Define

rpf (k, (a1, . . . , av)) :=
�

a1, . . . , av�1, (av � k)
� 2 X`

>0

It is easy to see that rpf is a randomized (1/|X |)-prefix-free encoding. Let m0, m1 2 M with
m0 6= m1. Suppose that |m0| = |m1|. Then it is clear that for all choices of k, rpf (k, m0) and
rpf (k, m1) are distinct strings of the same length, and so neither is a prefix of the other. Next,
suppose that |m0| < |m1|. If v := |rpf (k, m0)|, then clearly rpf (k, m0) is a proper prefix of
rpf (k, m1) if and only if

m0[v � 1]� k = m1[v � 1].

But this holds with probability 1/|X | over the random choice of k, as required. Finally, the case
|m0| > |m1| is handled by a symmetric argument.

Using rpf . Let PF be a prefix-free secure PRF defined over (K, X`, Y) and rpf : K1⇥M! X`
>0

be a randomized prefix-free encoding. Define the derived PRF F as

F
�

(k, k1), m) := PF
�

k, rpf (k1, m)
�

. (6.20)

Then F is defined over (K ⇥ K1, M, Y). We obtain the following theorem, which is analogous to
Theorem 6.8.

Theorem 6.9. If PF is a prefix-free secure PRF, ✏ is negligible, and rpf a randomized ✏-prefix-free
encoding, then F defined in (6.20) is a secure PRF.
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In particular, for every PRF adversary A that attacks F as in Attack Game 4.2, and issues at
most Q queries, there exist prefix-free PRF adversaries B

1

and B
2

that attack PF as in Attack
Game 4.2, where B

1

and B
2

are elementary wrappers around A, such that

PRFadv[A, F ]  PRFpfadv[B
1

,PF ] + PRFpfadv[B
2

,PF ] + Q2✏/2. (6.21)

Proof idea. If the adversary’s set of inputs to F give rise to a prefix-free set of inputs to PF , then
the adversary sees just some random looking outputs. Moreover, if the adversary sees random
outputs, it obtains no information about the rpf key k1, which ensures that the set of inputs to
PF is indeed prefix free (with overwhelming probability). Unfortunately, this argument is circular.
However, we will see in the detailed proof how to break this circularity. 2

Proof. Without loss of generality, we assume that A never issues the same query twice. We structure
the proof as a sequence of three games. For j = 0, 1, 2, we let Wj be the event that A outputs 1 at
the end of Game j.

Game 0. The challenger in Experiment 0 of the PRF Attack Game 4.2 with respect to F works
as follows.

k  R K, k1  R K1

upon receiving a signing query mi 2M (for i = 1, 2, . . .) do:
xi  rpf (k1, mi) 2 X`

>0

yi  PF (k, xi)
send yi to A

Game 1. We change the challenger in Game 0 to ensure that all queries to PF are prefix free.
Recall the notation x ⇠ y, which means that x is a prefix of y or y is a prefix of x.

k  R K, k1  R K1, r1, . . . , rQ  R Y

upon receiving a signing query mi 2M (for i = 1, 2, . . .) do:
xi  rpf (k1, mi) 2 X`

>0

(1) if xi ⇠ xj for some j < i
then yi  ri

(2) else yi  PF (k, xi)
send yi to A

Let Z1 be the event that the condition on line (1) holds at some point during Game 1. Clearly,
Games 1 and 2 proceed identically until event Z1 occurs; in particular, W0 ^ Z̄1 occurs if and only
if W1 ^ Z̄1 occurs. Applying the Di↵erence Lemma (Theorem 4.7), we obtain

�

�Pr[W1]� Pr[W0]
�

�  Pr[Z1]. (6.22)

Unfortunately, we are not quite in a position to bound Pr[Z1] at this point. At this stage in the
analysis, we cannot say that the evaluations of PF at line (2) do not leak some information about
k1 that could help A make Z1 happen. This is the circularity problem we alluded to above. To
overcome this problem, we will delay the analysis of Z1 to the next game.

Game 2. Now we play the usual “PRF card,” replacing the function PF (k, ·) by a truly random
function. This is justified, since by construction, in Game 1, the set of inputs to PF (k, ·) is prefix-
free. To implement this change, we may simply replace the line marked (2) by
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Figure 6.6: Secure PRFs using random prefix-free encodings

(2) else yi  ri

After making this change, we see that yi gets assigned the random value ri, regardless of whether
the condition on line (1) holds or not.

Now, let Z2 be the event that the condition on line (1) holds at some point during Game 2. It
is not hard to see that

|Pr[Z1]� Pr[Z2]|  PRFpfadv[B1, F ] (6.23)

and
|Pr[W1]� Pr[W2]|  PRFpfadv[B2, F ] (6.24)

for e�cient prefix-free PRF adversaries B1 and B2. These two adversaries are basically the same,
except that B1 outputs 1 if the condition on line (1) holds, while B2 ouputs whatever A outputs.

Moreover, in Game 2, the value of k1 is clearly independent of A’s queries, and so by making
use of the ✏-prefix-free property of rpf , and the union bound we have

Pr[Z2]  Q2✏/2 (6.25)

Finally, Game 2 perfectly emulates for A a random function in Funs[M, Y]. Game 2 is therefore
identical to Experiment 1 of the PRF Attack Game 4.2 with respect to F , and hence

|Pr[W0]� Pr[W2]| = PRFadv[A, F ]. (6.26)

Now combining (6.22)–(6.26) proves the theorem. 2
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Figure 6.7: An injective function inj : {0, 1}n` ! X`+1

6.8 Converting a block-wise PRF to bit-wise PRF

So far we constructed a number of PRFs for variable length inputs in X`. Typically X = {0, 1}n
where n is the block size of the underlying PRF from which CBC or cascade are built (e.g., n = 128
for AES). All our MACs so far are designed to authenticate messages whose length is a multiple of
n bits.

In this section we show how to convert these PRFs into PRFs for messages of arbitrary bit
length. That is, given a PRF for messages in X` we construct a PRF for messages in {0, 1}n`.

Let F be a PRF taking inputs in X`+1. Let inj : {0, 1}n` ! X`+1 be an injective (i.e.,
one-to-one) function. Define the derived PRF Fbit as

Fbit(k, x) := F (k, inj (x)).

Then we obtain the following trivial theorem.

Theorem 6.10. If F is a secure PRF defined over (K, X`+1, Y) then Fbit is a secure PRF defined
over (K, {0, 1}n`, Y).

An injective function. For X := {0, 1}n, a standard example of an injective inj from {0, 1}n`

to X`+1 works as follows. If the input message length is not a multiple of n then inj appends
100 . . . 00 to pad the message so its length is the next multiple of n. If the given message length
is a multiple of n then inj appends an entire n-bit block (1 k 0n�1). Fig. 6.7 describes this in a
picture. More precisely, the function works as follows:

input: m 2 {0, 1}n`

u |m| mod n, m0  m k 1 k 0n�u�1

output m0 as a sequence of n-bit message blocks

To see that inj is injective we show that it is invertible. Given y  inj (m) scan y from right to
left and remove all the 0s until and including the first 1. The remaining string is m.

A common mistake is to pad the given message to a multiple of a block size using an all-0 pad.
This pad is not injective and results in an insecure MAC: for any message m whose length is not
a multiple of the block length, the MAC on m is also a valid MAC for m k 0. Consequently, the
MAC is vulnerable to existential forgery.

Injective functions must expand. When we feed an n-bit single block message into inj , the
function adds a “dummy” block and outputs a two-block message. This is unfortunate for appli-
cations that MAC many single block messages. When using CBC or cascade, the dummy block
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forces the signer and verifier to evaluate the underlying PRF twice for each message, even though all
messages are one block long. Consequently, inj forces all parties to work twice as hard as necessary.

It is natural to look for injective functions from {0, 1}n` to X` that never add dummy blocks.
Unfortunately, there are no such functions simply because the set {0, 1}n` is larger than the set
X`. Hence, all injective functions must occasionally add a “dummy” block to the output.

The CMAC construction described in Section 6.10 provides an elegant solution to this problem.
CMAC avoids adding dummy blocks by using a randomized injective function.

6.9 Case study: ANSI CBC-MAC

When building a MAC from a PRF, implementors often shorten the final tag by only outputting
the w most significant bits of the PRF output. Exercise 4.4 shows that truncating a secure PRF
has no e↵ect on its security as a PRF. Truncation, however, a↵ects the derived MAC. Theorem 6.2
shows that the smaller w is the less secure the MAC becomes. In particular, the theorem adds a
1/2w error in the concrete security bounds.

Two ANSI standards (ANSI X9.9 and ANSI X9.19) and two ISO standards (ISO 8731-1 and
ISO/IEC 9797) specify variants of ECBC for message authentication using DES as the underlying
PRF. These standards truncate the final 64-bit output of the ECBC-DES and use only the leftmost
w bits of the output, where w = 32, 48, or 64 bits. This reduces the tag length at the cost of reduced
security.

Both ANSI CBC-MAC standards specify a padding scheme to be used for messages whose
length is not a multiple of the DES or AES block size. The padding scheme is identical to the
function inj described in Section 6.8. The same padding scheme is used when signing a message
and when verifying a message-tag pair.

6.10 Case study: CMAC

Cipher-based MAC — CMAC — is a variant of ECBC adopted by the National Institute of Stan-
dards (NIST) in 2005. It is based on a proposal due to Black and Rogaway and an extension due to
Iwata and Kurosawa. CMAC improves over ECBC used in the ANSI standard in two ways. First,
CMAC uses a randomized prefix-free encoding to convert a prefix-free secure PRF to a secure PRF.
This saves the final encryption used in ECBC. Second, CMAC uses a “two key” method to avoid
appending a dummy message block when the input message length is a multiple of the underlying
PRF block size.

CMAC is the best approach to building a bit-wise secure PRF from the CBC prefix-free secure
PRF. It should be used in place of the ANSI method. In Exercise 6.14 we show that the CMAC
construction applies equally well to cascade.

The CMAC bit-wise PRF. The CMAC algorithm consists of two steps. First, a sub-key
generation algorithm is used to derive three keys k0, k1, k2 from the MAC key k. Then the three
keys k0, k1, k2 are used to compute the MAC.

Let F be a PRF defined over (K, X , X ) where X = {0, 1}n. The NIST standard uses AES as
the PRF F . The CMAC signing algorithm is given in Table 6.1 and is illustrated in Fig. 6.8. The
figure on the left is used when the message length is a multiple of the block size n. The figure on
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input: Key k 2 K and m 2 {0, 1}⇤
output: tag t 2 {0, 1}w for some w  n

Setup:
Run a sub-key generation algorithm

to generate keys k0, k1, k2 2 X from k 2 K
` length(m)
u max(1, d`/ne)
Break m into consecutive n-bit blocks so that

m = a1 k a2 k · · · k au�1 k a⇤u where a1, . . . , au�1 2 {0, 1}n.
(⇤) If length(a⇤u) = n

then au = k1 � a⇤u
else au = k2 � (a⇤u k 1 k 0j) where j = nu� `� 1

CBC:
t 0n

for i 1 to u do:
t F (k0, t� ai)

Output t[0 . . . w � 1] // Output w most significant bits of t.

Table 6.1: CMAC signing algorithm

the right is used otherwise. The standard allows for truncating the final output to w bits by only
outputting the w most significant bits of the final value t.

Security. The CMAC algorithm described in Fig. 6.8 can be analyzed using the randomized
prefix-free encoding paradigm. In e↵ect, CMAC converts the CBC prefix-free secure PRF directly
into a bit-wise secure PRF using a randomized prefix-free encoding rpf : K ⇥M ! X`

>0
where

K := X 2 and M := {0, 1}n`. The encoding rpf is defined as follows:

input: m 2M and (k1, k2) 2 X 2

if |m| is not a positive multiple of n then
u |m| mod n

partition m into a sequence of bit strings a1, . . . , av 2 X ,
so that m = a1 k · · · k av and a1, . . . , av�1 are n-bit strings

if |m| is a positive multiple of n
then output

�

a1, . . . , av�1, (av � k1)
�

else output
�

a1, . . . , av�1, ((av k 1 k 0n�u�1)� k2)
�

The argument that rpf is a randomized 2�n-prefix-free encoding is similar to the one is Section 6.7.
Hence, CMAC fits the randomized prefix-free encoding paradigm and its security follows from
Theorem 6.9. The keys k1, k2 are used to resolve collisions between a message whose length is a
positve multiple of n and a message that has been padded to make it a positive multiple of n. This
is essential for the analysis of the CMAC rpf .
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Figure 6.8: CMAC signing algorithm

Sub-key generation. The sub-key generation algorithm generates the keys (k0, k1, k2) from k.
It uses a fixed mask string Rn that depends on the block size of F . For example, for a 128-bit
block size, the standard specifies R128 := 012010000111. For a bit string X we denote by X << 1
the bit string that results from discarding the leftmost bit X and appending a 0-bit on the right.
The sub-key generation algorithm works as follows:

input: key k 2 K
output: keys k0, k1, k2 2 X

k0  k
L F (k, 0n)

(1) if msb(L) = 0 then k1  (L << 1) else k1  (L << 1)�Rn

(2) if msb(k1) = 0 then k2  (k1 << 1) else k2  (k1 << 1)�Rn

output k0, k1, k2.

where msb(L) refers to the most significant bit of L. The lines marked (1) and (2) may look a bit
mysterious, but in e↵ect, they simply multiply L by x and by x2 (respectively) in the finite field
GF(2n). For a 128-bit block size the defining polynomial for GF(2128) corresponding to R128 is
g(X) := X128 + X7 + X2 + X + 1. Exercise 6.16 explores insecure variants of sub-key generation.

The three keys (k0, k1, k2) output by the sub-key generation algorithm can be used for authen-
ticating multiple messages. Hence, its running time is amortized across many messages.

Clearly the keys k0, k1, and k2 are not independent. If they were, or if they were derived as,
say, ki := F (k, ↵i) for constants ↵0, ↵1, ↵2, the security of CMAC would follow directly from the
arguments made here and our general framework. Nevertheless, a more intricate analysis allows
one to prove that CMAC is indeed secure [36].

6.11 PMAC: a parallel MAC

The MACs we developed so far, ECBC, CMAC, and NMAC, are inherently sequential: block
number i cannot be processed before block number i�1 is finished. This makes it di�cult to exploit
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hardware parallelism or pipelining to speed up MAC generation and verification. In this section
we construct a secure MAC that is well suited for a parallel architecture. The best construction is
called PMAC. We present PMAC0 which is a little easier to describe.

Let F be a PRF defined over (K, X , X ), where X := {0, 1}n. Define N := 2n. We can naturally
interpret elements of X as numbers in {0, . . . , N � 1}, encoded in binary, and we will freely switch
back and forth between these two interpretions.

We build a new PRF, called PMAC0, that takes as input a key and a message in X` for some `.
It outputs a value in X . A key for PMAC0 consists of k 2 {0, . . . , N � 1} and k1, k2 2 K. The
PMAC0 construction works as follows:

input: m = (a1, . . . , av) 2 X v for some 0  v  `, and

key ~k = (k, k1, k2) where k 2 {0, . . . , N � 1}, k1 2 K, and k2 2 K
output: tag in X
PMAC0(~k, m):

t 0n 2 X , mask 0
for i 1 to v do:

mask (mask + k) mod N // mask = (i · k) mod N
r  (ai + mask) mod N
t t� F

�

k1, r)
output F (k2, t)

The main loop adds the masks k, 2k, 3k, . . . to message blocks prior to evaluating the PRF. On a
sequential machine this requires two additions modulo N per iteration. On a parallel machine each
processor can independently compute ai + ik and then apply F . See Fig. 6.9.

PMAC0 is a secure PRF and hence gives a secure MAC for large messages. The proof will
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follow easily from Theorem 7.7 developed in the next chapter. For now we state the theorem and
delay its proof to Section 7.3.3.

Theorem 6.11. Let F be a secure PRF defined over (K, X , X ), where X = {0, 1}n and N := 2n

is super-poly. Then PMAC0 taking inputs in X` is a secure PRF for any poly-bounded `.

In particular, for every PRF adversary A that attacks PMAC
0

as in Attack Game 4.2, and
issues at most Q queries, there exist PRF adversaries B

1

and B
2

, which are elementary wrappers
around A, such that

PRFadv[A,PMAC
0

]  PRFadv[B
1

, F ] + PRFadv[B
2

, F ] +
Q2

2N
+

2Q2`2dlog
2

`e
N

. (6.27)

As always, this block-wise PRF can be converted into a bit-wise PRF using the method discussed
in Section 6.8.

PMAC: better than PMAC0. Although PMAC0 is well suited for a parallel architecture, there
is room for improvement.

Fortunately, better implementations of the PMAC0 approach are available. Examples include
PMAC [14] and XECB [32], both of which are parallizable. PMAC, for example, provides the
following improvements over PMAC0:

• PMAC uses arithmetic in the finite field GF(2n) instead of arithmeic modulo N . Addition
in GF(2n) is just an XOR. The PMAC mask for block i is defined as �i · k where �1, �2, . . .
are fixed constants in GF(2n) and multiplication is defined in GF(2n). The �i’s are specially
chosen so that computing �i+1 · k from �i · k is very cheap.

By using arithmetic in GF(2n), one gets a somewhat better security bound (essentially, the
log2 ` factor in the last term in (6.27) disappears).

• PMAC saves one application of F (k1, ·) using a trick described in Exercise 7.10.

• PMAC derives the key k as k  F (k1, 0n) and sets k2  k1. Hence PMAC uses a shorter
secret key than PMAC0.

• PMAC uses a variant of the CMAC rpf to provide a bit-wise PRF.

The end result is that PMAC is as e�cient as ECBC and NMAC on a sequential machine, but
has much better performance on a parallel or pipelined architecture. PMAC is the best PRF
construction in this chapter; it works well on a variety of computer architectures and is e�cient for
both long and short messages.

PMAC0 is incremental. Suppose Bob computes the tag t for some long message m. Some time
later he changes one character in m and wants to recompute the tag of this new message m0. When
using CBC-MAC the tag t is of no help — Bob must recompute the tag for m0 from scratch. With
PMAC0 we can do much better. Suppose the PRF F used in the construction of PMAC0 is the
encryption algorithm of a block cipher such as AES, and let D be the corresponding decryption
algorithm. Let m0 be the result of changing block number i of m from ai to a0i. Then the tag
t0 := PMAC0(k, m0) for m0 can be easily derived from the tag t := PMAC0(k, m) for m as follows:
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t1  D(k2, t)
t2  t1 � F (k1, ai + ik mod N) � F (k1, a0i + ik mod N)
t0  F2(k2, t2)

Hence, given the tag on some long message m (as well as the MAC secret key) it is easy to derive
tags for local edits of m. MACs that have this property are said to be incremental. We just
showed that the PMAC0, implemented using a block cipher, is incremental.

6.12 A fun application: searching on encrypted data

To be written.

6.13 Notes

Citations to the literature to be added.

6.14 Exercises

6.1 (The 802.11b insecure MAC). Consider the following MAC (a variant of this was used for
WiFi encryption in 802.11b WEP). Let F be a PRF defined over (K, R, X ) where X := {0, 1}32. Let
CRC32 be a simple and popular error-detecting code meant to detect random errors; CRC32(m)
takes inputs m 2 {0, 1}` and always outputs a 32-bit string. For this exercise, the only fact you
need to know is that CRC32(m1) � CRC32(m2) = CRC32(m1 �m2). Define the following MAC
system (S, V ):

S(k, m) :=
�

r  R R, t F (k, r)� CRC32(m), output (r, t)
 

V (k, m, (r, t)) :={ accept if t = F (k, r)� CRC32(m) and reject otherwise}

Show that this MAC system is insecure.

6.2 (Tighter bounds with verification queries). Let F be a PRF defined over (K, X , Y), and
let I be the MAC system derived from F , as discussed in Section 6.3. Let A be an adversary
that attacks I as in Attack Game 6.2, and which makes at most Qv verification queries and
at most Qs signing queries. Theorem 6.1 says that there exists a Qs-query MAC adversary B
that attacks I as in Attack Game 6.1, where B is an elementary wrapper around A, such that
MACvqadv[A, I]  MACadv[B, I] · Qv. Theorem 6.2 says that there exists a (Qs + 1)-query PRF
adversary B0 that attacks F as in Attack Game 4.2, where B0 is an elementary wrapper around B,
such that MACadv[B, I]  PRFadv[B0, F ] + 1/|Y|. Putting these two statements together, we get

MACvqadv[A, I]  (PRFadv[B0, F ] + 1/|Y|) · Qv

This bound is not the best possible. Give a direct analysis that shows that there exists a (Qs+Qv)-
query PRF adversary B00, where B00 is an elementary wrapper around A, such that

MACvqadv[A, I]  PRFadv[B00, F ] + Qv/|Y|.
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6.3 (Multi-key MAC security). Just as we did for semantically secure encryption in Section 5.2,
we can extend the definition of a secure MAC from the single-key setting to the multi-key setting.
In this exercise, you will essentially show that security in the single-key setting implies security in
the multi-key setting.

(a) Show how to generalize Attack Game 6.2 so that an attacker can submit both signing queries
and verification queries with respect to several MAC keys k1, . . . , kQ.

(b) Show that any e�cient adversary A that wins your new attack game with probability ✏ can
be transformed into an e�cient adversary B that wins Attack Game 6.2 with probability ✏/Q.

Hint: this is not done using a hybrid argument, but rather a “guessing” argument, somewhat
analogous to that used in the proof of Theorem 6.1.

6.4. Consider a scenario in which Alice wants to broadcast the same message to n users, U1, . . . , Un.
She wants the users to be able to authenticate that the message came from her, but she is not
concerned about message secrecy. More generally, Alice may wish to broadcast a series of messages,
but for this exercise, let us focus on just a single messaage.

(a) In the most trivial solution, Alice shares a MAC key ki with each user Ui. When she broadcasts
a message m, she appends tags t1, . . . , tn to the message, where ti is a valid tag for m under
key ki. Using its shared key ki, every user Ui can verify m’s authenticity by verifying that ti
is a valid tag for m under ki.

Assuming the MAC is secure, show that this broadcast authentication scheme is secure even
if users collude. For example, users U1, . . . , Un�1 may collude, sharing their keys k1, . . . , kn�1

among each other, to try to make user Un accept a message that is not authentic.

(b) While the above broadcast authentication scheme is secure, even in the presence of collisions,
it is not very e�cient; the number of keys and tags grows linearly in n.

Here is a more e�cient scheme, but with a weaker security guarantee. We illustrate it with
n = 6. The goal is to get by with ` < 6 keys and tags. We will use just ` = 4 keys, k1, . . . , k4.
Alice stores all four of these keys. There are 6 =

�4
2

�

subsets of {1, . . . , 4} of size 2. Let us
number these subsets J1, . . . , J6. For each user Ui, if Ji = {v, w}, then this user stores keys
kv and kw.

When Alice broadcasts a message m, she appends tags t1, . . . , t4, corresponding to keys
k1, . . . , k4. Each user Ui verifies tags tu and tv, using its keys ku, kv, where Ji = {v, w}
as above.

Assuming the MAC is secure, show that this broadcast authentication scheme is secure pro-
vided no two users collude. For example, using the keys that he has, user U1 may attempt
to trick user U6 into accepting an inauthentic message, but users U1 and U2 may not collude
and share their keys in such an attempt.

(c) Show that the scheme presented in part (b) is completely insecure if two users are allowed to
collude.

6.5 (MAC combiners). We want to build a MAC system I using two MAC systems I1 = (S1, V1)
and I2 = (S2, V2), so that if at some time one of I1 or I2 is broken (but not both) then I is still
secure. Put another way, we want to cosntruct I from I1 and I2 such that I is secure if either I1

or I2 is secure.
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(a) Define I = (S, V ), where

S( (k1, k2), m) := ( S1(k1, m), S2(k2, m) ),

and V is defined in the obvious way: on input (k, m, (t1, t2)), V accepts i↵ both V1(k1, m, t1)
and V2(k2, m, t2) accept. Show that I is secure if either I1 or I2 is secure.

(b) Suppose that I1 and I2 are deterministic MAC systems (see the definition on page 217), and
that both have tag space {0, 1}n. Define the deterministic MAC system I = (S, V ), where

S( (k1, k2), m) := S1(k1, m)� S2(k2, m).

Show that I is secure if either I1 or I2 is secure.

6.6. We develop attacks on FCBC and F ⇤ as prefix-free PRFs to show that for both security degrades
quadratically with number of queries Q that the attacker makes. For simplicity, let us develop the
attack when inputs are exactly three blocks long.

(a) Let F be a PRF defined over (K, X , X ) where X = {0, 1}n, where |X | is super-poly. Consider
the FCBC prefix-free PRF with input space X 3. Suppose an adversary queries the challenger
at points (x1, y1, z), (x2, y2, z), . . . (xQ, yQ, z), where the xi’s, the yi’s, and z are chosen
randomly from X . Show that if Q ⇡ p|X |, the adversary can predict the PRF at a new
point in X 3 with probability at least 1/2.

(b) Show that a similar attack applies to the three-block cascade F ⇤ prefix-free PRF built from a
PRF defined over (K, X , K). Assume X = K and |K| is super-poly. After making Q ⇡p|K|
queries in X 3, your adversary should be able to predict the PRF at a new point in X 3 with
probability at least 1/2.

6.7 (Weakly secure MACs). It is natural to define a weaker notion of security for a MAC
in which we make it harder for the adversary to win; specifically, in order to win, the adversary
must submit a valid tag on a new message. One can strengthen the winning condition in Attack
Games 6.1 and 6.2 to reflect this weaker security notion. In Attack Game 6.1, this means that
V (k, m, t) = accept and m is not among the signing queries m1, m2, . . . . In Attack Game 6.2, this
means that for some verification query (m̂j , t̂j), we have V (k, m̂j , t̂j) = accept and m̂j is not among
the signing queries m1, m2, . . . made prior to this verification query. These two modified winning
conditions correspond to notions of security that we call weak security without verification queries
and weak security with verification queries. Unfortunately, the analog of Theorem 6.1 does not
hold relative to these weak security notions. In this exercise, you are to show this by giving an
explicit counter-example. Assume the existence of a secure PRF (defined over any convenient input,
output, and key spaces, of your choosing). Show how to “sabotage” this PRF to obtain a MAC
that is weakly secure without verification queries but is not weakly secure with verification queries.

6.8. We showed that CBC is a prefix-free secure PRF but not a secure PRF. We showed that
pre-pending the length of the message makes CBC a secure PRF. Show that appending the length
of the message prior to applying CBC does not make CBC a secure PRF.

6.9. Prove that truncating the output of CBC gives a secure PRF for variable length messages.
More specifically, if CBC is instantiated with a block cipher that operates on n-bit blocks, and we
truncate the output of CBC to w < n bits, then this truncated version is a secure PRF on variable
length inputs, provided 1/2n�w is negligible. Hint: adapt the proof of Theorem 6.3.
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6.10. In the previous exercise, we saw that truncating the output of the CBC construction yields
a secure PRF. In this exercise, you are to show that the same does not hold for the cascade
construction, by giving an explicit counter-example. For your counter-example, you may assume
a secure PRF F 0 (defined over any convenient input, output, and key spaces, of your choosing).
Using F 0, construct another PRF F , such that (a) F is a secure PRF, but (b) the corresponding
truncated version of F ⇤ is not a secure PRF.

6.11. In the previous exercise, we saw that the truncated cascade may not be secure when instanti-
ated with certain PRFs. However, in your counter-example, that PRF was constructed precisely to
make cascade fail — intuitively, for “typical” PRFs, one would not expect this to happen. To sub-
stantiate this intuition, this exercise asks you prove that in the ideal cipher model (see Section 4.7),
the cascade construction is a secure PRF. More precisely, if we model F as the encryption function
of an ideal cipher, then the truncated version of F ⇤ is a secure PRF. Here, you may assume that
F operates on n-bit blocks and n-bit keys, and that the output of F ⇤ is truncated to w bits, where
1/2n�w is negligible.

6.12. To avoid extension attacks on CBC, one might be tempted to define a CBC-MAC with
a randomized IV. This is a MAC with a probabilistic signing algorithm that on input k 2 K
and (x1, . . . , xv) 2 X`, works as follows: choose IV 2 X at random; output (IV , t), where
t := FCBC(x1 � IV , x2, . . . , xv). On input (k, (x1, . . . , xv), (IV , t)), the verification algorithms tests
if t = FCBC(x1 � IV , x2, . . . , xv). Show that this MAC is completely insecure, and is not even a
prefix-free secure PRF.

6.13. This exercise examines whether variable length CBC and cascade are secure PRFs against
non-adaptive adversaries, i.e., adversaries that make their queries all at once (see Exercise 4.7).

(a) Show that CBC is a secure PRF against non-adaptive adversaries, assuming the underlying
function F is a PRF. Hint: adapt the proof of Theorem 6.3.

(b) Give a non-adaptive attack that breaks the security of casacde as a PRF, regardless of the
choice of F .

6.14 (generalized CMAC).

(a) Show that the CMAC rpf (Section 6.10) is a randomized 2�n-prefix-free encoding.

(b) Use the CMAC rpf to convert cascade into a bit-wise secure PRF.

6.15. Show that appending a random message block gives a randomized prefix-free encoding. That
is, the following function

rpf (k, m) = m k k

is a randomized 1/|X |-prefix-free encoding. Here, m 2 X` and k 2 X .

6.16. Show that CMAC is insecure as a PRF if the sub-key generation algorithm outputs k0 and
k2 as in the current algorithm, but sets k1  L.

6.17 (Domain extension). This exercise explores some simple ideas for extending the domain
of a MAC system that do not work. Let I = (S, V ) be a deterministic MAC (see the definition
on page 217), defined over (K, M, {0, 1}n). Each of the following are signing algorithms for de-
terministic MACs with message space M2. You are to show that each of the resulting MACs are
insecure.
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(a) S1(k, (a1, a2)) = S(k, a1) k S(k, a2),

(b) S2(k, (a1, a2)) = S(k, a1)� S(k, a2),

(c) S3((k1, k2), (a1, a2)) = S(k1, a1) k S(k2, a2),

(d) S4((k1, k2), (a1, a2)) = S(k1, a1)� S(k2, a2).

6.18 (Integrity for database records). Let (S, V ) be a secure MAC defined over (K, M, T ).
Consider a database containing records m1, . . . , mn 2 M. To provide integrity for the data the
data owner generates a random secret key k 2 K and stores ti  S(k, mi) alongside record mi for
every i = 1, . . . , n. This does not ensure integrity because an attacker can remove a record from
the database or duplicate an old record without being detected. To prevent addition or removal of
records the data ownder generates another secret key k0 2 K and computes t S

�

k0, (t1, . . . , tn)
�

(we are assuming that T n ✓M). She stores (k, k0, t) on her own machine, away from the database.

(a) Show that updating a single record in the database can be done e�ciently. That is, explain
what needs to be done to recompute the tag t when a single record mj in the database is
replaced by an updated record m0

j .

(b) Does this approach ensure database integrity? Suppose the MAC (S, V ) is built from a secure
PRF F defined over (K, M, T ) where |T | is super-poly. Show that the following PRF Fn is
a secure PRF on message space Mn

Fn
�

(k, k0), (m1, . . . , mn)
�

:= F
�

k0,
�

F (k, m1), . . . , F (k, mn)
��

.

6.19 (Timing attacks). Let (S, V ) be a deterministic MAC system where tags T are n-bytes
long. The verification algorithm V (k, m, t) is implemented as follows: it first computes t0  S(k, m)
and then does:

for i 0 to n� 1 do:
if t[i] 6= t0[i] output reject and exit

output accept

(a) Show that this implementation is vulnerable to a timing attack. An attacker who can submit
arbitrary queries to algorithm V and accurately measure V ’s response time can forge a valid
tag on every message m of its choice with at most 256 · n queries to V .

(b) How would you implement V to prevent the timing attack from part (a)?
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Chapter 7

Message integrity from universal
hashing

In the previous chapter we showed how to build secure MACs from secure PRFs. In particular,
we discussed the ECBC, NMAC, and PMAC constructions. We stated security theorems for these
MACs, but delayed their proofs to this chapter.

In this chapter we describe a general paradigm for constructing MACs using hash functions.
By a hash function we generally mean a function H that maps inputs in some large set M to
short outputs in T . Elements in T are often called message digests or just digests. Keyed hash
functions, used throughout this chapter, also take as input a key k.

At a high level, MACs constructed from hash functions work in two steps. First, we use the
hash function to hash the message m to a short digest t. Second, we apply a PRF to the digest t,
as shown in Fig. 7.1.

As we will see, ECBC, NMAC, and PMAC0 are instances of this “hash-then-PRF” paradigm.
For example, for ECBC (described in Fig. 6.5a), the CBC function acts as a hash function that
hashes long input messages into short digests. The final application of the PRF using the key k2
is the final PRF step. The hash-then-PRF paradigm will enable us to directly and quite easily
deduce the security of ECBC, NMAC, and PMAC0.

The hash-then-PRF paradigm is very general and enables us to build new MACs out of a wide
variety of hash functions. Some of these hash functions are very fast, and yield MACs that are
more e�cient than those discussed in the previous chapter.

Hash PRF
t

k
2

tag

k
1

m

Figure 7.1: The hash-then-PRF paradigm
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7.1 Universal hash functions (UHFs)

We begin our discussion by defining a keyed hash function — a widely used tool in cryptography.
A keyed hash function H takes two inputs: a key k and a message m. It outputs a short digest
t := H(k, m). The key k can be thought of as a hash function selector: for every k we obtain a
specific function H(k, ·) from messages to digests. More precisely, keyed hash functions are defined
as follows:

Definition 7.1 (Keyed hash functions). A keyed hash function H is a deterministic algo-
rithm that takes two inputs, a key k and a message m; its output t := H(k, x) is called a digest.
As usual, there are associated spaces: the keyspace K, in which k lies, a message space M, in
which m lies, and the digest space T , in which t lies. We say that the hash function H is defined
over (K, M, T ).

We note that the output digest t 2 T can be much shorter than the input message m. Typically
digests will have some fixed size, say 128 or 256 bits, independent of the input message length. A
hash function H(k, ·) can map gigabyte long messages into just 256-bit digests.

We say that two messages m0, m1 2M form a collision for H under key k 2 K if

H(k, m0) = H(k, m1) and m0 6= m1.

Since the digest space T is typically much smaller than the message space M, many such collisions
exist. However, a general property we shall desire in a hash function is that it is hard to actually
find a collision. As we shall eventually see, there are a number of ways to formulate this “collision
resistance” property. These formulations di↵er in subtle ways in how much information about
the key an adversary gets in trying to find a collision. In this chapter, we focus on the weakest
formulation of this collision resistance property, in which the adversary must find a collision with no
information about the key at all. On the one hand, this property is weak enough that we can actually
build very e�cient hash functions that satisfy this property without making any assumptions at all
on the computational power of the adversary. On the other hand, this property is strong enough
to ensure that the hash-then-PRF paradigm yields a secure MAC.

Hash functions that satisfy this very weak collision resistance property are called universal
hash functions, or UHFs. Universal hash functions are used in various branches of computer
science, most notably for the construction of e�cient hash tables. UHFs are also widely used in
cryptography. Before we can analyze the security of the hash-then-PRF paradigm, we first give a
more formal definition of UHFs. As usual, to make this intuitive notion more precise, we define an
attack game.

Attack Game 7.1 (universal hash function). For a keyed hash function H defined over
(K, M, T ), and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs two distinct messages m0, m1 2M.

We say that A wins the above game if H(k, m0) = H(k, m1). We define A’s advantage with respect
to H, denoted UHFadv[A, H], as the probability that A wins the game. 2

We now define several di↵erent notions of UHF, which depend on the power of the adversary
and its advantage in the above attack game.
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Definition 7.2. Let H be a keyed hash function defined over (K, M, T ),

• We say that H is an ✏-bounded universal hash function, or ✏-UHF, if UHFadv[A, H]  ✏
for all adversaries A (even ine�cient ones).

• We say that H is a statistical UHF if it is an ✏-UHF for some negligible ✏.

• We say that H is a computational UHF if UHFadv[A, H] is negligible for all e�cient
adversaries A.

Statistical UHFs are secure against all adversaries, e�cient or not: no adversary can win Attack
Game 7.1 against a statistical UHF with non-negligible advantage. The main reason that we
consider computationally unbounded adversaries is that we can: unlike most other security notions
we discuss in this text, good UHFs are something we know how to build without any computational
restrictions on the adversary. Note that every statistical UHF is also a computational UHF, but
the converse is not true.

If H is a hash function defined over (K, M, T ), an alternative characterization of the ✏-UHF
property is the following (see Exercise 7.22):

for every pair of distinct messages m0, m1 2M we have Pr[H(k, m0) = H(k, m1)]  ✏
where the probability is over the random choice of k 2 K.

(7.1)

7.1.1 Multi-query UHFs

It will be convenient to consider a generalization of a computational UHF. Here the adversary wins
if he can output a list of distinct messages so that some pair of messages in the list is a collision
for H(k, ·). The point is that although the adversary may not know exactly which pair of messages
in his list cause the collision, he still wins the game. In more detail, a multi-query UHF is defined
using the following game:

Attack Game 7.2 (multi-query UHF). For a keyed hash function H over (K, M, T ), and a
given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs distinct messages m1, . . . , ms 2M.

We say that A wins the above game if there are indices i 6= j such that H(k, mi) = H(k, mj). We
define A’s advantage with respect to H, denoted MUHFadv[A, H], as the probability that A wins
the game. We call A a Q-query UHF adversary if it always outputs a list of size s  Q. 2

Definition 7.3. We say that a hash function H over (K, M, T ) is a multi-query UHF if for all
e�cient adversaries A, the quantity MUHFadv[A, H] is negligible.

Lemma 7.1 below shows that any UHF is also a multi-query UHF. However, for particular
constructions, we can sometimes get better security bounds.

Lemma 7.1. If H is a computational UHF, then it is also a multi-query UHF.

In particular, for every Q-query UHF adversary A, there exists a UHF adversary B, which is
an elementary wrapper around A, such that

MUHFadv[A, H]  (Q2/2) · UHFadv[B, H]. (7.2)
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Proof. The UHF adversary B runs A and obtains s  Q distinct messages m1, . . . , ms. It randomly
picks a random pair of distinct indices i and j from {1, . . . , s}, and outputs mi and mj . The list
generated by A contains a collision for H(k, ·) with probability MUHFadv[A, H] and B will choose
a colliding pair with probability at least 2/Q2. Hence, UHFadv[B, H] is at least MUHFadv[A, H] ·
(2/Q2), as required. 2

7.1.2 Mathematical details

As usual, we give a more mathematically precise definition of a UHF using the terminology defined
in Section 2.4.

Definition 7.4 (Keyed hash functions). A keyed hash function is an e�cient algorithm H,
along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

such that

1. K, M, and T are e�ciently recognizable.

2. K and T are e�ciently sampleable.

3. Algorithm H is a deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), k 2 K�,⇤,
and m 2M�,⇤, runs in time bounded by a polynomial in �, and outputs an element of T�,⇤.

In defining UHFs we parameterize Attack Game 7.1 by the security parameter �. The advantage
UHFadv[A, H] is then a function of �.

The information-theoretic property (7.1) is the more traditional approach in the literature
in defining ✏-UHFs for individual hash functions with no security or system parameters; in our
asymptotic setting, if property (7.1) holds for each setting of the security and system parameters,
then our definition of an ✏-UHF will certainly be satisfied.

7.2 Constructing UHFs

The challenge in constructing good universal hash functions (UHFs) is to construct a function that
achieves a small collision probability using a short key. Preferably, the size of the key should not
depend on the length of the message being hashed. We give three constructions. The first is an
elegant construction of a statistical UHF using modular arithmetic and polynomials. Our second
construction is based on the CBC and cascade functions defined in Section 6.4. We show that both
are computational UHFs. The third construction is based on PMAC0 from Section 6.11.

7.2.1 Construction 1: UHFs using polynomials

We start with a UHF construction using polynomials modulo a prime. Let ` be a (poly-bounded)
length parameter and let p be a prime. We define a hash function Hpoly that hashes a message
m 2 Z`

p to a single element t 2 Zp. The key space is K := Zp.

Let m be a message, so m = (a1, a2, . . . , av) 2 Z`
p for some 0  v  `. Let k 2 Zp be a key.

The hash function Hpoly(k, m) is defined as follows:

Hpoly

�

k, (a1, . . . , av)
�

:= kv + a1k
v�1 + a2k

v�2 + . . . + av�1k + av 2 Zp (7.3)
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That is, we use (1, a1, a2, . . . , av) as the vector of coe�cients of a polynomial f(X) of degree v and
then evaluate f(X) at a secret point k.

A very useful feature of this hash function is that it can be evaluated without knowing the
length of the message ahead of time. One can feed message blocks into the hash as they become
available. When the message ends we obtain the final hash. We do so using Horner’s method for
polynomial evaluation:

Input: m = (a1, a2, . . . , av) 2 Z`
p and key k 2 Zp

Output: t := Hpoly(k, m)
1. Set t 1
2. For i 1 to v:
3. t t · k + ai 2 Zp

4. Output t

It is not di�cult to show that this algorithm produces the same value as defined in (7.3). Observe
that a long message can be processed one block at a time using little additional space. Every
iteration takes one multiplication and one addition.

On a machine that has several multiplication units, say four units, we can use a 4-way parallel
version of Horner’s method to utilize all the available units and speed up the evaluation of Hpoly.
Assuming the length of m is a multiple of 4, simply replace lines (2) and (3) above with the following

2. For i 1 to v incrementing i by 4 at every iteration:
3. t t · k4 + ai · k3 + ai+1 · k2 + ai+2 · k + ai+3 2 Zp

One can precompute the values k2, k3, k4 in Zp. Then at every iteration we process four blocks of
the message using four multiplications that can all be done in parallel.

Security as a UHF. Next we show that Hpoly is an (`/p)-UHF. If p is super-poly, this implies
that `/p is negligible, which means that Hpoly is a statistical UHF.

Lemma 7.2. The function Hpoly over (Zp, (Zp)`, Zp) defined in (7.3) is an (`/p)-UHF.

Proof. Consider two distinct messages m0 = (a1, . . . , au) and m1 = (b1, . . . , bv) in (Zp)`. We show
that Pr[Hpoly(k, m0) = Hpoly(k, m1)]  `/p, where the probability is over the random choice of
key k in Zp. Define the two polynomials:

f(X) := Xu + a1X
u�1 + a2X

u�2 + . . . + au�1X + au

g(X) := Xv + b1X
v�1 + b2X

v�2 + . . . + bv�1X + bv
(7.4)

in Zp[X]. Then, by definition of Hpoly we need to show that

Pr[f(k) = g(k)]  `/p

where k is uniform in Zp. In other words, we need to bound the number of points k 2 Zp for which
f(k)�g(k) = 0. Since the messages m0 and m1 are distinct we know that f(X)�g(X) is a nonzero
polynomial. Furthermore, its degree is at most ` and therefore it has at most ` roots in Zp. It
follows that there are at most ` values of k 2 Zp for which f(k) = g(k) and therefore, for a random
k 2 Zp we have Pr[f(k) = g(k)]  `/p as required. 2
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Why the leading term kv in Hpoly(k, m)? The definition of Hpoly(k, m) in (7.3) includes a
leading term kv. This term ensures that the function is a statistical UHF for variable size inputs.
If instead we defined Hfpoly(k, m) without this term, namely

Hfpoly

�

k, (a1, . . . , av)
�

:= a1k
v�1 + a2k

v�2 + · · · + av�1k + av 2 Zp, (7.5)

then the result would not be a UHF for variable size inputs. For example, the two messages
m0 = (a1, a2) 2 Z2

p and m1 = (0, a1, a2) 2 Z3
p are a collision for Hfpoly under all keys k 2 Zp.

Nevertheless, in Exercise 7.3 we show that Hfpoly is a statistical UHF if we restrict its input space
to messages of fixed length, i.e., M := Z`

p for some `. In contrast, the function Hpoly defined in

(7.3) is a statistical UHF for the input space Z`
p containing messages of varying lengths.

Remark 7.1. The function Hpoly takes inputs in Z`
p and outputs values in Zp. This can be

di�cult to work with: we prefer to work with functions that operate on blocks of n-bits for some n.
We can adapt the definition of Hpoly in (7.3) so that instead of working in Zp, arithmetic is done
in the finite field GF(2n). This version of Hpoly is an `/2n-UHF using the exact same analysis as
in Lemma 7.2. It outputs values in GF(2n). In Exercise 7.2 we show that simply defining Hpoly

modulo 2n (i.e., working in Z2n) is a completely insecure UHF. 2

Caution in using UHFs. UHFs can be brittle — an adversary who learns the value of the
function at a few points can completely recover the secret key. For example, the value of Hpoly(k, ·)
at a single point completely exposes the secret key k 2 Zp. Indeed, if m = (a1), since Hpoly(k, m) =
k + a1 an adversary who has both m and Hpoly(k, m) immediately obtains k 2 Zp. Consequently,
in all our applications of UHFs we will always hide values of the UHF from the adversary, either
by encrypting them or by other means.

Mathematical details. The definition of Hpoly requires a prime p. So far we simply assumed
that p is a public value picked at the beginning of time and fixed forever. In the formal UHF
framework (Section 7.1.2) the prime p is a system parameter, denoted by ⇤. It is generated by a
system parameter generation algorithm P that takes the security parameter � as input and outputs
some prime p.

More precisely, let L : Z ! Z be some function that maps the security parameter to the
desired bit length of the prime. Then the formal description of Hpoly includes a description of an
algorithm P that takes the security parameter � as input and outputs a prime p of length L(�)
bits. Specifically, ⇤ := p and

K�,p = Zp, M�,p = Z`(�)
p , and T�,p = Zp,

where ` : Z! Z�0 is poly-bounded. By Lemma 7.2 we know that

UHFadv[A, Hpoly](�)  `(�)/2L(�)

which is a negligible function of � provided 2L(�) is super-poly.

7.2.2 Construction 2: CBC and cascade are computational UHFs

Next we show that the CBC and cascade constructions defined in Section 6.4 are computational
UHFs. More generally, we show that any prefix-free secure PRF that is also extendable is a
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computational UHF. Recall that a PRF F over (K, X`, Y) is extendable if for all k 2 K, x, y 2
X`�1, and a 2 X we have:

if F (k, x) = F (k, y) then F (k, x k a) = F (k, y k a).

In the previous chapter we showed that both CBC and cascade are prefix-free secure PRFs and
that both are extendable.

Theorem 7.3. Let PF be an extendable and prefix-free secure PRF defined over (K, X`+1, Y)
where |Y| is super-poly and |X | > 1. Then PF is a computational UHF defined over (K, X`, Y).

In particular, for every UHF adversary A that plays Attack Game 7.1 with respect to PF, there
exists a prefix-free PRF adversary B, which is an elementary wrapper around A, such that

UHFadv[A,PF ]  PRFpfadv[B,PF ] +
1

|Y| . (7.6)

Moreover, B makes only two queries to PF.

Proof. Let A be a UHF adversary attacking PF . We build a prefix-free PRF adversary B attack-
ing PF . B plays the adversary in the PRF Attack Game 4.2. Its goal is to distinguish between
Experiment 0 where it queries a function f  PF (k, ·) for a random k 2 K, and Experiment 1
where it queries a random function f  R Funs[X`+1, Y].

We first give some intuition as to how B works. B starts by running the UHF adversary A to
obtain two distinct messages m0, m1 2 X`. By the definition of A, we know that in Experiment 0
we have

Pr
⇥

f(m0) = f(m1)
⇤

= UHFadv[A,PF ]

while in Experiment 1, since f is a random function and m0 6= m1, we have

Pr
⇥

f(m0) = f(m1)
⇤

= 1/|Y|.

Hence, if B could query f at m0 and m1 it could distinguish between the two experiments with
advantage

�

�UHFadv[A,PF ]� 1/|Y|��, which would prove the theorem.
Unfortunately, this design for B does not quite work: m0 might be a proper prefix of m1, in

which case B is not allowed to query f at both m0 and m1, since B is supposed to be a prefix-
free adversary. However, the extendability property provides a simple solution: we extend both
m0 and m1 by a single block a 2 X so that m0 k a is no longer a proper prefix of m1 k a. If
m0 = (a1, . . . , au) and m1 = (b1, . . . , bv), then any a 6= bu+1 will do the trick. Moreover, by the
extension property we know that

PF (k, m0) = PF (k, m1) =) PF (k, m0 k a) = PF (k, m1 k a).

Since m0 k a is no longer a proper prefix of m1 k a, our B is free to query f at both inputs and
obtain the desired advantage in distinguishing Experiment 0 from Experiment 1.

In more detail, adversary B works as follows:
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run A to obtain two distinct messages m0, m1 in X`, where
m0 = (a1, . . . , au) and m1 = (b1, . . . , bv)

assume u  v (otherwise, swap the two messages)
if m0 is a proper prefix of m1

choose some a 2 X such that a 6= au+1

m0
0  m0 k a and m0

1  m1 k a
else

m0
0  m0 and m0

1  m1

// At this point we know that m0
0 is not a proper prefix of m0

1 nor vice versa.

query f at m0
0 and m0

1 and obtain t0 := f(m0
0) and t1 := f(m0

1)

if t0 = t1 output 1; otherwise output 0

Observe that B is a prefix-free PRF adversary that only makes two queries to f , as required.
Now, for b = 0, 1 let pb be the probability that B outputs 1 in Experiment b. Then in Experiment 0,
we know that

p0 := Pr
⇥

f(m0
0) = f(m0

1)
⇤ � Pr

⇥

f(m0) = f(m1)
⇤

= UHFadv[A,PF ]. (7.7)

In Experiment 1, we know that

p1 := Pr
⇥

f(m0
0) = f(m0

1)
⇤

= 1/|Y|. (7.8)

Therefore, by (7.7) and (7.8):

PRFpfadv[B,PF ] = |p0 � p1| � p0 � p1 � UHFadv[A,PF ]� 1/|Y|,

from which (7.6) follows. 2

PF as a multi-query UHF. Lemma 7.1 shows that PF is also a multi-query UHF. However, a
direct proof of this fact gives a better security bound.

Theorem 7.4. Let PF be an extendable and prefix-free secure PRF defined over (K, X`+1, Y),
where |X | and |Y| are super-poly and ` is poly-bounded. Then PF is a multi-query UHF defined
over (K, X`, Y).

In particular, if |X | > `Q, then for every Q-query UHF adversary A, there exists a Q-query
prefix-free PRF adversary B, which is an elementary wrapper around A, such that

MUHFadv[A,PF ]  PRFpfadv[B,PF ] +
Q2

2|Y| . (7.9)

Proof. The proof is similar to the proof of Theorem 7.3. Adversary B begins by running the Q-
query UHF adversary A to obtain distinct messages m1, . . . , ms in X`, where s  Q. Next, B
finds an a 2 X such that a is not equal to any of the message blocks in m1, . . . , ms. Since |X | is
super-poly, we may assume it is larger than `Q, and therefore this a must exist. Let m0

i := mi k a
for i = 1, . . . , s. Then, by definition of a, the set {m0

1, . . . , m
0
s} is a prefix-free set. The prefix-

free adversary B now queries the challenger at m0
1, . . . , m

0
s and obtains t1, . . . , ts in response. B

outputs 1 if there exist i 6= j such that tj = tj and outputs 0 otherwise.
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To analyze the advantage of B we let pb be the probability that B outputs 1 in PRF Experi-
ment b, for b = 0, 1. As in (7.7), the extension property implies that

p0 � MUHFadv[A,PF ].

In Experiment 1 the union bound implies that

p1  Q(Q� 1)

2|Y| .

Therefore,

PRFpfadv[B,PF ] = |p0 � p1| � p0 � p1 � MUHFadv[A,PF ]� Q2

2|Y|
from which (7.9) follows. 2

Applications of Theorems 7.3 and 7.4. Applying Theorem 7.4 to CBC and cascade proves
that both are computational UHFs. We state the resulting error bounds in the following corol-
lary, which follows from the bounds in the CBC theorem (Theorem 6.3) and the cascade theorem
(Theorem 6.4).1

Corollary 7.5. Let F be a secure PRF defined over (K, X , Y). Then the CBC construction FCBC

(assuming Y = X is super-poly size) and the cascade construction F ⇤ (assuming Y = K), which
take inputs in X`, for poly-bounded ` are computational UHFs.

In particular, for every Q-query UHF adversary A, there exist prefix-free PRF adversaries
B

1

, B
2

, which are elementary wrappers around A, such that

MUHFadv[A, FCBC]  PRFpfadv[B
1

, F ] +
Q2(` + 1)2 + Q2

2|Y| and (7.10)

MUHFadv[A, F ⇤]  Q(` + 1) · PRFpfadv[B
2

, F ] +
Q2

2|Y| . (7.11)

Setting Q := 2 in (7.10)–(7.11) gives the error bounds on FCBC and F ⇤ as UHFs.

7.2.3 Construction 3: a parallel UHF from a small PRF

The CBC and cascade constructions yield e�cient UHFs from small domain PRFs, but they are
inherently sequential: they cannot take advantage of hardware parallelism. Fortunately, construct-
ing a UHF from a small domain PRF that is suitable for a parallel architecture is not di�cult. An
example called XOR-hash, denoted F�, is shown in Fig. 7.2. XOR-hash is defined over (K, X`, Y),
where Y = {0, 1}n, and is built from a PRF F defined over (K, X ⇥ {1, . . . , `}, Y). The XOR-hash
works as follows:

input: k 2 K and m = (a1, . . . , av) 2 X` for some 0  v  `
output: a tag in Y

t 0n

for i = 1 to v do:
t t� F (k, (ai, i) )

output t

1Note that Theorem 7.4 compels us to apply Theorems 6.3 and 6.4 using `+ 1 in place of `.
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Figure 7.2: A parallel UHF from a small PRF

Evaluating F� can easily be done in parallel. The following theorem shows that F� is a compu-
tational UHF. Note that unlike our previous UHF constructions, security does not depend on the
length of the input message. In the next section we will use F� to construct a secure MAC suitable
for parallel architectures.

Theorem 7.6. Let F be a secure PRF and assume |Y| is super-poly. Then F� is a computational
UHF.

In particular, for every UHF adversary A, there exists a PRF adversary B, which is an elemen-
tary wrapper around A, such that

UHFadv[A, F�]  PRFadv[B, F ] +
1

|Y| . (7.12)

Proof. The proof is a sequence of two games.

Game 0. The challenger in this game computes:

k  R K, f  F (k, ·)
The adversary A outputs two distinct messages U, V in X`. Let u := |U | and v := |V |. We define
W0 to be the event that the condition

u�1
M

i=0

f(U [i], i) =
v�1
M

j=0

f(V [j], j) (7.13)

holds in Game 0. Clearly, we have

Pr[W0] = UHFadv[A, F�]. (7.14)

Game 1. We play the “PRF card” and replace the challenger’s computation by

f  R Funs[X ⇥ {1, . . . , `}, Y]
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We define W1 to be the event that the condition (7.13) holds in Game 1.
As usual, there is a PRF adversary B such that

�

�Pr[W0]� Pr[W1]
�

�  PRFadv[B, F ] (7.15)

The crux of the proof is in bounding Pr[W1], namely bounding the probability that (7.13) holds for
the messages U, V . Assume u � v, swapping U and V if necessary. It is easy to see that since U
and V are distinct, there must be an index i⇤ such that the pair (U [i⇤], i⇤) on the left side of (7.13)
does not appear among the pairs (V [j], j) on the right side of (7.13): if u > v then i⇤ = u� 1 does
the job; otherwise, if u = v, then there must exist some i⇤ such that U [i⇤] 6= V [i⇤], and this i⇤ does
the job.

We can re-write (7.13) as

f(U [i⇤], i⇤) =
M

i 6=i⇤

f(U [i], i) �
M

j

f(V [j], j). (7.16)

Since the left and right sides of (7.16) are independent, and the left side is uniformly distributed
over Y, equality holds with probability 1/|Y|. It follows that

Pr[W1] = 1/|Y| (7.17)

The proof of the theorem follows from (7.14), (7.15), and (7.17). 2

In Exercise 7.28 we generalize Theorem 7.6 to derive bounds for F� as a multi-query UHF.

7.3 PRF-UHF composition: constructing MACs using UHFs

We now proceed to show that the hash-then-PRF paradigm yields a secure PRF provided the
hash is a computational UHF. ECBC, NMAC, and PMAC0 can all be viewed as instances of
this construction and their security follows quite easily from the security of the hash-then-PRF
paradigm.

Let H be a hash function defined over (KH , M, X ) and let F be a PRF defined over (KF , X , T ).
As usual, we assume M contains much longer messages than X , so that H hashes long inputs to
short digests. We build a new PRF, denoted F 0, by composing the hash function H with the
PRF F , as shown in Fig. 7.3. More precisely, F 0 is defined as follows:

F 0�(k1, k2), m
�

:= F (k2, H(k1, m) ) (7.18)

We refer to F 0 as the composition of F and H. It takes inputs in M and outputs values in
T using a key (k1, k2) in KH ⇥ KF . Thus, we obtain a PRF with the same output space as the
underlying F , but taking much longer inputs. The following theorem shows that F 0 is a secure
PRF.

Theorem 7.7 (PRF-UHF composition). Suppose H is a computational UHF and F is a secure
PRF. Then F 0 defined in (7.18) is a secure PRF.
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Figure 7.3: PRF-UHF composition: MAC signing

In particular, suppose A is a PRF adversary that plays Attack Game 4.2 with respect to F 0 and
issues at most Q queries. Then there exist a PRF adversary BF and a UHF adversary BH ,
which are elementary wrappers around A, such that

PRFadv[A, F 0]  PRFadv[BF , F ] + (Q2/2) · UHFadv[BH , H]. (7.19)

More generally, there exists a Q-query UHF adversary B0
H , which is an elementary wrapper

around A such that

PRFadv[A, F 0]  PRFadv[BF , F ] + MUHFadv[B0
H , H]. (7.20)

To understand why H needs to be a UHF let us suppose for a minute that it is not. In
particular, suppose it was easy to find distinct m0, m1 2 M such that H(k1, m0) = H(k1, m1),
without knowledge of k1. This collision on H implies that F 0((k1, k2), m0) = F 0((k1, k2), m1).
But then F 0 is clearly not a secure PRF: the adversary could ask for t0 := F 0((k1, k2), m0) and
t1 := F 0((k1, k2), m1) and then output 1 only if t0 = t1. When interacting with F 0 the adversary
would always output 1, but for a random function he would most often output 0. Thus, the
adversary successfully distinguishes F 0 from a random function. This argument shows that for F 0

to be a PRF it must be di�cult to find collisions for H without knowledge of k1. In other words,
for F 0 to be a PRF the hash function H must be a UHF. Theorem 7.7 shows that this condition is
su�cient.

Remark 7.2. The bound in Theorem 7.7 is tight. Consider the UHF Hpoly discussed in Sec-
tion 7.2.1. For concreteness, let us assume that ` = 2, so the message space for Hpoly is Z2

p, the
output space is Zp, and the collision probability is ✏ = 1/p. In Exercise 7.27, you are asked to
show that for any fixed hash key k1, among

p
p random inputs to Hpoly(k1, ·), the probability of a

collision is bounded from below by a constant; moreover, for any such collision, one can e�ciently
recover the key k1. Now consider the MAC obtained from PRF-UHF composition using Hpoly. If
the adversary ever finds two messages m0, m1 that cause an internal collision (i.e., a collision on
Hpoly) he can recover the secret Hpoly key and then break the MAC. This shows that the term
(Q2/2)✏ that appears in (7.19) cannot be substantially improved upon. 2

Proof of Theorem 7.7. We now prove that the composition of F and H is a secure PRF.

Proof idea. Let A be an e�cient PRF adversary that plays Attack Game 4.2 with respect to F 0.
We derive an upper bound on PRFadv[A, F 0]. That is, we bound A’s ability to distinguish F 0 from
a truly random function in Funs[M, X ]. As usual, we first observe that replacing the underlying
secure PRF F with a truly random function f does not change A’s advantage much. Next, we will
show that, since f is a random function, the only way A can distinguish F 0 := f(H(k1, m)) from a
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truly random function is if he can find two inputs m0, m1 such that H(k1, m0) = H(k1, m1). But
since H is a computational UHF, A cannot find collisions for H(k1, ·). Consequently, F 0 cannot be
distinguished from a random function. 2

Proof. We prove the bound in (7.20). Equation (7.19) follows from (7.20) by Lemma 7.1. We let
A interact with closely related challengers in three games. For j = 0, 1, 2, we define Wj to be the
event that A outputs 1 at the end of Game j.

Game 0. The Game 0 challenger is identical to the challenger in Experiment 0 of the PRF Attack
Game 4.2 with respect to F 0. Without loss of generality we assume that A’s queries to F 0 are all
distinct. The challenger works as follows:

k1  R KH , k2  R KF

upon receiving the ith query mi 2M (for i = 1, 2, . . .) do:
xi  H(k1, mi)
ti  F (k2, xi)
send ti to the adversary

Note that since A is guaranteed to make distinct queries, all the mi values are distinct.

Game 1. Now we play the usual “PRF card,” replacing the function F (k2, ·) by a truly random
function f in Funs[X , T ], which we implement as a faithful gnome (as in Section 4.4.2). The Game 1
challenger works as follows:

k1  R KH , t01, . . . , t0Q  R T
upon receiving the ith query mi 2M (for i = 1, 2, . . .) do:

xi  H(k1, mi)
ti  t0i

(⇤) if xi = xj for some j < i then ti  tj
send ti to the adversary

For i = 1, . . . , Q, the value t0i is chosen in advance to be the default, random value for ti = f(xi).
Although the messages are distinct, their hash values might not be. The line marked with a (⇤)
ensures that the challenger emulates a function in Funs[X , T ] — if two hash values collide, the
challenger’s response to both queries is the same. As usual, one can easily show that there is a
PRF adversary BF whose running time is about the same as that of A such that:

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[BF , F ] (7.21)

Game 2. Next, we make our gnome forgetful, by removing the line marked (⇤).
We show that A cannot distinguish Games 1 and 2 using the fact that A cannot find collisions for

H. Formally, we analyze the quantity |Pr[W2]�Pr[W1]| using the Di↵erence Lemma (Theorem 4.7).
Let Z be the event that in Game 2 we have xi = xj for some i 6= j. Event Z is essentially the winning
condition in the multi-query UHF game (Attack Game 7.2) with respect to H. In particular, there
is a Q-query UHF adversary B0

H that wins Attack Game 7.2 with probability equal to Pr[Z].
Adversary B0

H simply emulates the challenger in Game 2 until A terminates and then outputs the
queries m1, m2, . . . from A as its final list. This works, because in Game 2, the challenger does not
really need the hash key k1: it simply responds to each query with a random element of T . Thus,
adversary B0

H can easily emulate the challenger in Game 2 without knowledge of k1. By definition
of Z, we have MUHFadv[B0

H , H] = Pr[Z].
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Clearly, Games 1 and 2 proceed identically unless event Z occurs; in particular, W2 ^ Z̄ occurs
if and only if W1 ^ Z̄ occurs. Applying the Di↵erence Lemma, we obtain

�

�Pr[W2]� Pr[W1]
�

�  Pr[Z] = MUHFadv[B0
H , H]. (7.22)

Finishing the proof. The Game 2 challenger emulates for A a random function in Funs[M, T ]
and is therefore identical to an Experiment 1 PRF challenger with respect to F 0. We obtain

PRFadv[A, F 0] =
�

�Pr[W2]� Pr[W0]
�

� 
�

�Pr[W2]� Pr[W1]
�

�+
�

�Pr[W1]� Pr[W0]
�

� =

PRFadv[BF , F ] + MUHFadv[B0
H , H]

which proves (7.20), as required. 2

7.3.1 Using PRF-UHF composition: ECBC and NMAC security

Using Theorem 7.7 we can quickly prove security of many MAC constructions. It su�ces to show
that the MAC signing algorithm can be described as the composition of a PRF with a UHF. We
begin by showing that ECBC and NMAC can be described this way and give more examples in the
next two sub-sections.

Security of ECBC and NMAC follows directly from PRF-UHF composition. The proof for both
schemes runs as follows:

• First, we proved that CBC and cascade are prefix-free secure PRFs (Theorems 6.3 and 6.4).
We observed that both are extendable.

• Next, we showed that any extendable prefix-free secure PRF is also a computational UHF
(Theorem 7.3). In particular, CBC and cascade are computational UHFs.

• Finally, we proved that the composition of a computational UHF and a PRF is a secure PRF
(Theorem 7.7). Hence, ECBC and NMAC are secure PRFs.

More generally, the encrypted PRF construction (Theorem 6.5) is an instance of PRF-UHF com-
position and hence its proof follows from Theorem 7.7. The concrete bounds in the ECBC and
NMAC theorems (Theorems 6.6 and 6.7) are obtained by plugging (7.10) and (7.11), respectively,
into (7.20).

One can simplify the proof of ECBC and NMAC security by directly proving that CBC and
cascade are computational UHFs. We proved that they are prefix-free secure PRFs, which is more
than we need. However, this stronger result enabled us to construct other secure MACs such as
CMAC (see Section 6.7).

7.3.2 Using PRF-UHF composition with polynomial UHFs

Of course, one can use the PRF-UHF construction with a polynomial-based UHF, such as Hpoly.
Depending on the underlying hardware, this construction can be much faster than either ECBC,
NMAC, or PMAC0 especially for very long messages.

Recall that Hpoly hashes messages in Z`
p to digests in Zp, where p is a prime. Now, we may

very well want to use for our PRF a block cipher, like AES, that takes as input an n-bit block.
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To make this work, we have to somehow make an adjustment so that the digest space of the
hash is equal to input space of the PRF. One way to do this is to choose the prime p so that it
is just a little bit smaller that 2n, so that we can encode hash digests as inputs to the PRF. This
approach works; however, it has the drawback that we have to view the input to the hash as a
sequence of elements of Zp. So, for example, with n = 128 as in AES, we could choose a 128-bit
prime, but then the input to the hash would have to be broken up into, say, 120-bit (i.e., 15 byte)
blocks. It would be even more convenient if we could also process the input to the hash directly
as a sequence of n-bit blocks. Part (d) of Exercise 7.25 shows how this can be done, using a prime
that is just a little bit bigger than 2n. Yet another approach is that instead of basing the hash
on arithmetic modulo a prime p, we instead base it on arithmetic in the finite field GF(2n), as
discussed in Remark 7.1.

7.3.3 Using PRF-UHF composition: PMAC0 security

Next we show that the PMAC0 construction discussed in Section 6.11 is an instance of PRF-UHF
composition. To this end, we describe PMAC0 as the composition of a PRF bF and a UHF bH. The
PRF bF is the final (bottom-most) application of F in Fig. 6.9 just prior to outputting the final
tag. The UHF bH is the rest of Fig. 6.9. This bH is the XOR-hash construction (see Section 7.2.3)
applied to a certain PRF F 0 described next.

Suppose F is defined over (K, {0, 1}n, {0, 1}n) and set N := 2n. The PRF F 0 is itself the result
of applying PRF-UHF composition to the PRF F and a certain hash function H1. This H1 has
key space {0, . . . , N � 1}, input space {0, . . . N � 1}⇥ {1, . . . , `}, and output space {0, . . . , N � 1}.
It is defined as follows:

H1
�

k, (a, i)
�

:= a + i · k mod N.

The resulting PRF F 0, obtained by composing F with H1, is shown in Fig. 7.4.
The fact that we are doing arithmetic modulo a number N that is not a prime means that we

cannot just view H1 as a special case of Hpoly. Nevertheless, it is not hard to show that H1 is a
(2`/N)-UHF and you are asked to do this in Exercise 7.29. Then the PMAC0 security theorem
(Theorem 6.11) follows by the following chain of reasoning:

• first, PRF-UHF composition is applied to F and H1 to show that F 0 is a secure PRF,

• next, applying the XOR-hash construction to F 0 proves that bH is a computational UHF,

• finally, PRF-UHF composition is used again, this time applied to F and bH, to argue that
PMAC0 is a secure PRF.

While this analysis is easy, and is enough to show that PMAC0 is secure, it does not quite yield
the concrete security bound in (6.27): we get an additive error term of 2Q2`3/N instead of the
2Q2`2dlog2 `e/N in (6.27). However, Exercise 7.29 describes a more refined analysis that yields this
better security bound.

One can avoid this more refined analysis and get an even better security bound (essentially
erasing the log2 ` factor in (6.27)) by working in a finite field: either working modulo a prime
number that is close to N or working in GF(2n). For example, one could choose a prime p a little
bit smaller than N and define H 0(k, (a, i)) = (a + ik) mod p. We could also choose a prime p a
bit larger than N and define H 00(k, (a, i)) = (a + (ik mod p)) mod N . There are tradeo↵s among
all of these options. Working directly modulo N as in PMAC0 is the easiest to implement and the
fastest on some architectures, but gives a slightly worse security bound (the log2 ` factor in (6.27)).
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Figure 7.4: The PRF F 0 in the analysis of PMAC0

7.4 The Carter-Wegman MAC

In this section we present a di↵erent paradigm for constructing secure MAC systems that o↵ers
di↵erent tradeo↵s compared to PRF-UHF composition.

Recall that in PRF-UHF composition the adversary’s advantage in breaking the MAC after
seeing Q signed messages grows as ✏ · Q2/2 when using an ✏-UHF. Therefore to ensure security
when many messages need to be signed the ✏-UHF must have a su�ciently small ✏ so that ✏ · Q2/2
is small. This can hurt the performance of an ✏-UHF like Hpoly where the smaller ✏ the slower
the hash function. As an example, suppose that after signing Q := 232 messages the adversary’s
advantage in breaking the MAC should be no more than 2�64 then ✏ must be at most 1/2127.

Our second MAC paradigm, called a Carter-Wegman MAC, maintains the same level of security
as PRF-UHF composition, but does so with a much larger value of ✏. With the parameters in the
example above, ✏ need only be 1/264 and this can improve the speed of the hash function, especially
for long messages. The downside is that the resulting tags are longer than those generated by a PRF-
UHF composition MAC of comparable security. In Exercise 7.7 we explore a di↵erent randomized
MAC construction that achieves the same security as Carter-Wegman with the same ✏, but with
shorter tags.

The Carter-Wegman MAC is our first example of a randomized MAC system. The signing
algorithm is randomized and there are many valid tags for every message.

To describe the Carter-Wegman MAC first fix some large integer N and set T := ZN , the group
of size N where addition is defined “modulo N .” We use a hash function H and a PRF F that
output values in ZN :

• H is a hash function defined over (KH , M, T ),
• F is a PRF defined over (KF , R, T ).

The Carter-Wegman MAC, denoted ICW, takes inputs in M and outputs tags in R ⇥ T . It uses
keys in KH ⇥ KF . The Carter-Wegman MAC derived from F and H works as follows (see
also Fig. 7.5):

• For key (k1, k2) and message m we define

S
�

(k1, k2), m
�

:=
r  R R
v  H(k1, m) + F (k2, r) 2 ZN // addition modulo N
output (r, v)

• For key (k1, k2), message m, and tag (r, v) we define
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Figure 7.5: Carter-Wegman MAC signing algorithm

V
�

(k1, k2), m, (r, v)
�

:=
v⇤  H(k1, m) + F (k2, r) 2 ZN // addition modulo N
if v = v⇤ output accept; otherwise output reject

The Carter-Wegman signing algorithm uses a randomizer r 2 R. As we will see, the set R needs
to be su�ciently large so that the probability that two tags use the same randomizer is negligible.

An encrypted UHF MAC. The Carter-Wegman MAC can be described as an encryption of
the output of a hash function. Indeed, let E = (E, D) be the cipher

E(k, m) :=
�

r  R R, output (r, m + F
�

k, r)
� 

and D
�

k, (r, c)
�

:= c� F (k, r)

where F is a PRF defined over (KF , R, T ). This cipher is CPA secure when F is a secure PRF as
shown in Example 5.2. Then the Carter-Wegman MAC can be written as:

S
�

(k1, k2), m
�

:= E(k2, H(k1, m)
�

V
�

(k1, k2), m, t
�

:=

(

accept if D(k2, t) = H(k1, m),

reject otherwise.

which we call the encrypted UHF MAC system derived from E and H.
Why encrypt the output of a hash function? Recall that in the PRF-UHF composition MAC,

if the adversary finds two messages m1, m2 that collide on the hash function (i.e., H(k1, m1) =
H(k1, m2)) then the MAC for m1 is the same as the MAC for m2. Therefore, by requesting the
tags for many messages the adversary can identify messages m1 and m2 that collide on the hash
function (assuming collisions on the PRF are unlikely). A collision m1, m2 on the UHF can reveal
information about the hash function key k1 that may completely break the MAC. To prevent this we
must use an ✏-UHF with a su�ciently small ✏ to ensure that with high probability the adversary will
never find a hash function collision. In contrast, by encrypting the output of the hash function with
a CPA secure cipher we prevent the adversary from learning when a hash function collision occurred:
the tags for m1 and m2 are di↵erent, with high probability, even if H(k1, m1) = H(k1, m2). This
lets us maintain security with a much smaller ✏.

The trouble is that the encrypted UHF MAC is not generally secure even when (E, D) is
CPA secure and H is an ✏-UHF. For example, we show in Remark 7.5 below that the Carter-
Wegman MAC is insecure when the hash function H is instantiated with Hpoly. To obtain a secure
Carter-Wegman MAC we strengthen the hash function H and require that it satisfy a stronger
property called di↵erence unpredictability defined below. Exercise 9.12 explores other aspects of
the encrypted UHF MAC.
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Security of the Carter-Wegman MAC. To prove security of ICW we need the hash function
H to satisfy a stronger property than universality (UHF). We refer to this stronger property as
di↵erence unpredictability. Roughly speaking, it means that for any two distinct messages, it
is hard to predict the di↵erence (in ZN ) of their hashes. As usual, a game:

Attack Game 7.3 (di↵erence unpredicability). For a keyed hash function H defined over
(K, M, T ), where T = ZN , and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs two distinct messages m0, m1 2M and a value � 2 T .

We say that A wins the game if H(k, m1) �H(k, m0) = �. We define A’s advantage with respect
to H, denoted DUFadv[A, H], as the probability that A wins the game. 2

Definition 7.5. Let H be a keyed hash function defined over (K, M, T ),

• We say that H is an ✏-bounded di↵erence unpredictable function, or ✏-DUF, if
DUFadv[A, H]  ✏ for all adversaries A (even ine�cient ones).

• We say that H is a statistical DUF if it is an ✏-DUF for some negligible ✏.

• We say that H is a computational DUF if DUFadv[A, H] is negligible for all e�cient
adversaries A.

Remark 7.3. Note that as we have defined a DUF, the digest space T must be of the form ZN

for some integer N . We did this to keep things simple. More generally, one can define a notion
of di↵erence unpredictability for a keyed hash function whose digest space comes equipped with
an appropriate di↵erence operator (in the language of abstract algebra, T should be an abelian
group). Besides ZN , another popular digest space is the set of all n-bit strings, {0, 1}n, with the
XOR used as the di↵erence operator. In this setting, we use the terms ✏-XOR-DUF and statis-
tical/computational XOR-DUF to correspond to the terms ✏-DUF and statistical/computational
DUF. 2

When H is a hash function defined over (K, M, T ), an alternative characterization of the ✏-DUF
property is the following:

for every pair of distinct messages m0, m1 2M, and every � 2 T we have
Pr[H(k, m1)�H(k, m0) = �]  ✏ where the probability is over the random choice of k 2 K.

Clearly if H is an ✏-DUF then H is also an ✏-UHF: a UHF adversary can be converted into a
DUF adversary that wins with the same probability (just set � = 0).

We give a simple example of a statistical DUF that is very similar to the hash function Hpoly

defined in equation (7.3). Recall that Hpoly is a UHF defined over (Zp, (Zp)`, Zp). It is clearly
not a DUF: for a 2 Zp set m0 := (a) and m1 := (a + 1) so that both m0 and m1 are tuples over Zp

of length 1. Then for every key k, we have

Hpoly(k, m1)�Hpoly(k, m0) = (k + a + 1)� (k + a) = 1

which lets the attacker win the DUF game.
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A simple modification to Hpoly yields a good DUF. For a message m = (a1, a2, . . . , av) 2 Z`
p

and key k 2 Zp define a new hash function Hxpoly(k, m) as:

Hxpoly(k, m) := k · Hpoly(k, m) = kv+1 + a1k
v + a2k

v�1 + . . . + avk 2 Zp (7.23)

Lemma 7.8. The function Hxpoly over (Zp, (Zp)`, Zp) defined in (7.33) is an (` + 1)/p-DUF.

Proof. Consider two distinct messages m0 = (a1, . . . , au) and m1 = (b1, . . . , bv) in (Zp)` and an
arbitrary value � 2 Zp. We want to show that Pr[Hxpoly(k, m1) �Hxpoly(k, m0) = �]  (` + 1)/p,
where the probability is over the random choice of key k in Zp. Just as in the proof of Lemma 7.2,
the inputs m0 and m1 define two polynomials f(X) and g(X) in Zp[X], as in (7.4). However,
Hxpoly(k, m1)�Hxpoly(k, m0) = � holds if and only if k is root of the polynomial X(g(X)�f(X))��,
which is a nonzero polynomial of degree at most ` + 1, and so has at most ` + 1 roots in Zp. Thus,
the chances of choosing such a k is at most (` + 1)/p. 2

Remark 7.4. We can modify Hxpoly to operate on n-bit blocks by doing all arithmetic in the finite
field GF(2n) instead of Zp. The exact same analysis as in Lemma 7.8 shows that the resulting hash
function is an (` + 1)/2n-XOR-DUF. 2

We now turn to the security analysis of the Carter-Wegman construction.

Theorem 7.9 (Carter-Wegman security). Let F be a secure PRF defined over (KF , R, T )
where |R| is super-poly. Let H be an computational DUF defined over (KH , M, T ). Then the
Carter-Wegman MAC ICW derived from F and H is a secure MAC.

In particular, for every MAC adversary A that attacks I
CW

as in Attack Game 6.1, there exist
a PRF adversary BF and a DUF adversary BH , which are elementary wrappers around A, such
that

MACadv[A, I
CW

]  PRFadv[BF , F ] + DUFadv[BH , H] +
Q2

2|R| +
1

|T | . (7.24)

Remark 7.5. To understand why H needs to be a DUF, let us suppose for a minute that it
is not. In particular, suppose it was easy to find distinct m0, m1 2 M and � 2 T such that
H(k1, m1) = H(k1, m0) + �, without knowledge of k1. The adversary could then ask for the tag on
the message m0 and obtain (r, v) where v = H(k1, m0) + F (k2, r). Since

v = H(k1, m0) + F (k2, r) =) v + � = H(k1, m1) + F (k2, r),

the tag (r, v + �) is a valid tag for m1. Therefore,
�

m1, (r, v + �)
�

is an existential forgery on
ICW. This shows that the Carter-Wegman MAC is easily broken when the hash function H is
instantiated with Hpoly. 2

Remark 7.6. We also note that the term Q2/2|R| in (7.24) corresponds to the probability that two
signing queries generate the same randomizer. In fact, if such a collision occurs, Carter-Wegman
may be completely broken for certain DUFs (including Hxpoly) — see Exercises 7.16 and 7.17. 2

Proof idea. Let A be an e�cient MAC adversary that plays Attack Game 6.1 with respect to
ICW. We derive an upper bound on MACadv[A, ICW]. As usual, we first replace the underlying
secure PRF F with a truly random function f 2 Funs[R, T ] and argue that this doesn’t change
the adversary’s advantage much. We then show that only three things can happen that enable the
adversary to generate a forged message-tag pair and that the probability for each of those is small:

268



1. The challenger might get unlucky and choose the same randomizer r 2 R to respond to two
separate signing queries. This happens with probability at most Q2/(2|R|).

2. The adversary might output a MAC forgery
�

m, (r, v)
�

where r 2 R is a fresh randomizer
that was never used to respond to A’s signing queries. Then f(r) is independent of A’s view
and therefore the equality v = H(k1, m) + f(r) will hold with probability at most 1/|T |.

3. Finally, the adversary could output a MAC forgery
�

m, (r, v)
�

where r = rj for some uniquely
determined signed message-tag pair (mj , (rj , vj)). But then

vj = H(k1, mj) + f(rj) and v = H(k1, m) + f(rj).

By subtracting the right equality from the left, the f(rj) term cancels, and we obtain

vj � v = H(k1, mj)�H(k1, m).

But since H is an computational DUF, the adversary can find such a relation with only
negligible probability.

2

Proof. We make the intuitive argument above rigorous by considering A’s behavior in three closely
related games. For j = 0, 1, 2, we define Wj to be the event that A wins Game j. Game 0 will be
identical to the original MAC attack game with respect to I. We then slightly modify each game in
turn and argue that the attacker will not detect these modifications. Finally, we argue that Pr[W3]
is negligible, which will prove that Pr[W0] is negligible, as required.

Game 0. We begin by reviewing the challenger in the MAC Attack Game 6.1 with respect to ICW.
We implement the challenger in this game as follows:

Initialization:
k1  R KH , k2  R KF

r1, . . . , rQ  R R // prepare randomizers needed for the game

upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:
vi  H(k1, mi) + F (k2, ri) 2 T
send (ri, vi) to the adversary

At the end of the game, A outputs a message-tag pair (m, (r, v)) that is not among the signed
message-tag pairs produced by the challenger. The winning condition in this game is defined to be
the result of the following subroutine:

if v = H(k1, m) + F (k2, r)
then return win
else return lose

Then, by construction
MACadv[A, ICW] = Pr[W0]. (7.25)

Game 1. We next play the usual “PRF card,” replacing the function F (k2, ·) by a truly random
function f in Funs[R, T ], which we implement as a faithful gnome (as in Section 4.4.2). Our
challenger in Game 1 thus works as follows:
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Initialization:
k1  R KH

r1, . . . , rQ  R R // prepare randomizers needed for the game
u0
0, u

0
1, . . . , u

0
Q  R T // prepare default f outputs

upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:
ui  u0

i
(1) if ri = rj for some j < i then ui  uj

vi  H(k1, mi) + ui 2 T
send (ri, vi) to the adversary

Suppose A makes exactly s  Q signing queries before outputting its forgery attempt (m, (r, v)).
The subroutine for the winning condition becomes:

(2) if r = rj for some j = 1, . . . , s
then u uj

else u u0
0

if v = H(k1, m) + u
then return win
else return lose.

For i = 1, . . . , Q, the value u0
i is chosen in advance to be the default, random value for ui = f(ri).

The tests at the lines marked (1) and (2) ensure that our gnome is faithful, i.e., that we emulate a
function in Funs[R, T ]. At (2), if the value u = f(r) has already been defined, we use that value;
otherwise, we use the fresh random value u0

0 for u.
As usual, one can show that there is a PRF adversary BF , just as e�cient as A, such that:

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[BF , F ] (7.26)

Game 2. We make our gnome forgetful. We do this by deleting the line marked (1) in the
challenger. In addition, we insert the following special test before the line marked (2) in the
winning subroutine:

if ri = rj for some 1  i < j  s then return lose

Let Z to be the event that ri = rj for some 1  i < j  Q. By the union bound we know that
Pr[Z]  Q2/(2|R|). Moreover, if Z does not happen, then Games 1 and 2 proceed identically.
Therefore, by the Di↵erence Lemma (Theorem 4.7), we obtain

�

�Pr[W2]� Pr[W1]
�

�  Pr[Z]  Q2/(2|R|) (7.27)

To bound Pr[W2], we decompose W2 into two events:

• W 0
2: A wins in Game 2 and r = rj for some j = 1, . . . , s;

• W 00
2 : A wins in Game 2 and r 6= rj for all j = 1, . . . , s.

Thus, we have W2 = W 0
2 [W 00

2 , and it su�ces to analyze these events separately, since

Pr[W2]  Pr[W 0
2] + Pr[W 00

2 ]. (7.28)
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Consider W 00
2 first. If this happens, then u = u0

0 and v = u+H(k1, m); that is, u0
0 = v�H(k1, m).

But since u0
0 and v �H(k1, m) are independent, this happens with probability 1/|T |. So we have

Pr[W 00
2 ]  1/|T |. (7.29)

Next, consider W 0
2. Our goal here is to show that

Pr[W 0
2]  DUFadv[BH , H] (7.30)

for a DUF adversary BH that is just as e�cient as A. To this end, consider what happens if A wins
in Game 2 and r = rj for some j = 1, . . . , s. Since A wins, and because of the special test that we
added above the line marked (2), the values r1, . . . , rs are distinct, and so there can be only one
such index j, and u = uj . Therefore, we have the following two equalities:

vj = H(k1, mj) + uj and v = H(k1, m) + uj ;

subtracting, we obtain
vj � v = H(k1, mj)�H(k1, m). (7.31)

We claim that m 6= mj . Indeed, if m = mj , then (7.31) would imply v = vj , which would imply
(m, (r, v)) = (mj , (rj , vj)); however, this is impossible, since we require that A does not submit a
previously signed pair as a forgery attempt.

So, if W 0
2 occurs, we have m 6= mj and the equality (7.31) holds. But observe that in Game 2,

the challenger’s responses are completely independent of k1, and so we can easily convert A into a
DUF adversary BH that succeeds with probability at least Pr[W 0

2] in Attack Game 7.3. Adversary
BH works as follows: it interacts with A, simulating the challenger in Game 2 by simply responding
to each signing query with a random pair (ri, vi) 2 R ⇥ T ; when A outputs its forgery attempt
(m, (r, v)), BH determines if r = rj and m 6= mj for some j = 1, . . . , s; if so, BH outputs the triple
(mj , m, vj � v). The bound (7.30) is now clear.

The theorem follows from (7.25)–(7.30). 2

7.4.1 Using Carter-Wegman with polynomial UHFs

If we want to use the Carter-Wegman construction with a polynomial-based DUF, such as Hxpoly,
then we have make an adjustment so that the digest space of the hash function is equal to the
output space of the PRF. Again, the issue is that our example Hxpoly has outputs in Zp, while for
typical implementations, the PRF will have outputs that are n-bit blocks.

Similarly to what we did in Section 7.3.2, we can choose p to be a prime that is just a little
bit bigger than 2n. This also allows us to view the inputs to the hash as n-bit blocks. Part (b) of
Exercise 7.25 shows how this can be done. One can also use a prime p that is a bit smaller than 2n

(see part (a) of Exercise 7.24), although this is less convenient, because inputs to the hash will have
to broken up into blocks of size less than n. Alternatively, we can use a variant of Hxpoly where all
arithmetic is done in the finite field GF(2n), as discussed in Remark 7.4.

7.5 Nonce-based MACs

In the Carter-Wegman construction in Section 7.4, the only essential property we need for these
randomizers are that they are distinct. Similar to what we did in Section 5.5, we can study nonce-
based MACs: not only can this approach reduce the size of the tag, it can also improve security.
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A nonce-based MAC is similar to an ordinary MAC and consists of a pair of deterministic
algorithms S and V for signing and verifying tags. However, these algorithms take an additional
input N called a nonce that lies in a nonce-space N . Algorithms S and V work as follows:

• S takes as input a key k 2 K, a message m 2M, and a nonce N 2 N . It outputs a tag t 2 T .

• V takes as input four values k, m, t, N , where k is a key, m is a message, t is a tag, and N is
a nonce. It outputs either accept or reject.

We say that the nonce-based MAC is defined over (K, M, T , N ). As usual, we require that tags
generated by S are always accepted by V , as long as both are given the same nonce. The MAC
must satisfy the following correctness property: for all keys k, all messages m, and all nonces
N 2 N :

Pr
⇥

V (k, m, S(k, m, N ), N ) = accept
⇤

= 1.

Just as in Section 5.5, in order to guarantee security, the sender should avoid using the same
nonce twice (on the same key). If the sender can maintain state then a nonce can be implemented
using a simple counter. Alternatively, nonces can be chosen at random, so long as the nonce space
is large enough to ensure that the probability of generating the same nonce twice is negligible.

7.5.1 Secure nonce-based MACs

Nonce-based MACs must be existentially unforgeable under a chosen message attack when the
adversary chooses the nonces. The adversary, however, must never request a tag using a previously
used nonce. This captures the idea that nonces can be chosen arbitrarily, as long as they are never
reused. Nonce-based MAC security is defined using the following game.

Attack Game 7.4 (nonce-based MAC security). For a given nonce-based MAC system I =
(S, V ), defined over (K, M, T , N ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith signing query consists of
a pair (mi, N i) where mi 2 M and N i 2 N . We require that N i 6= N j for all j < i. The
challenger computes ti  R S(k, mi, N i), and gives ti to A.

• Eventually A sends outputs a candidate forgery triple (m, t, N ) 2M⇥ T ⇥N , where

(m, t, N ) /2 {(m1, t1, N 1), (m2, t1, N 2), . . .}.

We say that A wins the game if V (k, m, t, N ) = accept. We define A’s advantage with respect to I,
denoted nMACadv[A, I], as the probability that A wins the game. 2

Definition 7.6. We say that a nonce-based MAC system I is secure if for all e�cient adver-
saries A, the value nMACadv[A, I] is negligible.
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Nonce-based Carter-Wegman MAC. The Carter-Wegman MAC (Section 7.4) can be recast
as a nonce-based MAC: We simply view the randomizer r 2 R as a nonce, supplied as an input to
the signing algorithm, rather than a randomly generated value that is a part of the tag. Using the
notation of Section 7.4, the MAC system is then

S
�

(k1, k2), m, N
�

:=H(k1, m) + F (k2, N )

V
�

(k1, k2), m, t, N
�

:=

(

accept if t = S
�

(k1, k2), m, N
�

reject otherwise

We obtain the following security theorem, which is the nonce-based analogue of Theorem 7.9. The
proof is essentially the same as the proof of Theorem 7.9.

Theorem 7.10. With the notation of Theorem 7.9 we obtain the following bounds

nMACadv[A, ICW]  PRFadv[BF , F ] + DUFadv[BH , H] +
1

|T | .

This bound is much tighter than (7.24): the Q2-term is gone. Of course, it is gone because
we insist that the same nonce is never used twice. If nonces are, in fact, generated by the signer
at random, then the Q2-term returns; however, if the signer implements the nonce as a counter,
then we avoid the Q2-term — the only requirement is that the signer does not sign more than |R|
values. See also Exercise 7.15 for a subtle point regarding the implementation of F .

Analogous to the discussion in Remark 7.6, when using nonce-based Carter-Wegman it is vital
that the nonce is never re-used for di↵erent messages. If this happens, Carter-Wegman may be
completely broken — see Exercises 7.16 and 7.17.

7.6 Unconditionally secure one-time MACs

In Chapter 2 we saw that the one-time pad gives unconditional security as long as the key is only
used to encrypt a single message. Even algorithms that run in exponential time cannot break the
semantic security of the one-time pad. Unfortunately, security is lost entirely if the key is used
more than once.

In this section we ask the analogous question for MACs: can we build a “one-time MAC” that
is unconditionally secure if the key is only used to provide integrity for a single message?

We can model one-time MACs using the standard MAC Attack Game 6.1 used to define MAC
security. To capture the one-time nature of the MAC we allow the adversary to issue only one
signing query. We denote the adversary’s advantage in this restricted game by MAC1adv[A, I].
This game captures the fact that the adversary sees only one message-tag pair and then tries to
create an existential forgery using this pair.

Unconditional security means that MAC1adv[A, I] is negligible for all adversaries A, even com-
putationally unbounded ones. In this section, we show how to implement e�cient and uncondi-
tionally secure one-time MACs using hash functions.

7.6.1 Pairwise unpredictable functions

Let H be a keyed hash function defined over (K, M, T ). Intuitively, H is a pairwise unpre-
dictable function if the following holds for a randomly chosen key k 2 K: given the value
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H(k, m0), it is hard to predict H(k, m1) for any m1 6= m0. As usual, we make this definition
rigorous using an attack game.

Attack Game 7.5 (pairwise unpredicability). For a keyed hash function H defined over
(K, M, T ), and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A sends a message m0 2M to the challenger, who responds with t0 = H(k, m0).

• A outputs (m1, t1) 2M⇥ T , where m1 6= m0.

We say that A wins the game if t1 = H(k, m1). We define A’s advantage with respect to H, denoted
PUFadv[A, H], as the probability that A wins the game. 2

Definition 7.7. We say that H is an ✏-bounded pairwise unpredictable function, or ✏-PUF
for short, if PUFadv[A, H]  ✏ for all adversaries A (even ine�cient ones).

It should be clear that if H is an ✏-PUF, it is also an ✏-UHF; moreover, if T = ZN for some N ,
then it is also an ✏-DUF.

7.6.2 Building unpredictable functions

So far we know that any ✏-PUF is also an ✏-DUF. The converse is not true (see Exercise 7.18).
Nevertheless, we show that any ✏-DUF can be tweaked so that it becomes an ✏-PUF. This tweak
increases the key size.

Let H be a keyed hash function defined over (K, M, T ), where T = ZN for some N . We build a
new hash function H 0 derived from H with the same input and output space as H. The key space,
however, is K ⇥ T . The function H 0 is defined as follows:

H 0�(k1, k2), m
�

= H(k1, m) + k2 2 T (7.32)

Lemma 7.11. If H is an ✏-DUF, then H 0 is an ✏-PUF.

Proof. Let A attack H 0 as a PUF. In response to its query m0, adversary A receives t0 :=
H(k1, m0) + k2. Observe that t0 is uniformly distributed over T , and is independent of k1. More-
over, if A’s prediction t1 of H(k1, m1) + k2 is correct, then t1 � t0 correctly predicts the di↵erence
H(k1, m1)�H(k1, m0).

So we can define a DUF adversary B as follows: it runs A, and when A submits its query m0,
B responds with a random t0 2 T ; when A outputs (m1, t1), adversary B outputs (m0, m1, t1� t0).
It is clear that

PUFadv[A, H]  DUFadv[B, H]  ✏. 2

In particular, Lemma 7.11 shows how to convert the function Hxpoly, defined in (7.33), into a an
(` + 1)/p-PUF. We obtain the following hash function defined over (Z2

p,Z`
p ,Zp):

H(k, m) := Hxpoly(k1, m) + k2 = kv+1
1 + a1k

v
1 + a2k

v�1
1 + . . . + avk1 + k2 2 Zp (7.33)
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7.6.3 From PUFs to unconditionally secure one-time MACs

We now return to the problem of building unconditionally secure one-time MACs. In fact, PUFs
are just the right tool for the job.

Let H be a keyed hash function defined over (K, M, T ). We can use H to define the MAC
system I = (S, V ) derived from H:

S(k, m) := H(k, m);

V (k, m, t) :=

(

accept if H(k, m) = t,

reject otherwise.

The following theorem shows that PUFs are the MAC analogue of the one-time pad, since both
provide unconditional security for one time use. The proof is immediate from the definitions.

Theorem 7.12. Let H be an ✏-PUF and let I be the MAC system derived from H. Then for all
adversaries A (even ine�cient ones), we have MAC1adv[A, I]  ✏.

The PUF construction in Section 7.6.2 is very similar to the Carter-Wegman MAC. The only
di↵erence is that the PRF is replaced by a truly random pad k2. Hence, Theorem 7.12 shows that
the Carter-Wegman MAC with a truly random pad is an unconditionally secure one-time MAC.

7.7 A fun application: timing attacks

To be written.

7.8 Notes

Citations to the literature to be added.

7.9 Exercises

7.1. Let H1 be an ✏1-UHF defined over (K1, X , Y). Let H2 be an ✏2-UHF defined over (K2, Y, Z).
Let H be the keyed hash function defined over (K1⇥K2, X , Z) as H((k1, k2), x) := H2(k2, H(k1, x)).
Show that H is an (✏1 + ✏2)-UHF.

7.2. We can adapt the definition of Hpoly in (7.3) so that instead of working in Zp we work in Z2n

(i.e., work modulo 2n). Show that this version of Hpoly is insecure, and in particular an attacker
can find two messages m0, m1 each of length two blocks that are guaranteed to collide.

7.3. Show that if p is prime and the input space is Z`
p for some fixed (poly-bounded) value `, then

(a) the function Hfpoly defined in (7.5) is an (`� 1)/p-UHF.

(b) the function Hfxpoly defined as

Hfxpoly(k, (a1, . . . , a`)) := k · Hfpoly(k, (a1, . . . , a`)) = a1k
` + a2k

v�1 + · · · + a`k 2 Zp

is an (`/p)-DUF.
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Figure 7.6: Randomized PRF-UHF composition: MAC signing

7.4. Let H be a hash function defined over (K, M,ZN ). We construct a new hash function H 0,
defined over (K, M ⇥ ZN ,ZN ) as follows: H 0(k, (m, x)) := H(k, m) + x. Show that if H is an
✏-DUF, then H 0 is an ✏-UHF.

7.5. Show that if F is a secure PRF against non-adaptive adversaries (see Exercise 4.7), and the
size of the output space of F is super-poly, then F is a computational UHF.
Note: using the result of Exercise 6.13, this gives another proof that CBC is a computational UHF.

7.6. The PRF-UHF composition shows that a UHF can extend the input domain of a specific type
of MAC, namely a MAC that is itself a PRF. Show that this construction cannot be extended to
arbitrary MACs. That is, exhibit a secure MAC I = (S, V ) and a computational UHF H for which
the MAC-UHF composition I 0 = (S0, V 0) where S0((k1, k2), m) = S(k2, H(k1, m)) is insecure. In
your design, you may assume the existence of a secure PRF defined over any convenient spaces.
Show how to modify the PRF so that it remains a secure MAC, but the MAC-UHF composition is
insecure.

7.7 (Randomized PRF-UHF composition). In this exercise we develop a randomized variant
of PRF-UHF composition that provides better security with little impact on the running time. Let
H be a hash function defined over (KH , M, X ) and let F be a PRF defined over (KF , R⇥X , T ).
Define the randomized PRF-UHF system I = (S, V ) as follows: for key (k1, k2) and message
m 2M define

S
�

(k1, k2), m
�

:=
�

r  R R, x H(k1, m), v  F
�

k2, (r, x)
�

, output (r, v)
 

(see Fig. 7.6)

V
�

(k1, k2), m, (r, v)
�

:=

(

accept if x H(k1, m), v = F
�

k2, (r, x)
�

reject otherwise.

This MAC is defined over (KF⇥KH , M, R⇥T ). The tag size is a little larger than in deterministic
PRF-UHF composition, but signing and verification time is about the same.

(a) Suppose A is a MAC adversary that plays Attack Game 6.1 with respect to I and issues
at most Q queries. Show that there exists a PRF adversary BF and UHF adversaries BH

and B0
H , which are elementary wrappers around A, such that

MACadv[A, I]  PRFadv[BF , F ] + UHFadv[BH , H] +
Q2

2|R|UHFadv[B0
H , H]

+
Q2

2|R||T | +
1

|T | .
(7.34)
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Discussion: when H is an ✏-UHF let us set ✏ = 1/|T | and |R| = Q2/2 so that the right most
four terms in (7.34) are all equal. Then (7.34) becomes simply

MACadv[A, I]  PRFadv[BF , F ] + 4✏. (7.35)

Comparing to deterministic PRF-UHF composition, the error term ✏ · Q2/2 in (7.19) is far
worse than in (7.35). This means that for the same parameters, randomized PRF-UHF
composition security is preserved for far many more queries than for deterministic PRF-UHF
composition.

In the Carter-Wegman MAC to get an error bound as in (7.35) we must set |R| to |Q|2/✏
in (7.24). In randomized PRF-UHF composition we only need |R| = |Q|2 and therefore tags
in randomized PRF-UHF are shorter than in Carter-Wegman for the same security and the
same ✏.

(b) Rephrase the MAC system I as a nonce-based MAC system (as in Section 7.5). What are
the concrete security bounds for this system?

Observe that if the nonce is accidentally re-used, or even always set to the same value, then the
MAC system I still provides some security: security degrades to the security of deterministic
PRF-UHF composition. We refer to this as nonce re-use resistance.

7.8 (One-key PRF-UHF composition). This exercise analyzes a one-key variant of the PRF-
UHF construction. Let F be a PRF defined over (K, X , Y) and let H be a hash function defined
over (Y, M, X ); in particular, the output space of F is equal to the key space of H, and the output
space of H is equal to the input space of F . Let x0 2 X be a public constant. Consider the PRF
F 0 defined over (K, M, Y) as follows:

F 0(k, m) := F (k, H(k0, m)), where k0 := F (k, x0).

This is the same as the usual PRF-UHF composition, except that we use a single key k and use F
to derive the key k0 for H.

(a) Show that F 0 is a secure PRF assuming that F is a PRF, that H is a computational UHF,
and that H satisfies a certain preimage resistance property, defined by the following game.

In this game, the adversary computes a message M and the challenger (independently) chooses
a random hash key k0 2 K. The adversary wins the game if H(k0, M) = x0, where x0 2 X
is a constant, as above. We say that H is preimage resistant if every e�cient adversary wins
this game with only negligible probability.

Hint: modify the proof of Theorem 7.7.

(b) Show that the cascade construction is preimage resistant, assuming the underlying PRF is
a secure PRF. Hint: this follows almost immediately from the fact that the cascade is a
prefix-free PRF.

7.9 (XOR-DUFs). In Remark 7.3 we adapted the definition of DUF to a hash function whose
digest space T is the set of all n-bit strings, {0, 1}n, with the XOR used as the di↵erence operator.

(a) Show that the XOR-hash F� defined in Section 7.2.3 is a computational XOR-DUF.
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(b) Show that the CBC construction FCBC defined in Section 6.4.1 is a computational XOR-
DUF. Hint: use the fact that FCBC is a prefix-free secure PRF (or, alternatively, the result of
Exercise 6.13).

7.10. This exercise shows how to save one application of the underlying PRF F in the PMAC0

construction. With notation as in Section 6.11, we can write the definition of PMAC0 as

PMAC0((k, k1, k2), (a1, . . . , av)) := F

✓

k2,
v
M

i=1

F
�

k1, (ai + ik) mod N
�

◆

.

Using part (a) of Exercise 7.9, show that

H 0((k, k1), (a1, . . . , av)) :=
v�1
M

i=1

F
�

k1, (ai + ik) mod N))
�� av

is a computational UHF (for zero-length inputs, we define the output of H 0 to be zero). From this,
conclude that

PMAC0
0((k, k1, k2), (a1, . . . , av)) := F

✓

k2,
v�1
M

i=1

F
�

k1, (ai + ik) mod N))
�� av

◆

.

is a secure PRF.

7.11. Show that the Luby-Racko↵ construction (see Section 4.5) remains secure if the first round
function F (k1, ·) is replaced by a computational XOR-DUF.

7.12 (Tweakable block ciphers). Continuing with Exercise 4.12, show that in the construc-
tion from part (c) the PRF can be replaced by an XOR-DUF. That is, prove that the following
construction is a strongly secure tweakable block cipher:

E0�(k0, k1), m, t
�

:=
�

p h(k0, t); output p� E(k1, m� p)
 

D0�(k0, k1), c, t
�

:=
�

p h(k0, t); output p�D(k1, c� p)
 

Here (E, D) is a strongly secure block cipher defined over (K0, X ) and h is an XOR-DUF defined
over (K1, T , X ) where X := {0, 1}n.
Discussion: XTS mode, used in disk encryption systems, is based on this tweakable block cipher.
The tweak in XTS is a combination of i, the disk sector number, and j, the position of the block
within the sector. The XOR-DUF used in XTS is defined as h

�

k0, (i, j)
�

:= E(k0, i) · ↵j 2 GF(2n)
where ↵ is a fixed primitive element of GF(2n). XTS uses ciphertext stealing (Exercise 5.15) to
handle sectors whose bit length is not a multiple of n.

7.13. Show that in the nonce-based CBC cipher (Section 5.5.3) the PRF that is applied to the
nonce can be replaced by an XOR-DUF.

7.14. Consider the security of the Carter-Wegman construction (Section 7.4) in an attack with
verification queries (Section 6.2). Show that following concrete security result: for every MAC
adversary A that attacks ICW as in Attack Game 6.2, and which makes at most Qv verification
queries and at most Qs signing queries, there exist a PRF adversary BF and a DUF adversary BH ,
which are elementary wrappers around A, such that

MACvqadv[A, ICW]  PRFadv[BF , F ] + Qv · DUFadv[BH , H] +
Q2

s

2|R| +
Qv

|T | .
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7.15. In Section 7.5, we studied a nonce-based version of the Carter-Wegman MAC. In particular,
in Theorem 7.10, we derived the security bound

nMACadv[A, ICW]  PRFadv[BF , F ] + DUFadv[BH , H] +
1

|T | ,

and rejoiced in the fact that there were no Q2-terms in this bound, where Q is a bound on the
number of signing queries. Unfortunately, a common implementation of F is to use the encryption
function of a block cipher E defined over (K, X ), so R = X = T = ZN . A straightforward
application of the PRF switching lemma (see Theorem 4.4) gives us the security bound

nMACadv[A, ICW]  BCadv[BE , E ] +
Q2

2N
+ DUFadv[BH , H] +

1

N
,

and a Q2-term has returned! In particular, when Q2 ⇡ N , this bound is entirely useless. However,
one can obtain a better bound. Using the result of Exercise 4.23, show that assuming Q2 < N , we
have the following security bound:

nMACadv[A, ICW]  BCadv[BE , E ] + 2 ·
✓

DUFadv[BH , H] +
1

N

◆

.

7.16 (Carter-Wegman MAC falls apart under nonce re-use). Suppose that when using a
nonce-based MAC, an implementation error causes the system to re-use a nonce more than once.
Let us show that the nonce-based Carter-Wegman MAC falls apart if this ever happens.

(a) Consider the nonce-based Carter-Wegman MAC built from the hash function Hxpoly. Show
that if the adversary obtains the tag on some one-block message m1 using nonce N and the tag
on a di↵erent one-block message m2 using the same nonce N , then the MAC system becomes
insecure: the adversary can forge the MAC an any message of his choice with non-negligible
probability.

(b) Consider the nonce-based Carter-Wegman MAC with an arbitrary hash function. Suppose
that an adversary is free to re-use nonces at will. Show how to create an existential forgery.

Note that these attacks also apply to the randomized version of Carter-Wegman, if the signer is
unlucky enough to generate the same randomizer r 2 R more than once. Also, note that the attack
in part (a) can be extended to work even if the messages are not single-block messages by using
e�cient algorithms for finding roots of polynomials over finite fields.

7.17 (Encrypted Carter-Wegman). Continuing with the previous exercise, we show how to
make Carter-Wegman resistant to nonce re-use by encrypting the tag. To make things more con-
crete, suppose that H is an ✏-DUF defined over (KH , M, X ), where X = ZN , and E = (E, D) is a
secure block cipher defined over (KE , X ). The encrypted Carter-Wegman nonce-based MAC system
I = (S, V ) has key space KH ⇥K2

E , message space M, tag space X , nonce space X , and is defined
as follows:

• For key (k1, k2, k3), message m, and nonce N , we define

S((k1, k2, k3), m, N ) := E(k3, H(k1, m) + E(k2, N ) )

• For key (k1, k2, k3), message m, tag v, and nonce N , we define
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V ((k1, k2, k3), m, v, N ) :=
v⇤  E(k3, H(k1, m) + E(k2, N ) )
if v = v⇤ output accept; otherwise output reject

(a) Show that assuming no nonces get re-used, this scheme is just as secure as Carter-Wegman.
In particular, using the result of Exercise 7.15, show that for every adversary A that makes
at most Q signing queries, where Q2 < N , the probability that A produces an existential
forgery is at most BCadv[B, E ] + 2(✏ + 1/N), where B is an elementary wrapper around A.

(b) Now suppose an adversary can re-use nonces at will. Show that for every such adversary
A that makes at most Q signing queries, where Q2 < N , the probability that A produces
an existential forgery is at most BCadv[B, E ] + (Q + 1)2✏ + 2/N , where B is an elementary
wrapper around A. Thus, while nonce re-use degrades security, it is not catastrophic.

Hint: Theorem 7.7 and Exercises 4.23 and 7.4 may be helpful.

7.18. Show that Hxpoly defined in (7.33) is not a good PUF by exhibiting an adversary that wins
Attack Game 7.5 with probability 1.

7.19. In this exercise, we develop the notion of a PRF that is unconditionally secure, provided
the adversary can make at most two queries. We say that a PRF F defined over (K, X , Y) is an ✏-
almost pairwise independent function, or ✏-APIF, if the following holds: for all adversaries A
(even ine�cient ones) that make at most 2 queries in Attack Game 4.2, we have PRFadv[A, F ]  ✏.
If ✏ = 0, we call F a pairwise independent function, or PIF.

(a) Suppose that |X | > 1 and that for all x0, x1 2 X with x0 6= x1, and all y0, y1 2 Y, we have

Pr[F (k, x0) = y0 ^ F (k, x1) = y1] =
1

|Y |2 ,

where the probability is over the random choice of k 2 K. Show that F is a PIF.

(b) Let p be a prime. Let H be the hash function defined over (K,Z`
p,Zp) as follows:

H((k0, k1, . . . , k`), (a1, . . . , a`)) := k0 +
X

i

aiki 2 Zp.

Show that H is a PIF.

(c) For positive integer m, let Im := {0, . . . , m� 1}. Let n be a positive integer and set N := 2n.
Consider the hash function H defined over (I`+1

N2 , I`N , IN ) as follows:

H((k0, k1, . . . , k`), (a1, . . . , a`)) :=

$

✓

�

k0 +
X

i

aiki
�

mod N2

◆

�

N

%

.

Show that H is a PIF. Note: on a typical computer, if n is not too large, this can be
implemented very easily with just integer multiplications, additions, and shifts.

(d) Show that in the PRF-UHF composition, if H is an ✏1-UHF and F is an ✏2-APIF, then the
composition F 0 is an (✏1 + ✏2)-APIF.
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(e) Show that any ✏-APIF is an (✏ + |Y|)-PUF.

(f) Using an appropriate APIF, show how to construct a probabilistic cipher that is uncondition-
ally CPA secure provided the adversary can make at most two queries in Attack Game 5.2.

7.20 (a DUF from an ideal permutation). Let ⇡ : X ! X be an permutation where X :=
{0, 1}n. Define H : X ⇥ X` ! X as the following keyed hash function shown in Fig. ??:

H(k, (a1, . . . , av)) := h k
for i 1 to v do: h ⇡(ai � h)
output h

Assuming 2n is super-poly, show that H is a computational XOR-DUF (see Remark 7.3) in the
ideal permutation model, where we model ⇡ as a random permutation ⇧ (see Section 4.7).

We outline here one possible proof approach. The first idea is to use the same strategy that
was used in the analysis of CBC in the proof of Theorem 6.3; indeed, one can see that the two
constructions process message blocks in a very similar way. The second idea is to use the Domain
Separation Lemma (Theorem 4.15) to streamline the proof.

Consider two games:

0. The original attack game: adversary makes a series of ideal permutation queries, which
evaluate ⇧ and ⇧�1 on points of the adversary’s choice. Then the adversary submits two
distinct messages m0, m1 to the challenger, along with a value �, and hopes that H(k, m0)�
H(k, m1) = �.

1. Use the Domain Separation Lemma to split ⇧ into many independent permutations. One
is ⇧ip, which is used to evaluate the ideal permutation queries. The others are of the form
⇧std,↵ for ↵ 2 X`

>0
. These are used to perform the evaluations H(k, m0), H(k, m1): in the

evaluation of H(k, (a1, . . . , as)), in the ith loop iteration in the hash algorithm, we use the
permutation ⇧std,↵, where ↵ = (a1, . . . , ai). Now one just has to analyze the probability of
separation failure.

Note that H is certainly not a secure PRF, even if we restrict ourselves to non-adaptive or prefix-free
adversaries: given H(k, m) for any message m, we can e�ciently compute the key k.

7.21. Suppose I = (S, V ) is a (possibly randomized) MAC defined over (K1, M, T ), where T =
{0, 1}n, that is one-time secure (see Section 7.6). Further suppose that F is a secure PRF defined
over (K2, R, T ), where |R| is super-poly. Consider the MAC I 0 = (S0, V 0) defined over (K1 ⇥
K2, M, R⇥ T ) as follows:

S0((k1, k2), m) :=
�

r  R R; t R S(k1, m); t0  F (k2, r)� t; output (r, t0)
 

V 0((k1, k2), m, (r, t0)) :=
�

t F (k2, r)� t0; output V (k1, m, t)
 

Show that I 0 is a secure (many time) MAC.

7.22. Let H be a hash function defined over (K, M, T ). Suppose that for some pair of distinct
messages m0 and m1, we have Pr[H(k, m0) = H(k, m1)] > ✏ where the probability is over the
random choice of k 2 K. Give an adversary A that wins Attack Game 7.1 with probability greater
than ✏. Your adversary A will inevitably be very ine�cient.
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7.23. For positive integer m, let Im := {0, . . . , m� 1} and I⇤m := {1, . . . , m� 1}.

(a) Let N be a positive integer and p be a prime. Consider the hash function H defined over
(Ip ⇥ I⇤p , Ip, IN ) as follows: H((k0, k1), a) := ((k0 + ak1) mod p) mod N . Show that H is a
1/N -UHF.

(b) While the construction in part (a) gives a UHF with “optimal” collision probability, the
key space is unfortunately larger than the message space. Using the result of part (a),
and Exercise 7.1 and 7.3, you are to design a hash function with “nearly optimal” collision
probability, but with much smaller keys.

Let N and ` be positive integers. Let ↵ be a number with 0 < ↵ < 1. Design a (1+↵)/N -UHF
H with message space I`N and output space IN . The keys for H should be short: encoded as
a bit string, each key should be of length O(log(N`/↵)).

7.24. We will be working with DUFs with digest spaces Zm for various m, and so to make things
clearer, we will work with digest spaces that are plain old sets of integers, and state explicitly the
modulus m, as in “an ✏-DUF modulo m”. For positive integer m, let Im := {0, . . . , m� 1}.

Let p and N be integers greater than 1. Let H be a hash function defined over (K, M, Ip). Let
H 0 be the hash function defined over (K, M, IN ) as follows: H 0(k, m) := H(k, m) mod N .

(a) Show that if p < N/2 and H is an ✏-DUF modulo p, then H 0 is an ✏-DUF modulo N .

(b) Suppose that p � N and H is an ✏-DUF modulo p. Show that H 0 is an ✏0-DUF modulo N
for ✏0 = 2(p/N + 1)✏. In particular, if ✏ = ↵/p, we can take ✏0 = 4↵/N .

7.25. As in the previous exercise, we work with DUFs whose digest spaces are plain old sets
of integers, but we explicitly state the modulus m. Again, for positive integer m, we let Im :=
{0, . . . , m� 1}.

Let 1 < N  p, where p is prime.

(a) H⇤
fxpoly is the hash function defined over (Ip, I`N , IN ) as follows:

H⇤
fxpoly(k, (a1, . . . , a`)) :=

✓

(a1k
` + · · · + a`k

�

mod p

◆

mod N.

Show that H⇤
fxpoly is a 4`/N -DUF modulo N .

(b) H⇤
xpoly is the hash function defined over (Ip, I

`
N , IN ) as follows:

H⇤
xpoly(k, (a1, . . . , av)) :=

✓

(kv+1 + a1k
v + · · · + avk

�

mod p

◆

mod N.

Show that H⇤
xpoly is a 4(` + 1)/N -DUF modulo N .

(c) H⇤
fpoly is the hash function defined over (Ip, I`N , IN ) as follows:

H⇤
fpoly(k, (a1, . . . , a`)) :=

✓

�

(a1k
`�1 + · · · + a`�1k

�

mod p

◆

+ a`

◆

mod N.

Show that H⇤
fpoly is a 4(`� 1)/N -UHF.
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(d) H⇤
poly is the hash function is defined over (Ip, I

`
N , IN ) as follows:

H⇤
poly(k, (a1, . . . , av)) :=

✓

�

(kv + a1k
v�1 + · · · + av�1k

�

mod p

◆

+ av

◆

mod N.

for v > 0, and for zero-length messages, it is defined to be the constant 1. Show that H⇤
poly

is a 4`/N -UHF.

Hint: all of these results follow easily from the previous two exercises, except that the analysis in
part (d) requires that zero-length messages are treated separately.

7.26. With notation as in the previous exercise, show that if (3/2)N  p < 2N , the hash function
H defined over (Ip, I2N , IN ) as

H(k, (a, b)) := ((ak + b) mod p) mod N

is not a (1/3)-UHF. Contrast this function with that in part (c) of the previous exercise with ` = 2.

7.27. Consider the function Hpoly(k, m) defined in (7.3) using a prime p and assume ` = 2.

(a) Show that for all su�ciently large p, the following holds: for any fixed k 2 Zp, among
bppc random inputs to Hpoly(k, ·), the probability of a collision is bounded from below by a
constant. Hint: use the birthday paradox (Appendix B.1).

(b) Show that, when ` = 2, then given any collision for Hpoly under key k, we can e�ciently
compute k. That is, give an e�cient algorithm that takes two inputs m, m0 2 Z2

p, and that

outputs k̂ 2 Zp, and satisfies the following property: for every k 2 Zp, if H(k, m) = H(k, m0),
then k̂ = k.

7.28 (XOR-hash analysis). Generalize Theorem 7.6 to show that for every Q-query UHF ad-
versary A, there exists a PRF adversary B, which is an elementary wrapper around A, such that

MUHFadv[A, F�]  PRFadv[B, F ] +
Q2

2|Y| .

Moreover, B makes at most Q` queries to F , where each query is of the form ( · , j) for some
j = 1, . . . , `, and in addition, for each j = 1, . . . , `, at most Q of these queries are of the form ( · , j).
Let us call such an adversary B a (Q, `)-adversary.

7.29 (PMAC0 analysis). This exercise develops an analysis of the PMAC0 scheme, presented
in Section 6.11 Throughout, we assume that n and ` are positive integers with `  2n, and define
N := 2n and L := {1, . . . , `}. For any nonzero integer s, write s = ↵(s) · �(s), where ↵(s) is a
positive power of 2 and �(s) is odd. For completeness, we define ↵(0) = 0.

(a) Let H0 be the keyed hash function defined over (ZN , L,ZN ) by H0(k, j) := j · k 2 ZN . Show
that if j and j0 are distinct elements of L, and � 2 Zn, then if we pick k 2 ZN at random, we
have Pr[H0(j1)�H0(j0)]  2↵(j1 � j0)/N . In particular, show that H0 is an (2`/N)-DUF.

(b) Let H1 be the keyed hash function defined over (ZN ,ZN⇥L,ZN ) by H1(k, (a, j)) := a+j ·k 2
ZN . Combine part (a) with the result of Exercise 7.4 to show that H1 is an 2`/N -UHF. Using
this result, one can prove Theorem 6.11, but not the security bound stated in (6.27).

Note the dependence on ` in the collision probability: in general, without a restriction of `,
this hash is completely insecure (see Exercise 7.2 below).
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(c) Show that any (Q, `)-adversary (see Exercise 7.28) attacking H1 as in the multi-query Attack
Game 7.2 has advantage at most 2Q2T/N , where T :=

P

j02L
P

j12L ↵(j1 � j0) .

(d) For non-negative integer m, define S(m) :=
P2m�1

i=1 ↵(i). Show that S(m) = m2m�1. From
this, deduce that T  `2dlog2 `e.

(e) Using parts (c) and (d) and the result of Exercise 7.28, prove the security bound (6.27).
For this, you will also want to use the fact (which is fairly obvious from the proof) that
in Theorem 7.7, if A is a (Q, `)-adversary, then the adversary B0

H in (7.20) is also a (Q, `)-
adversary.
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Chapter 8

Message integrity from collision
resistant hashing

In the previous chapter we discussed universal hash functions (UHFs) and showed how they can be
used to construct MACs. Recall that UHFs are keyed hash functions for which finding collisions is
di�cult, as long as the key is kept secret.

In this chapter we study keyless hash functions for which finding collisions is di�cult. Informally,
a keyless function is an e�ciently computable function whose description is fully public. There are
no secret keys and anyone can evaluate the function. Let H be a keyless hash function from some
large message space M into a small digest space T . As in the previous chapter, we say that two
messages m0, m1 2M are a collision for the function H if

H(m0) = H(m1) and m0 6= m1.

Informally, we say that the function H is collision resistant if finding a collision for H is di�cult.
Since the digest space T is much smaller than M, we know that many such collisions exist. Nev-
ertheless, if H is collision resistant, actually finding a pair m0, m1 that collide should be di�cult.
We give a precise definition in the next section.

In this chapter we will construct collision resistant functions and present several applications.
To give an example of a collision resistant function we mention a US federal standard called the
Secure Hash Algorithm Standard or SHA for short. The SHA standard describes a number of hash
functions that o↵er varying degrees of collision resistance. For example, SHA-256 is a function
that hashes long messages into 256-bit digests. It is believed that finding collisions for SHA-256 is
di�cult.

Collision resistant hash functions have many applications. We briefly mention two such appli-
cations here and give the details later on in the chapter. Many other applications are described
throughout the book.

Extending cryptographic primitives. An important application for collision resistance is its
ability to extend primitives built for short inputs to primitives for much longer inputs. We give
a MAC construction as an example. Suppose we are given a MAC system I = (S, V ) that only
authenticates short messages, say messages that are 256 bits long. We want to extend the domain
of the MAC so that it can authenticate much longer inputs. Collision resistant hashing gives a very
simple solution. To compute a MAC for some long message m we first hash m and then apply S to
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Figure 8.1: Hash-then-MAC construction

the resulting short digest, as described in Fig. 8.1. In other words, we define a new MAC system
I = (S0, V 0) where S0(k, m) := S(k, H(m)). MAC verification works analogously by first hashing
the message and then verifying the tag of the digest.

Clearly this hash-then-MAC construction would be insecure if it were easy to find collisions
for H. If an adversary could find two long messages m0 and m1 such that H(m0) = H(m1) then
he could forge tags using a chosen message attack. Suppose m0 is an innocuous message while m1

is evil, say a virus infected program. The adversary would ask for the tag on the message m0 and
obtain a tag t in response. Then the pair (m0, t) is a valid message-tag pair, but so is the pair
(m1, t). Hence, the adversary is able to forge a tag for m1, which breaks the MAC. Even worse,
the valid tag may fool a user into running the virus. This argument shows that collision resistance
is necessary for this hash-then-MAC construction to be secure. Later on in the chapter we prove
that collision resistance is, in fact, su�cient to prove security.

The hash-then-MAC construction looks similar to the PRF-UHF composition discussed in the
previous chapter (Section 7.3). These two methods build similar looking MACs from very di↵erent
building blocks. The main di↵erence is that a collision resistant hash can extend the input domain
of any MAC. On the other hand, a UHF can only extend the domain of a very specific type of MAC,
namely a PRF. This is illustrated further in Exercise 7.6. Another di↵erence is that the secret key
in the hash-then-MAC method is exactly the same as in the underlying MAC. The PRF-UHF
method, in contrast, extends the secret key of the underlying PRF by adding a UHF secret key.

The hash-then-MAC construction performs better than PRF-UHF when we wish to compute
the tag for a single message m under multiple keys k1, . . . , kn. That is, we wish to compute S0(ki, m)
for all i = 1, . . . , n. This comes up, for example, when providing integrity for a file on disk that is
readable by multiple users. The file header contains one integrity tag per user so that each user
can verify integrity using its own MAC key. With the hash-then-MAC construction it su�ces to
compute H(m) once and then quickly derive the n tags from this single hash. With a PRF-UHF
MAC, the UHF depends on the key ki and consequently we will need to rehash the entire message
n times, once for each user. See also Exercise 6.4 for more on this problem.

File integrity. Another application for collision resistance is file integrity also discussed in the
introduction of Chapter 6. Consider a set of n critical files that change infrequently, such as
certain operating system files. We want a method to verify that these files are not modified by
some malicious code or malware. To do so we need a small amount of read-only memory, namely
memory that the malware can read, but cannot modify. Read-only memory can be implemented,
for example, using a small USB disk that has a physical switch flipped to the “read-only” position.
We place a hash of each of the n critical files in the read-only memory so that this storage area only
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Figure 8.2: File integrity using small read-only memory

contains n short hashes. We can then check integrity of a file F by rehashing F and comparing the
resulting hash to the one stored in read-only memory. If a mismatch is found, the system declares
that file F is corrupt. The TripWire malware protection system [39] uses this mechanism to protect
critical system files.

What property should the hash function H satisfy for this integrity mechanism to be secure?
Let F be a file protected by this system. Since the malware cannot alter the contents of the read-
only storage, its only avenue for modifying F without being detected is to find another file F 0 such
that H(F ) = H(F 0). Replacing F by F 0 would not be caught by this hashing system. However,
finding such an F 0 will be di�cult if H is collision resistant. Collision resistance, thus, implies that
the malware cannot change F without being detected by the hash.

This system stores all file hashes in read-only memory. When there are many files to protect
the amount of read-only memory needed could become large. We can greatly reduce the size of
read-only memory by viewing the entire set of file hashes as just another file stored on disk and
denoted FH . We store the hash of FH in read-only memory, as described in Fig. 8.2. Then read-
only memory contains a single hash value. To verify file integrity of some file F we first verify
integrity of the file FH by hashing the contents of FH and comparing the result to the value in
read-only memory. Then we verify integrity of F by hashing F and comparing the result with the
corresponding hash stored in FH . We describe a more e�cient solution using authentication trees
in Section ??.

In the introduction to Chapter 6 we proposed a MAC-based file integrity system. The system
stored a tag of every file along with the file. We also needed a small amount of secret storage to store
the user’s secret MAC key. This key was used every time file integrity was verified. In comparison,
when using collision resistant hashing there are no secrets and there is no need for secret storage.
Instead, we need a small amount of read-only storage for storing file hashes. Generally speaking,
read-only storage is much easier to build than secret storage. Hence, collision resistance seems more
appropriate for this particular application. In Chapter 13 we will develop an even better solution to
this problem, using digital signatures, that does not need read-only storage or online secret storage.

Security without collision resistance. By extending the input to the hash function with a few
random bits we can prove security for both applications above using a weaker notion of collision
resistance called target collision resistance or TCR for short. We show in Section 8.10.2 how to
use TCR for both file integrity and for extending cryptographic primitives. The downside is that the
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resulting tags are longer than the ones obtained from collision resistant hashing. Hence, although
in principle it is often possible to avoid relying on collision resistance, the resulting systems are not
as e�cient.

8.1 Definition of collision resistant hashing

A (keyless) hash function H is just an e�ciently computable function from some (large) message
space M into a (small) digest space T . We say that H is defined over (M, T ). We define collision
resistance of H using the following (degenerate) game:

Attack Game 8.1 (Collision Resistance). For a given hash function H over (M, T ) and
adversary A, the adversary takes no input and outputs two messages m0 and m1 in M.

We say that A wins the game if the pair m0, m1 is a collision for H, namely m0 6= m1 and
H(m0) = H(m1). We define A’s advantage with respect to H, denoted CRadv[A, H], as the
probability that A wins the game. Adversary A is called a collision finder. 2

Definition 8.1. We say that a hash function H over (M, T ) is collision resistant if for all
e�cient adversaries A, the quantity CRadv[A, H] is negligible.

At first glance, it may seem that collision resistant functions cannot exist. The problem is this:
since |M| > |T | there must exist inputs m0 and m1 in M that collide, namely H(m0) = H(m1).
An adversary A that simply prints m0 and m1 and exits is an e�cient adversary that breaks the
collision resistance of H. We may not be able to write the explicit program code for A (since we do
not know m0, m1), but this A certainly exists. Consequently, for any hash function H defined over
(M, T ) there exists some e�cient adversary AH that breaks the collision resistance of H. Hence,
it appears that no function H can satisfy Definition 8.1.

The way out of this is that, formally speaking, our hash functions are parameterized by a
system parameter: each choice of a system parameter describes a di↵erent function H, and so we
cannot simply “hardwire” a fixed collision into an adversary: an e↵ective adversary must be able
to e�ciently compute a collision as a function of the system parameter. This is discussed in more
depth in the Mathematical details section below.1

8.1.1 Mathematical details

As usual, we give a more mathematically precise definition of a collision resistant hash function
using the terminology defined in Section 2.4.

Definition 8.2 (Keyless hash functions). A (keyless) hash function is an e�cient algorithm
H, along with two families of spaces with system parameterization P :

M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

such that

1. M, and T are e�ciently recognizable.

1Some authors deal with this issue by have H take as input a randomly chosen key k, and giving k to the adversary
at the beginning of this attack game. By viewing k as a system parameter, this approach is really the same as ours.
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Figure 8.3: Asymptotic version of Attack Game 8.1

2. Algorithm H is a deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), and
m 2M�,⇤, runs in time bounded by a polynomial in �, and outputs an element of T�,⇤.

In defining collision resistance we parameterize Attack Game 8.1 by the security parameter �.
The asymptotic game is shown in Fig. 8.3. The advantage CRadv[A, H] is then a function of �.
Definition 8.1 should be read as saying that CRadv[A, H](�) is a negligible function.

It should be noted that the security and system parameters are artifacts of the formal framework
that are needed to make sense of Definition 8.1. In the real world, however, these parameters are
picked when the hash function is designed, and are ignored from that point onward. SHA-256, for
example, does not take either a security parameter or a system parameter as input.

8.2 Building a MAC for large messages

To exercise the definition of collision resistance, we begin with an easy application described in
the introduction — extending the message space of a MAC. Suppose we are given a secure MAC
I = (S, V ) for short messages. Our goal is to build a new secure MAC I 0 for much longer messages.
We do so using a collision resistant hash function: I 0 computes a tag for a long message m by first
hashing m to a short digest and then applying I to the digest, as shown in Fig. 8.1.

More precisely, let H be a hash function that hashes long messages in M to short digests in TH .
Suppose I is defined over (K, TH , T ). Define I 0 = (S0, V 0) for long messages as follows:

S0(k, m) := S(k, H(m) ) and V 0(k, m) := V (k, H(m) ) (8.1)

Then I 0 authenticates long messages in M. The following easy theorem shows that I 0 is secure,
assuming H is collision resistant.

Theorem 8.1. Suppose the MAC system I is a secure MAC and the hash function H is collision
resistant. Then the derived MAC system I 0 = (S0, V 0) defined in (8.1) is a secure MAC.

In particular, suppose A is a MAC adversary attacking I 0 (as in Attack Game 6.1). Then there
exist a MAC adversary BI and an e�cient collision finder BH , which are elementary wrappers
around A, such that

MACadv[A, I 0]  MACadv[BI , I] + CRadv[BH , H].
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It is clear that collision resistance of H is essential for the security of I 0. Indeed, if an adversary
can find a collision m0, m1 on H, then he can win the MAC attack game as follows: submit m0 to the
MAC challenger for signing, obtaining a tag t0 := S(k, H(m0)), and then output the message-tag
pair (m1, t0). Since H(m0) = H(m1), the tag t0 must be a valid tag on the message m1.

Proof idea. Our goal is to show that no e�cient adversary can win the MAC Attack Game 6.1 for
our new MAC system I 0. An adversary A in this game asks the challenger to MAC a few long
messages m1, m2, . . . 2M and then tries to invent a new valid message-MAC pair (m, t). If A is
able to produce a valid forgery (m, t) then one of two things must happen:

1. either m collides with some query mi from A, so that H(m) = H(mi) and m 6= mi;

2. or m does not collide under H with any of A’s queries m1, m2, . . . 2M.

It should be intuitively clear that if A produces forgeries of the first type then A can be used to
break the collision resistance of H since m and mi are a valid collision for H. On the other hand, if
A produces forgeries of the second type then A can be used to break the MAC system I: the pair
(H(m), t) is a valid MAC forgery for I. Thus, if A wins the MAC attack game for I 0 we break
one of our assumptions. 2

Proof. We make this intuition rigorous. Let m1, m2, . . . 2M be A’s queries during the MAC attack
game and let (m, t) 2M⇥ T be the adversary’s output, which we assume is not among the signed
pairs. We define three events:

• Let X be the event that adversary A wins the MAC Attack Game 6.1 with respect to I 0.

• Let Y denote the event that some mi collides with m under H, that is, for some i we have
H(m) = H(mi) and m 6= mi.

• Let Z denote the event that A wins Attack Game 6.1 on I 0 and event Y did not occur.

Using events Y and Z we can rewrite A’s advantage in winning Attack Game 6.1 as follows:

MACadv[A, I 0] = Pr[X]  Pr[X ^ ¬Y ] + Pr[Y ] = Pr[Z] + Pr[Y ] (8.2)

To prove the theorem we construct a collision finder BH and a MAC adversary BI such that

Pr[Y ] = CRadv[BH , H] and Pr[Z] = MACadv[BI , I].

Both adversaries are straight-forward.
Adversary BH plays the role of challenger to A in the MAC attack game, as follows:

Initialization:
k  R K

Upon receiving a signing query mi 2M from A do:
ti  R S(k, H(mi) )
Send ti to A

Upon receiving the final message-tag pair (m, t) from A do:
if H(m) = H(mi) and m 6= mi for some i

then output the pair (m, mi)
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Figure 8.4: Adversary BI in the proof of Theorem 8.1

Algorithm BH responds to A’s signature queries exactly as in a real MAC attack game. Therefore,
event Y happens during the interaction with BH with the same probability that it happens in a
real MAC attack game. Clearly when event Y happens, AH succeeds in finding a collision for H.
Hence, CRadv[BH , H] = Pr[Y ] as required.

MAC adversary BI is just as simple and is shown in Fig. 8.4. When A outputs the final
message-tag pair (m, t) adversary BI outputs (H(m), t). When event Z happens we know that
V 0(k, m, t) outputs accept and the pair (m, t) is not equal to any of (m1, t1), (m2, t2), . . . 2M⇥T .
Furthermore, since event Y does not happen, we know that (H(m), t) is not equal to any of
(H(m1), t1), (H(m2), t2), . . . 2 TH ⇥ T . It follows that (H(m), t) is a valid existential forgery for
I. Hence, BI succeeds in creating an existential forgery with the same probability that event Z
happens. In other words, MACadv[BI , I] = Pr[Z], as required. The proof now follows from (8.2).
2

8.3 Birthday attacks on collision resistant hash functions

Cryptographic hash functions are most useful when the output digest size is small. The challenge
is to design hash functions whose output is as short as possible and yet finding collisions is di�cult.
It should be intuitively clear that the shorter the digest, the easier it is for an attacker to find
collisions. To illustrate this, consider a hash function H that outputs `-bit digests for some small `.
Clearly, by hashing 2` + 1 distinct messages the attacker will find two messages that hash to the
same digest and will thus break collision resistance of H. This brute-force attack will break the
collision resistance of any hash function. Hence, for instance, hash functions that output 16-bit
digests cannot be collision resistant — a collision can always be found using only 216 + 1 = 65537
evaluations of the hash.

Birthday attacks. A far more devastating attack can be built using the birthday paradox dis-
cussed in Section B.1 in the appendix. Let H be a hash function defined over (M, T ) and set
N := |T |. For standard hash functions N is quite large, for example N = 2256 for SHA-256.
Throughout this section we will assume that the size of M is at least 100N . This basically means
that messages being hashed are slightly longer than the output digest. We describe a general colli-
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sion finder that finds collisions for H after an expected O(
p

N) evaluations of H. For comparison,
the brute-force attack above took O(N) evaluations. This more e�cient collision finder forces us
to use much larger digests.

The birthday collision finder for H works as follows: it chooses s ⇡ pN random and independent
messages, m1, . . . , ms  R M, and looks for a collision among these s messages. We will show that
the birthday paradox implies that a collision is likely to exist among these messages. More precisely,
the birthday collision finder works as follows:
Algorithm BirthdayAttack:

1. Set s d2pN e+ 1
2. Generate s uniform random messages m1, . . . , ms in M
3. Compute xi  H(mi) for all i = 1, . . . , s
4. Look for distinct i, j 2 {1, . . . , s} such that H(mi) = H(mj)
5. If such i, j exist and mi 6= mj then
6. output the pair (mi, mj)

We argue that when the adversary picks s :=
l

2
p

N
m

+ 1 random messages in M, then with

probability at least 1/2, there will exist distinct i, j such that H(mi) = H(mj) and mi 6= mj . This
means that the algorithm will output a collision with probability at least 1/2.

Lemma 8.2. Let m1, . . . , ms be the random messages sampled in Step 2. Assume |M| � 100N .
Then with probability at least 1/2 there exists i, j in {1, . . . , s} such that H(mi) = H(mj) and
mi 6= mj.

Proof. For i = 1, . . . , s let xi := H(mi). First, we argue that two of the xi values will collide
with probability at least 3/4. If the xi were uniformly distributed in T then this would follow
immediately from part (i) of Theorem B.1. Indeed, if the xi were independent and uniform in T a
collision among the xi will occur with probability at least 1� e�s(s�1)/2N � 1� e�2 � 3/4.

However, in reality, the function H(·) might bias the output distribution. Even though the mi

are sampled uniformly from M, the resulting xi may not be uniform in T . As a simple example,
consider a hash function H(·) that only outputs digests in a certain small subset of T . The resulting
xi would certainly not be uniform in T . Fortunately (for the attacker) Corollary B.2 shows that non-
uniform xi only increase the probability of collision. Since the xi are independent and identically
distributed the corollary implies that a collision among the xi will occur with probability at least
1� e�s(s�1)/2N � 3/4 as required.

Next, we argue that a collision among the xi is very likely to lead to a collision on H(·). Suppose
xi = xj for some distinct i, j in {1, . . . , s}. Since xi = H(mi) and xj = H(mj), the pair mi, mj is a
candidate for a collision on H(·). We just need to argue that mi 6= mj . We do so by arguing that
all the m1, . . . , ms are distinct with probability at least 4/5. This follows directly from part (ii) of
Theorem B.1. Recall that M is greater than 100N . Since m1, m2, . . . are uniform and independent
in M, and s < |M|/2, part (ii) of Theorem B.1 implies that the probability of collision among
these mi is at most 1 � e�s(s�1)/100N  1/5. Therefore, the probability that no collision occurs is
at least 4/5.

In summary, for the algorithm to discover a collision for H(·) it is su�cient that both a collision
occurs on the xi values and no collision occurs on the mi values. This happens with probability at
least 3/4� 1/5 > 1/2, as required. 2
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Variations. Algorithm BirthdayAttack requires O(
p

N) memory space, which can be quite
large: larger than the size of commercially available disk farms. However, a modified birthday
collision finder, described in Exercise 8.7, will find a collision with an expected 4

p
N evaluations of

the hash function and constant memory space.
The birthday attack is likely to fail if one makes fewer than

p
N queries to H(·). Suppose we

only make s = ✏
p

N queries to H(·), for some small ✏ 2 [0, 1]. For simplicity we assume that
H(·) outputs digests distributed uniformly in T . Then part (ii) of Theorem B.1 shows that the
probability of finding a collision degrades exponentially to approximately 1� e�(✏2) ⇡ ✏2.

Put di↵erently, if after evaluating the hash function s times an adversary should obtain a
collision with probability at most �, then we need the digest space T to satisfy |T | � s2/�. For
example, if after 280 evaluations of H a collision should be found with probability at most 2�80 then
the digest size must be at least 240 bits. Cryptographic hash functions such as SHA-256 output a
256-bit digest. Other hash functions, such as SHA-384 and SHA-512, output even longer digests,
namely, 384 and 512 bits respectively.

8.4 The Merkle-Damg̊ard paradigm

We now turn to constructing collision resistant hash functions. Many practical constructions follow
the Merkle-Damg̊ard paradigm: start from a collision resistant hash function that hashes short
messages and build from it a collision resistant hash function that hashes much longer messages.
This paradigm reduces the problem of constructing collision resistant hashing to the problem of
constructing collision resistance for short messages, which we address in the next section.

Let h : X ⇥ Y ! X be a hash function where Y := {0, 1}` and X := {0, 1}n. The Merkle-
Damg̊ard function derived from h, denoted HMD and shown in Fig. 8.5, is a hash function
defined over ({0, 1}L, X ) that works as follows (the pad PB is defined below):

input: M 2 {0, 1}L

output: a tag in X
M̂  M k PB // pad with PB to ensure that the length of M is a multiple of ` bits
partition M̂ into consecutive `-bit blocks so that

M̂ = m1 k m2 k · · · k ms where m1, . . . , ms 2 {0, 1}`
t0  IV 2 X
for i = 1 to s do:

ti  h(ti�1, mi)

output ts

The function SHA-256 is a Merkle-Damg̊ard function where ` = 512 and n = 256.
Before proving collision resistance of HMD let us first introduce some terminology for the various

elements in Fig. 8.5:

• The hash function h is called the compression function of H.

• The constant IV is called the initial value and is fixed to some pre-specified value. One could
take IV = 0n, but usually the IV is set to some complicated string. For example, SHA-256
uses a 256-bit IV whose value in hex is

IV := 6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19.
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Figure 8.5: The Merkle-Damg̊ard iterated hash function

• The variables m1, . . . , ms are called message blocks.

• The variables t0, t1, . . . , ts 2 X are called chaining variables.

• The string PB is called the padding block. It is appended to the message to ensure that
the message length is a multiple of ` bits.

The padding block PB must contain an encoding of the input message length. We will use this
in the proof of security below. A standard format for PB is as follows:

PB := 100 . . . 00 k hsi

where hsi is a fixed-length bit string that encodes, in binary, the number of `-bit blocks in M .
Typically this field is 64-bits which means that messages to be hashed are less than 264 blocks
long. The ‘100 . . . 00’ string is a variable length pad used to ensure that the total message length,
including PB, is a multiple of `. The variable length string ‘100 . . . 00’ starts with a ‘1’ to identify
the position where the pad ends and the message begins. If the message length is such that there
is no space for PB in the last block (for example, if the message length happens to be a multiple
of `), then an additional block is added just for the padding block.

Security of Merkle-Damg̊ard. Next we prove that the Merkle-Damg̊ard function is collision
resistant, assuming the compression function is.

Theorem 8.3 (Merkle-Damg̊ard). Let L be a poly-bounded length parameter and let h be a
collision resistant hash function defined over (X ⇥Y, X ). Then the Merkle-Damg̊ard hash function
HMD derived from h, defined over ({0, 1}L, X ), is collision resistant.

In particular, for every collision finder A attacking HMD (as in Attack Game 8.1) there exists a
collision finder B attacking h, where B is an elementary wrapper around A, such that

CRadv[A, HMD] = CRadv[B, h].

Proof. The collision finder B for finding h-collisions works as follows: it first runs A to obtain two
distinct messages M and M 0 in {0, 1}L such that HMD(M) = HMD(M 0). We show that B can use
M and M 0 to find an h-collision. To do so, B scans M and M 0 starting from the last block and
works its way backwards. To simplify the notation, we assume that M and M 0 already contain the
appropriate padding block PB in their last block.

Let M = m1m2 . . . mu be the u blocks of M and let M 0 = m0
1m

0
2 . . . m0

v be the v blocks of M 0.
We let t0, t1, . . . , tu 2 X be the chaining values for M and t00, t01, . . . , t0s 2 X be the chaining values
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for M 0. The very last application of h gives the final output digest and since HMD(M) = HMD(M 0)
we know that

h(tu�1, mu) = h(t0v�1, m
0
v).

If either tu�1 6= t0v�1 or mu 6= m0
v then the pair of inputs (tu�1, mu) and (t0v�1, m

0
v) is an h-collision.

B outputs this collision and terminates.
Otherwise, tu�1 = t0v�1 and mu = m0

v. Recall that the padding blocks are contained in mu and
m0

v and these padding blocks contain an encoding of u and v. Therefore, since mu = m0
v we deduce

that u = v so that M and M 0 must contain the same number of blocks.
At this point we know that u = v, mu = m0

u, and tu�1 = t0u�1. We now consider the second-
to-last block. Since tu�1 = t0u�1 we know that

h(tu�2, mu�1) = h(t0u�2, m
0
u�1).

As before, if either tu�2 6= t0u�2 or mu�1 6= m0
u�1 then B just found an h-collision. It outputs this

collision and terminates.
Otherwise, we know that tu�2 = t0u�2 and mu�1 = m0

u�1 and mu = m0
u. We now consider the

third block from the end. As before, we either find an h-collision or deduce that mu�2 = m0
u�2

and tu�3 = t0u�3. We keep iterating this process moving from right to left one block at a time. At
the ith block one of two things happens. Either the pair of messages (ti�1, mi) and (t0i�1, m

0
i) is an

h-collision, in which case B outputs this collision and terminates. Or we deduce that ti�1 = t0i�1
and mj = m0

j for all j = i, i + 1, . . . , u.
Suppose this process continues all the way to the first block and we still did not find an h-

collision. Then at this point we know that mi = m0
i for i = 1, . . . , u. But this implies that M = M 0

contradicting the fact that M and M 0 were a collision for HMD. Hence, since M 6= M 0, the process
of scanning blocks of M and M 0 from right to left must produce an h-collision. We conclude that
B breaks the collision resistance of h as required.

In summary, we showed that whenever A outputs an HMD-collision, B outputs an h-collision.
Hence, CRadv[A, HMD] = CRadv[B, h] as required. 2

Variations. Note that the Merkle-Damg̊ard construction is inherently sequential — the ith block
cannot be hashed before hashing all previous blocks. This makes it di�cult to take advantage of
hardware parallelism when available. In Exercise 8.8 we investigate a di↵erent hash construction
that is better suited for a multi-processor machine.

The Merkle-Damg̊ard theorem (Theorem 8.3) shows that collision resistance of the compression
function is su�cient to ensure collision resistance of the iterated function. This condition, however,
is not necessary. Black, Rogaway, and Shrimpton [15] give several examples of compression functions
that are clearly not collision resistant, and yet the resulting iterated Merkle-Damg̊ard functions are
collision resistant.

8.4.1 Joux’s attack

We briefly describe a cute attack that applies specifically to Merkle-Damg̊ard hash functions. Let
H1 and H2 be Merkle-Damg̊ard hash functions that output tags in X := {0, 1}n. Define H12(M) :=
H1(M) k H2(M) 2 {0, 1}2n. One would expect that finding a collision for H12 should take time at
least ⌦(2n). Indeed, this would be the case if H1 and H2 were independent random functions.
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We show that when H1 and H2 are Merkle-Damg̊ard functions we can find collisions for H in
time approximately n2n/2 which is far less than 2n. This attack illustrates that our intuition about
random functions may lead to incorrect conclusions when applied to a Merkle-Damg̊ard function.

We say that an s-collision for a hash function H is a set of messages M1, . . . , Ms 2M such that
H(M1) = . . . = H(Ms). Joux showed how to find an s-collision for a Merkle-Damg̊ard function in
time O((log2 s)|X |1/2). Using Joux’s method we can find a 2n/2-collision M1, . . . , M2n/2 for H1 in
time O(n2n/2). Then, by the birthday paradox it is likely that two of these messages, say Mi, Mj ,
are also a collision for H2. This pair Mi, Mj is a collision for both H1 and H2 and therefore a
collision for H12. It was found in time O(n2n/2), as promised.

Finding s-collisions. To find an s-collision, let H be a Merkle-Damg̊ard function over (M, X )
built from a compression function h. We find an s-collision M1, . . . , Ms 2M where each message
Mi contains log2 s blocks. For simplicity, assume that s is a power of 2 so that log2 s is an integer.
As usual, we let t0 denote the Initial Value (IV) used in the Merkle-Damg̊ard construction.

The plan is to use the birthday attack log2 s times on the compression function h. We first
spend time 2n/2 to find two distinct blocks m0, m0

0 such that (t0, m0) and (t0, m0
0) collide under h.

Let t1 := h(t0, m0). Next we spend another 2n/2 time to find two distinct blocks m1, m0
1 such that

(t1, m1) and (t1, m0
1) collide under h. Again, we let t2 := h(t1, m1) and repeat. We iterate this

process b := log2 s times until we have b pairs of blocks:

(mi, m
0
i) for i = 0, 1, . . . b� 1 that satisfy h(ti, mi) = h(ti, m

0
i).

Now, consider the message M = m0m1 . . . mb�1. The main point is that replacing any block mi in
this message by m0

i will not change the chaining value ti+1 and therefore the value of H(M) will
not change. Consequently, we can replace any subset of m0, . . . , mb�1 by the corresponding blocks
in m0

0, . . . , m
0
b�1 without changing H(M). As a result we obtain s = 2b messages

m0m1 . . . mb�1

m0
0m1 . . . mb�1

m0m0
1 . . . mb�1

m0
0m

0
1 . . . mb�1

...
m0

0m
0
1 . . . m0

b�1

that all hash to same value under H. In summary, we found a 2b-collision in time O(b2n/2). As
explained above, this lets us find collisions for H(M) := H1(M) k H2(M) in time O(n2n/2).

8.5 Building Compression Functions

The Merkle-Damg̊ard paradigm shows that to construct a collision resistant hash function for long
messages it su�ces to construct a collision resistant compression function h for short blocks. In
this section we describe a few candidate compression functions. These constructions fall into two
categories:

• Compression functions built from a block cipher. The most widely used method is called
Davies-Meyer. The SHA family of cryptographic hash functions all use Davies-Meyer.
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E
L

y := mi 2 K

x := ti�1

ti := E(mi, ti�1

)� ti�1

2 X

Figure 8.6: The Davies-Meyer compression function

• Compressions functions using number theoretic primitives. These are elegant constructions
with clean proofs of security. Unfortunately, they are generally far less e�cient than the first
method.

8.5.1 A simple but ine�cient compression function

We start with a compression function built using modular arithmetic. Let p be a large prime and
let g and h be integers in the range [1, p� 1]. Consider the following simple compression function
that takes two integers in [1, p� 1] and outputs an integer in [1, p� 1]:

h(x, y) = gxhy mod p.

We will show in Exercise ?? that this function is collision resistant assuming a certain standard
number theoretic problem is hard. Applying the Merkle-Damg̊ard paradigm to this function gives
a collision resistant hash function for arbitrary size inputs. Although this is an elegant collision
resistant hash with a clean security proof, it is far less e�cient than functions derived from the
Davies-Meyer construction and, as a result, is not often used in practice.

8.5.2 Davies-Meyer compression functions

In Chapter 4 we spent the e↵ort to build secure block ciphers like AES. It is natural to ask whether
we can leverage these constructions to build fast compression functions. The Davies-Meyer method
enables us to do just that, but security can only be shown in the ideal cipher model.

Let E = (E, D) be a block cipher over (K, X ) where X = {0, 1}n. The Davies-Meyer com-
pression function derived from E maps inputs in X ⇥ K to outputs in X . The function is
defined as follows:

hDM(x, y) := E(y, x)� x

and is illustrated in Fig. 8.6. In symbols, hDM is defined over (X ⇥K, X ).
When plugging this compression function into the Merkle-Damg̊ard paradigm the inputs are a

chaining variable x := ti�1 2 X and a message block y := mi 2 K. The output is the next chaining
variable ti := E(mi, ti�1)� ti�1 2 X . Note that the message block is used as the block cipher key
which seems a bit odd since the adversary has full control over the message. Nevertheless, we will
show that hDM is collision resistant and therefore the resulting Merkle-Damg̊ard function is collision
resistant.

When using hDM in Merkle-Damg̊ard the block cipher key (mi) changes from one message block
to the next, which is an unusual way of using a block cipher. Common block ciphers are optimized
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Matyas-Meyer-Oseas Miyaguchi-Preneel
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L

y := mi 2 X

x := ti�1

ti 2 X Eg
L

y := mi 2 X

x := ti�1

ti 2 X

Figure 8.7: Other block cipher compression functions

to encrypt long messages with a fixed key; changing the block cipher key on every block can slow
down the cipher. Consequently, using Davies-Meyer with an o↵-the-shelf block cipher such as AES
will result in a relatively slow hash function. Instead, one uses a custom block cipher specifically
designed for rapid key changes.

Another reason to not use an o↵-the-shelf block cipher in Davies-Meyer is that the block size
may be too short, for example 128 bits for AES. An AES-based compression function would produce
a 128-bit output which is much too short for collision resistance: a collision could be found with
only 264 evaluations of the function. In addition, o↵-the-shelf block ciphers use relatively short
keys, say 128 bits long. This would result in Merkle-Damg̊ard processing only 128 message bits per
round. Typical ciphers used in Merkle-Damg̊ard hash functions use longer keys (typically, 512-bits
or even 1024-bits long) so that many more message bits are processed in every round.

Davies-Meyer variants. The Davies-Meyer construction is not unique. Many other similar
methods can convert a block cipher into a collision resistant compression function. For example,
one could use

Matyas-Meyer-Oseas: h1(x, y) := E(x, y)� y
Miyaguchi-Preneel: h2(x, y) := E(x, y)� y � x
Or even: h3(x, y) := E(x� y, y)� y

or many other such variants. Preneel et al. [57] give twelve di↵erent variants that can be shown to
be collision resistant.

The Matyas-Meyer-Oseas function h1 is similar to Davies-Meyer, but reverses the roles of the
chaining variable and the message block — in h1 the chaining variable is used as the block cipher
key. The function h1 maps elements in (K ⇥ X ) to X . Therefore, to use h1 in Merkle-Damg̊ard
we need an auxiliary encoding function g : X ! K that maps the chaining variable ti�1 2 X to
an element in K, as shown in Fig. 8.7. The same is true for the Miyaguchi-Preneel function h2.
The Davies-Meyer function does not need such an encoding function. We note that the Miyaguchi-
Preneel function has a minor security advantage over Davies-Meyer, as discussed in Exercise 8.14.

Many other natural variants of Davies-Meyer are totally insecure. For example, for the following
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functions

h4(x, y) := E(y, x)� y

h5(x, y) := E(x, x� y)� x

we can find collisions in constant time (see Exercise 8.10).

8.5.3 Collision resistance of Davies-Meyer

We cannot prove that Davies-Meyer is collision resistant by assuming a standard complexity as-
sumption about the block cipher. Simply assuming that E = (E, D) is a secure block cipher is
insu�cient for proving that hDM is collision resistant. Instead, we have to model the block cipher
as an ideal cipher.

We introduced the ideal cipher model back in Section 4.7. Recall that this is a heuristic technique
in which we treat the block cipher as if it were a family of random permutations. If E = (E, D) is
a block cipher with key space K and data block space X , then the family of random permutations
is {⇧k }k 2K, where each ⇧k is a truly random permutation on X , and the ⇧k ’s collectively are
mutually independent.

Attack Game 8.1 can be adapted to the ideal cipher model, so that before the adversary outputs
a collision, it may make a series of ⇧-queries and ⇧�1-queries to its challenger.

• For a ⇧-query, the adversary submits a pair (k , a) 2 K⇥X , to which the challenger responds
with b := ⇧k (a).

• For a ⇧�1-query, the adversary submits a pair (k , b) 2 K⇥X , to which the challenger responds
with a := ⇧�1

k (b).

After making these queries, the adversary attempts to output a collision, which in the case of
Davies-Meyer, means (x, y) 6= (x0, y0) such that

⇧y(x)� x = ⇧y0(x
0)� x0.

The adversary A’s advantage in finding a collision for hDM in the ideal cipher model is denoted
CRicadv[A, hDM], and security in the ideal cipher model means that this advantage is negligible for
all e�cient adversaries A.

Theorem 8.4 (Davies-Meyer). Let hDM be the Davies-Meyer hash function derived from a block
cipher E = (E, D) defined over (K, X ), where |X | is large. Then hDM is collision resistant in the
ideal cipher model.

In particular, every collision finding adversary A that issues at most q ideal-cipher queries will
satisfy

CRicadv[A, hDM]  (q + 1)(q + 2)/|X |.

The theorem shows that Davies-Meyer is an optimal compression function: the adversary must
issue q = ⌦(

p|X |) queries (and hence must run for at least that amount of time) if he is to find a
collision for hDM with constant probability. No compression function can have higher security due
to the birthday attack.
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Proof. Let A be a collision finder for hDM that makes at most a total of q ideal cipher queries.
We shall assume that A is “reasonable”: before A outputs its collision attempt (x, y), (x0, y0), it
makes corresponding ideal cipher queries: for (x, y), either a ⇧-query on (y, x) or a ⇧�1-query on
(y, ·) that yields x, and similarly for (x0, y0). If A is not already reasonable, we can make it so by
increasing total number of queries to at most q0 := q + 2. So we will assume A is reasonable and
makes at most q0 ideal cipher queries from now on.

For i = 1, . . . , q0, the ith ideal cipher query defines a triple (k i, ai, bi): for a ⇧-query (k i, ai), we
set bi := ⇧k i

(ai), and for a ⇧�1-query (k i, bi), we set ai := ⇧�1
k i

(bi). We assume that A makes no

extraneous queries, so that no triples repeat.
If the adversary outputs a collision, then by our reasonableness assumption, for some distinct

pair of indices i, j = 1, . . . , q0, we have ai � bi = aj � bj . Let us call this event Z. So we have

CRicadv[A, hDM]  Pr[Z].

Our goal is to show

Pr[Z]  q0(q0 � 1)

2n
, (8.3)

where |X | = 2n.
Consider any fixed indices i < j. Conditioned on any fixed values of the adversary’s coins and

the first j � 1 triples, one of aj and bj is completely fixed, while the other is uniformly distributed
over a set of size at least |X |� j + 1. Therefore,

Pr[ai � bi = aj � bj ]  1

2n � j + 1
.

So by the union bound, we have

Pr[Z] 
q0
X

j=1

j�1
X

i=1

Pr[ai � bi = aj � bj ] 
q0
X

j=1

j � 1

2n � j + 1


q0
X

j=1

j � 1

2n � q0
=

q0(q0 � 1)

2(2n � q0)
. (8.4)

For q0  2n�1 this bound simplifies to Pr[Z]  q0(q0�1)/2n. For q0 > 2n�1 the bound holds trivially.
Therefore, (8.3) holds for all q0. 2

8.6 Case study: SHA-256

The Secure Hash Algorithm (SHA) was published by NIST in 1993 [FIPS 180] as part of the design
specification of the Digital Signature Standard (DSS). This hash function, often called SHA-0,
outputs 160-bit digests. Two years later, in 1995, NIST updated the standard [FIPS 180-1] by
adding one extra instruction to the compression function. The resulting function is called SHA-1.
NIST gave no explanation for this change, but it was later found that this extra instruction is
crucial for collision resistance. SHA-1 became the de-facto standard for collision resistant hashing
and is very widely deployed.

The birthday attack can find collisions for SHA-1 using an expected 280 evaluations of the
function. In 2002 NIST added [FIPS 180-2] two new hash functions to the SHA family: SHA-256
and SHA-512. They output larger digests (256 and 512-bit digests respectively) and therefore
provide better protection against the birthday attack. NIST also approved SHA-224 and SHA-384
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digest message Speed2 best known
Name year size block size MB/sec attack time
SHA-0 1993 160 512 239

SHA-1 1995 160 512 153 263

SHA-224 2004 224 512
SHA-256 2002 256 512 111
SHA-384 2002 384 1024
SHA-512 2002 512 1024 99
MD4 1990 128 512 21

MD5 1992 128 512 255 230

Whirpool 2000 512 512 57

Table 8.1: Merkle-Damg̊ard collision resistant hash functions

which are obtained from SHA-256 and SHA-512 respectively by truncating the output to 224 and
384 bits. These and a few other proposed hash functions are summarized in Table 8.1.

The years 2004–5 were bad years for collision resistant hash functions. A number of new
attacks showed how to find collisions for a variety of hash functions. In particular, Wang, Yao,
and Yao [70] presented a collision finder for SHA-1 that uses 263 evaluations of the function — far
less than the birthday attack. As a result SHA-1 is no longer considered collision resistant. The
current recommended practice is to use SHA-256 which we describe here.

The SHA-256 function. SHA-256 is a Merkle-Damg̊ard hash function using a Davies-Meyer
compression function h. This h takes as input a 256-bit chaining variable t and a 512-bit message
block m. It outputs a 256-bit chaining variable.

We first describe the SHA-256 Merkle-Damg̊ard chain. Recall that the padding block PB in our
description of Merkle-Damg̊ard contained a 64-bit encoding of the number of blocks in the message
being hashed. The same is true for SHA-256 with the minor di↵erence that PB encodes the number
of bits in the message. Hence, SHA-256 can hash messages that are at most 264 � 1 bits long. The
Merkle-Damg̊ard Initial Value (IV) in SHA-256 is set to:

IV := 6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19 2 {0, 1}256

written in base 16.
Clearly the output of SHA-256 can be truncated to obtain shorter digests at the cost of reduced

security. This is, in fact, how the SHA-224 hash function works — it is identical to SHA-256 with
two exceptions: (1) SHA-224 uses a di↵erent initialization vector IV, and (2) SHA-224 truncates
the output of SHA-256 to its left most 224 bits.

Next, we describe the SHA-256 Davies-Meyer compression function h. It is built from a block
cipher which we denote by ESHA256. However, instead of using XOR as in Davies-Meyer, SHA-256
uses addition modulo 232. That is, let

x0, x1, . . . , x7 2 {0, 1}32 and y0, y1, . . . , y7 2 {0, 1}32
2Performance numbers were provided by Wei Dai using the Crypto++ 5.6.0 benchmarks running on a 1.83 GhZ

Intel Core 2 processor. Higher numbers are better.

301



and set
x := x0 k · · · k x7 2 {0, 1}256 and y := y0 k · · · k y7 2 {0, 1}256.

Define: x � y := (x0 + y0) k · · · k (x7 + y7) 2 {0, 1}256 where all additions are modulo 232.
Then the SHA-256 compression function h is defined as:

h(t, m) := ESHA256(m, t) � t 2 {0, 1}256.

Our ideal cipher analysis of Davies-Meyer (Theorem 8.4) applies equally well to this modified
function.

The SHA-256 block cipher. To complete the description of SHA-256 it remains to describe
the block cipher ESHA256. The algorithm makes use of a few auxiliary functions defined in Table 8.2.
Here, SHR and ROTR denote the standard shift-right and rotate-right functions.

The cipher ESHA256 takes as input a 512-bit key k and a 256-bit message t. We first break both
the key and the message into 32-bit words. That is, write:

k := k0 k k1 k · · · k k15 2 {0, 1}512
t := t0 k t1 k · · · k t7 2 {0, 1}256

where each ki and ti is in {0, 1}32.
The code for ESHA256 is shown in Table 8.3. It iterates the same round function 64 times. In

each round the cipher uses a round key Wi 2 {0, 1}32 defined recursively during the key setup step.
One cipher round, shown in Fig. 8.8, looks like two adjoined Feistel rounds. The cipher uses 64
fixed constants K0, K1, . . . , K63 2 {0, 1}32 whose values are specified in the SHA-256 standard. For
example, K0 := 428A2F98 and K1 := 71374491, written base 16.

Interestingly, NIST never gave the block cipher ESHA256 an o�cial name. The cipher was given
the uno�cial name SHACAL-2 by Handschuh and Naccache (submission to NESSIE, 2000).
Similarly, the block cipher underlying SHA-1 is called SHACAL-1. The SHACAL-2 block cipher is
identical to ESHA256 with the only di↵erence that it can encrypt using keys shorter than 512 bits.
Given a key k 2 {0, 1}512 the SHACAL-2 cipher appends zeros to the key to get a 512-bit key.
It then applies ESHA256 to the given 256-bit message block. Decryption in SHACAL-2 is similar to
encryption. This cipher is well suited for applications where SHA-256 is already implemented, thus
reducing the overall size of the crypto code.

8.6.1 Other Merkle-Damg̊ard hash functions

MD4 and MD5. Two cryptographic hash functions designed by Rivest in 1990–1 [58, 59]. Both
are Merkle-Damg̊ard hash functions that output a 128-bit digest. They are quite similar, although
MD5 uses a stronger compression function than MD4. Collisions for both hash functions can be
found e�ciently as described in Table 8.1. Consequently, these hash functions should no longer be
used.

Whirpool. Whirlpool was designed by Barreto and Rijmen in 2000 and was adopted as an
ISO/IEC standard in 2004. Whirpool is a Merkle-Damg̊ard hash function. Its compression function
uses the Miyaguchi-Preneel method (Fig. 8.7) with a block cipher called W . This block cipher is
very similar to AES, but has a 512-bit block size. The resulting hash output is 512-bits.
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For x, y, z in {0, 1}32 define:

SHRn(x) := (x >> n) (Shift Right)
ROTRn(x) := (x >> n) _ (x << 32� n) (Rotate Right)

Ch(x, y, z) := (x ^ y)� (¬x ^ z)
Maj(x, y, z) := (x ^ y)� (x ^ z)� (y ^ z)

⌃0(x) := ROTR2(x)� ROTR13(x)� ROTR22(x)
⌃1(x) := ROTR6(x)� ROTR11(x)� ROTR25(x)
�0(x) := ROTR7(x)� ROTR18(x)� SHR3(x)
�1(x) := ROTR17(x)� ROTR19(x)� SHR10(x)

Table 8.2: Functions used in the SHA-256 block cipher

Input: plaintext t = t0 k · · · k t7 2 {0, 1}256 and
key k = k0 k k1 k · · · k k15 2 {0, 1}512

Output: ciphertext in {0, 1}256.
// Here all additions are modulo 232.
// The algorithm uses constants K0, K1, . . . , K63 2 {0, 1}32

Key setup: Construct 64 round keys W0, . . . , W63 2 {0, 1}32:
(

for i = 0, 1, . . . , 15 set Wi  ki,

for i = 16, 17, . . . , 63 set Wi  �1(Wi�2) + Wi�7 + �0(Wi�15) + Wi�16

64 Rounds:
�

a0, b0, c0, d0, e0, f0, g0, h0
�  �

t0, t1, t2, t3, t4, t5, t6, t7
�

for i = 0 to 63 do:
T1  hi + ⌃1(ei) + Ch(ei, fi, gi) + Ki + Wi

T2  ⌃0(ai) + Maj(ai, bi, ci)
�

ai+1, bi+1, ci+1, di+1, ei+1, fi+1, gi+1, hi+1
�  

�

T1 + T2, ai, bi, ci, di + T1, ei, fi, gi
�

Output: a64 k b64 k c64 k d64 k e64 k f64 k g64 k h64 2 {0, 1}256

Table 8.3: The SHA-256 block cipher
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Figure 8.8: One round of the SHA-256 block cipher

Others. Many other Merkle-Damg̊ard hash functions were proposed in the literature. Some
examples include Tiger/192 [10] and RIPEMD-160 to name a few.

8.7 Case study: HMAC

In this section, we return to our problem of building a secure MAC that works on long messages.
Merkle-Damg̊ard hash functions such as SHA1 and SHA-256 are very widely deployed. Most
Crypto libraries include an implementation of multiple Merkle-Damg̊ard functions. Furthermore,
these implementations are very fast: one can typically hash a very long message with SHA-256
much faster than one can apply, say, CBC-MAC with AES to the same message.

Of course, one might use the hash-then-MAC construction analyzed in Section 8.2. Recall that
in this construction, we combine a secure MAC system I = (S, V ) and a collision resistant hash
function H, so that the resulting signing algorithm signs a message m by first hashing m using H
to get a short digest H(m), and then signs H(m) using S to obtain the MAC tag t = S(k, H(m)).
As we saw in Theorem 8.1 the resulting construction is secure. However, this construction is not
very widely deployed. Why?

First of all, as discussed after the statement of Theorem 8.1, if one can find collisions in H,
then the hash-then-MAC construction is completely broken. A collision-finding attack, such as a
birthday attack (Section 8.3), or a more sophisticated attack, can be carried out entirely o✏ine,
that is, without the need to interact with any users of the system. In contrast, online attacks
require many interactions between the adversary and honest users of the system. In general, o✏ine
attacks are considered especially dangerous since an adversary can invest huge computing resources
over an extended period of time: in an attack on hash-then-MAC, an attacker could spend months
quietly computing on many machines to find a collision on H, without arousing any suspicions.

Another reason not to use the hash-then-MAC construction directly is that we need both a hash
function H and a MAC system I. So an implementation might need software and/or hardware to
execute both, say, SHA-256 for the hash and CBC-MAC with AES for the MAC. All other things
being equal, it would be nice to simply use one algorithm as the basis for a MAC.

This leads us to the following problem: how to take a keyless Merkle-Damg̊ard hash function,
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such as SHA-256, and use it somehow to implement a keyed function that is a secure MAC, or even
better, a secure PRF. Moreover, we would like to be able to prove the security of this construction
under an assumption that is (qualitatively, at least) weaker than collision resistance; in particular,
the construction should not be susceptible to an o✏ine collision-finding attack on the underlying
compression function.

Assume that H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n ⇥
{0, 1}` ! {0, 1}n. A few simple approaches come to mind.

Prepend the key: Fpre(k, M) := H(k kM). This is completely insecure, because of the following
extension attack: given Fpre(k, M), one can easily compute Fpre(k, M k PB k M 0) for any
M 0. Here, PB is the Merkle-Damg̊ard padding block for the message k kM . Aside from this
extension attack, the construction is secure, under reasonable assumptions (see Exercise 8.17).

Append the key: Fpost(k, M) := H(M k k). This is somewhat similar to the hash-then-MAC
construction, and relies on the collision resistance of h. Indeed, it is vulnerable to an o✏ine
collision-finding attack: assuming we find two distinct `-bit strings M0 and M1 such that
h(IV, M0) = h(IV, M1), then we have Fpost(k, M0) = Fpost(k, M1). For these reasons, this
construction does not solve our problem. However, under the right assumptions (including
the collision resistance of h, of course), we can still get a security proof (see Exercise 8.18).

Envelope method: Fenv(k, M) := H(k k M k k). Under reasonable pseudorandomness assump-
tions on h, and certain formatting assumptions (that k is an `-bit string and M is padded
out to a bit string whose length is a multiple of `), this can be proven to be a secure PRF.
See Exercise 8.16.

Two-key nest: Fnest((k1, k2), M) := H(k2 k H(k1 k M)). Under reasonable pseudorandomness
assumptions on h, and certain formatting assumptions (that k1 and k2 are `-bit strings), this
can also be proven to be a secure PRF.

The two-key nest is very closely related to a classic MAC construction known as HMAC.
HMAC is the most widely deployed MAC on the Internet. It is used in SSL, TLS, IPsec, SSH, and
a host of other security protocols. TLS and IPsec also use HMAC as a means for deriving session
keys during session setup. We will give a security analysis of the two-key nest, and then discuss its
relation to HMAC.

8.7.1 Security of two-key nest

We will now show that the two-key nest is indeed a secure PRF, under appropriate psuedorandom-
ness assumptions on h. Let us start by “opening up” the definition of Fnest((k1, k2), M), using the
fact that H is a Merkle-Damg̊ard hash built from h. See Fig. 8.9. The reader should study this
figure carefully. We are assuming that the keys k1 and k2 are `-bit strings, so they each occupy
one full message block. The input to the inner evaluation of H is the padded string k1 kM k PBi,
which is broken into `-bit blocks as shown. The output of the inner evaluation of H is the n-bit
string t. The input to the outer evaluation of H is the padded string k2 k t k PBo. We shall assume
that n is significantly smaller than `, so that t k PBo is a single `-bit block, as shown in the figure.

We now state the pseudorandomness assumptions we need. We define the following two PRFs
hbot and htop derived from h:

hbot(k, m) := h(k, m) and htop(k, m) := h(m, k). (8.5)
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Figure 8.9: The two-key nest

For the PRF hbot, the PRF key k is viewed as the first input to h, i.e., the n-bit chaining variable
input, which is the bottom input to the h-boxes in Fig. 8.9. For the PRF htop, the PRF key k
is viewed as the second input to h, i.e., the `-bit message block input, which is the top input to
the h-boxes in the figure. To make the figure easier to understand, we have decorated the h-box
inputs with a > symbol, which indicates which input is to be viewed as a PRF key. Indeed, the
reader will observe that we will treat the two evaluations of h that appear within the dotted boxes
as evaluations of the PRF htop, so that the values labeled k0

1 and k0
2 in the figure are computed

as k0
1  htop(k1, IV) and k0

2  htop(k2, IV). All of the other evaluations of h in the figure will be
treated as evaluations of hbot.

Our assumption will be that hbot and htop are both secure PRFs. Later, we will use the ideal ci-
pher model to justify this assumption for the Davies-Meyer compression function (see Section 8.7.3).

We will now sketch a proof of the following result:

If hbot and htop are secure PRFs, then so is the two-key nest.

The first observation is that the keys k1 and k2 are only used to derive k0
1 and k0

2 as k0
1 =

htop(k1, IV) and k0
2 = htop(k2, IV). The assumption that htop is a secure PRF means that in the

PRF attack game, we can e↵ectively replace k0
1 and k0

2 by truly random n-bit strings. The resulting
construction drawn in Fig. 8.10. All we have done here is to throw away all of the elements in
Fig. 8.9 that are within the dotted boxes. The function in this new construction takes as input
the two keys k0

1 and k0
2 and a message M . By the above observations, it su�ces to prove that the

construction in Fig. 8.10 is a secure PRF.
Hopefully (without reading the caption), the reader will recognize the construction in Fig. 8.10

as none other than NMAC applied to hbot, which we introduced in Section 6.5.1 (in particular,
take a look at Fig. 6.5b). Actually, the construction in Fig. 8.10 is a bit-wise version of NMAC,
obtained from the block-wise version via padding (as discussed in Section 6.8). Thus, security for
the two-key nest now follows directly from the NMAC security theorem (Theorem 6.7) and the
assumption that hbot is a secure PRF.
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Figure 8.10: A bit-wise version of NMAC

8.7.2 The HMAC standard

The HMAC standard is exactly the same as the two-key nest (Fig. 8.9), but with one important
di↵erence: the keys k1 and k2 are not independent, but rather, are derived in a somewhat ad hoc
way from a single key k.

To describe this in more detail, we first observe that HMAC itself is somewhat byte oriented, so
all strings are byte strings. Message blocks for the underlying Merkle-Damg̊ard hash are assumed
to be B bytes (rather than ` bits). A key k for HMAC is a byte string of arbitrary length. To
derive the keys k1 and k2, which are byte strings of length B, we first make k exactly B bytes long:
if the length of k is less than or equal to B, we pad it out with zero bytes; otherwise, we replace it
with H(k) padded with zero bytes. Then we compute

k1  k � ipad and k2  k � opad,

where ipad and opad (“i” and “o” stand for “inner” and “outer”) are B-byte constant strings,
defined as follows:

ipad = the byte 0x36 repeated B times
opad = the byte 0x5C repeated B times

HMAC implemented using a hash function H is denoted HMAC-H. The most common HMACs
used in practice are HMAC-SHA1 and HMAC-SHA-256. The HMAC standard also allows the
output of HMAC to be truncated. For example, when truncating the output of SHA1 to 80 bits,
the HMAC function is denoted HMAC-SHA1-80. Implementations of TLS 1.0, for example, are
required to support HMAC-SHA1-96.

Security of HMAC. Since the keys k0
1, k

0
2 are related — their XOR is equal to opad � ipad —

the security proof we gave for the two-key nest no longer applies: under the stated assumptions,
we cannot justify the claim that the derived keys k0

1, k
0
2 are indistinguishable from random. One

solution is to make a stronger assumption about the compression function h – one needs to assume
that htop remains a PRF under a related key attack (as defined by Bellare and Kohno [5]). If h is
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itself a Davies-Meyer compression function, then this stronger assumption can be justified in the
ideal cipher model.

8.7.3 Davies-Meyer is a secure PRF in the ideal cipher model

It remains to justify our assumption that the PRFs hbot and htop derived from h in (8.5) are secure.
Suppose the compression function h is a Davies-Meyer function, that is h(x, y) := E(y, x)� x for
some block cipher E = (E, D). Then

• hbot(k, m) := h(k, m) = E(m, k)� k is a PRF defined over(X , K, X ), and

• htop(k, m) := h(m, k) = E(k, m)�m is a PRF defined over(K, X , X )

When E is a secure block cipher, the fact that htop is a secure PRF is trivial (see Exercise 4.1
part (c)). The fact that hbot is a secure PRF is a bit surprising — the message m given as input
to hbot is used as the key for E. But m is chosen by the adversary and hence E is evaluated with
a key that is completely under the control of the adversary. As a result, even though E is a secure
block cipher, there is no security guarantee for hbot. Nevertheless, we can prove that hbot is a
secure PRF, but this requires the ideal cipher model. Just assuming that E is a secure block cipher
is insu�cient.

If necessary, the reader should review the basic concepts regarding the ideal cipher model,
which was introduced in Section 4.7. We also used the ideal cipher model earlier in this chapter
(see Section 8.5.3).

In the ideal cipher model, we heuristically model a block cipher E = (E, D) defined over (K, X )
as a family of random permutations {⇧k }k 2K. We adapt the PRF Attack Game 4.2 to work in
the ideal cipher model. The challenger, in addition to answering standard queries, also answers ⇧-
queries and ⇧�1-queries: a ⇧-query is a pair (k , a) to which the challenger responds with b := ⇧k (a);
a ⇧�1-query is a pair (k , b) to which is the challenger responds with a := ⇧�1

k (b). For a standard

query m, the challenger responds with v := f(m): in Experiment 0 of the attack game, f is F (k, ·),
where F is a PRF and k is a randomly chosen key; in Experiment 1, f is a truly random function.
Moreover, in Experiment 0, F is evaluated using the random permutations in the role of E and D
used in the construction of F . For our PRF hbot(k, m) = E(m, k)� k = ⇧m(k)� k.

For an adversary A, we define PRFicadv[A, F ] to be the advantage in the modified PRF attack
game, and security in the ideal cipher model means that this advantage is negligible for all e�cient
adversaries.

Theorem 8.5 (Security of hbot). Let E = (E, D) be a block cipher over (K, X ), where |X | is
large. Then hbot(k, m) := E(m, k)� k is a secure PRF in the ideal cipher model.

In particular, for every PRF adversary A attacking h
bot

and making at most a total of Q
ic

ideal
cipher queries, we have

PRFicadv[A, h
bot

]  2Q
ic

|X | .

The bound in the theorem is fairly tight, as brute-force key search gets very close to this bound.

Proof. The proof will mirror the analysis of the Evan-Mansour/EX constructions (see Theorem 4.14
in Section 4.7.4), and in particular, will make use of the Domain Separation Lemma (see Theo-
rem 4.15, also in Section 4.7.4).

308



Let A be an adversary as in the statement of the theorem. Let pb be the probability that A
outputs 1 in Experiment b of Attack Game 4.2, for b = 0, 1. So by definition we have

PRFicadv[A, hbot] = |p0 � p1|. (8.6)

We shall prove the theorem using a sequence of two games, applying the Domain Separation
Lemma.

Game 0. The game will correspond to Experiment 0 of the PRF attack game in the idea cipher
model. We can write the logic of the challenger as follows:

Initialize:
for each k 2 K, set ⇧k  R Perms[X ]
k  R X

standard hbot-query m:
1. c ⇧m(k)
2. v  c� k
3. return v

The challenger in Game 0 processes ideal cipher queries exactly as in Game 0 of the proof of
Theorem 4.14:

ideal cipher ⇧-query k , a:
1. b  ⇧k (a)
2. return b

ideal cipher ⇧�1-query k , b:
1. a  ⇧�1

k (b)

2. return a

Let W0 be the event that A outputs 1 at the end of Game 0. It should be clear from construction
that

Pr[W0] = p0. (8.7)

Game 1. Just as in the proof of Theorem 4.14, we declare “by fiat” that standard queries and
ideal cipher queries are processed using independent random permutations. In detail (changed from
Game 0 are highlighted):

Initialize:

for each k 2 K, set ⇧std,k  R Perms[X ] and ⇧ic,k  R Perms[X ]

k  R X

standard hbot-query m:

1. c ⇧std,m(k) // add k to sampled domain of ⇧
std,m, add c to sampled range of ⇧

std,m

2. v  c� k
3. return v
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The challenger in Game 1 processes ideal cipher queries exactly as in Game 1 of the proof of
Theorem 4.14:

ideal cipher ⇧-query k , a:

1. b  ⇧ic,k (a) // add a to sampled domain of ⇧
ic,k , add b to sampled range of ⇧

ic,k

2. return b

ideal cipher ⇧�1-query k , b:

1. a  ⇧�1
ic,k (b) // add a to sampled domain of ⇧

ic,k , add b to sampled range of ⇧
ic,k

2. return a

Let W1 be the event that A outputs 1 at the end of Game 1. Consider an input/output pair
(m, v) for a standard query in Game 2. Observe that k is the only item ever added to the sampled
domain of ⇧std,m(k), and c = v � k is the only item ever added to the sampled range of ⇧std,m(k).
In particular, c is generated at random and k remains perfectly hidden (i.e., is independent of the
adversary’s view).

Thus, from the adversary’s point of view, the standard queries behave identically to a random
function, and the ideal cipher queries behave like ideal cipher queries for an independent ideal
cipher. In particular, we have

Pr[W1] = p1. (8.8)

Finally, we use the Domain Separation Lemma to analyze |Pr[W0] � Pr[W1]|. The domain
separation failure event Z is the event that in Game 1, the sampled domain of one of the ⇧std,m’s
overlaps with the sampled domain of one of the ⇧ic,k ’s, or the sampled range of one of the ⇧std,m’s
overlaps with the sampled range of one of the ⇧ic,k ’s. The Domain Separation Lemma tells us that

|Pr[W0]� Pr[W1]|  Pr[Z]. (8.9)

If Z occurs, then for some input/output triple (k , a, b) corresponding to an ideal cipher query,
k = m was the input to a standard query with output v, and either

(i) a = k, or

(ii) b = v � k.

For any fixed triple (k , a, b), by the independence of k, conditions (i) and (ii) each hold with
probability 1/|X |, and so by the union bound

Pr[Z]  2Qic

|X | . (8.10)

The theorem now follows from (8.6)–(8.10). 2

8.8 The Sponge Construction and SHA3

For many years, essentially all collision resistant hash functions were based on the Merkle-Damg̊ard
paradigm. Recently, however, an alternative paradigm has emerged, called the sponge construc-
tion. Like Merkle-Damg̊ard, it is a simple iterative construction built from a more primitive
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function; however, instead of a compression function h : {0, 1}n+` ! {0, 1}n, a permutation
⇡ : {0, 1}n ! {0, 1}n is used. We stress that unlike a block cipher, the function ⇡ has no key.
There are two other high-level di↵erences between the sponge and Merkle-Damg̊ard that we should
point out:

• On the negative side, it is not known how to reduce the collision resistance of the sponge
to a concrete security property of ⇡. The only known analysis of the sponge is in the ideal
permutation model, where we (heuristically) model ⇡ as a truly random permutation ⇧.

• On the positive side, the sponge is designed to be used flexibly and securely in a variety of
applications where collision resistance is not the main property we need. For example, in
Section 8.7, we looked at several possible ways to convert a hash function H into a PRF
F . We saw, in particular, that the intuitive idea of simply prepending the key, defining
Fpre(k, M) := H(k k M), does not work when H instantiated with a Merkle-Damg̊ard hash.
The sponge avoids these problems: it allows one to hash variable length inputs to variable
length outputs, and if we model ⇡ as a random permutation, then one can argue that for all
intents and purposes, the sponge is a random function (we will discuss this in more detail
in Section 8.9). In particular, the construction Fpre is secure when H is instantiated with a
sponge hash.

A new hash standard, called SHA3, is based on the sponge construction. After giving a de-
scription and analysis of the general sponge construction, we discuss some of the particulars of
SHA3.

8.8.1 The sponge construction

We now describe the sponge construction. In addition specifying a permutation ⇡ : {0, 1}n !
{0, 1}n, we need to specify two positive integers numbers r and c such that n = r + c. The number
r is called the rate of the sponge: larger rate values lead to faster evaluation. The number c is
called the capacity of the sponge: larger capacity values lead to better security bounds. Thus,
di↵erent choices of r and c lead to di↵erent speed/security trade-o↵s.

The sponge allows variable length inputs. To hash a long message M 2 {0, 1}L, we first append
a padding string to M to make its length a multiple of r, and then break the padded M into a
sequence of r-bit blocks m1, . . . , ms. The requirements of the padding procedure are minimal: it
just needs to be injective. Just adding a string of the form 10⇤ su�ces, although in SHA3 a pad of
the form 10⇤1 is used: this latter padding has the e↵ect of encoding the rate in the last block and
helps to analyze security in applications that use the same sponge with di↵erent rates; however, we
will not explore these use cases here. Note that an entire dummy block may need to be added if
the length of M is already at or near a multiple of r.

The sponge allows variable length outputs. So in addition to a message M 2 {0, 1}L as above,
it takes as input a positive integer v, which specifies the number of output bits.

Here is how the sponge works:
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Figure 8.11: The sponge construction

Input: M 2 {0, 1}L and ` > 0
Output: a tag h 2 {0, 1}v

// Absorbing stage
Pad M and break into r-bit blocks m1, . . . , ms

h 0n

for i 1 to s do
m0

i  mi k 0c 2 {0, 1}n
h ⇡(h�m0

i)

// Squeezing stage
z  h[0 . . r � 1]
for i 1 to dv/re do

h ⇡(h)
z  z k (h[0 . . r � 1])

output z[0 . . v � 1]

The diagram in Fig. 8.11 may help to clarify the algorithm. The sponge runs in two stages:
the “absorbing stage” where the message blocks get “mixed in” to a chaining variable h, and a
“squeezing stage” where the output is “pulled out” of the chaining variable. Note that input blocks
and output blocks are r-bit strings, so that the remaining c bits of the chaining variable cannot be
directly tampered with or seen by an attacker. This is what gives the sponge its security, and is
the reason why c must be large. Indeed, if the sponge has small capacity, it is easy to find collisions
(see Exercise 8.20).

In the SHA3 standard, the sponge construction is intended to be used as a collision resistant
hash, and the output length is fixed to a value v  r, and so the squeezing stage simply outputs the
first v bits of the output h of the absorbing stage. We will now prove that this version of the sponge
is collision resistant in the ideal permutation model, assuming 2c and 2v are both super-poly.

Theorem 8.6. Let H be the hash function obtained from a permutation ⇡ : {0, 1}n ! {0, 1}n, with
capacity c, rate r (so n = r + c), and output length v  r. In the ideal permutation model, where
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⇡ is modeled as a random permutation ⇧, the hash function H is collision resistant, assuming 2v

and 2c are super-poly.

In particular, for every collision finding adversary A, if the number of ideal-permutation queries
plus the number of r-bit blocks in the output messages of A is bounded by q, then

CRicadv[A, H]  q(q � 1)

2v
+

q(q + 1)

2c
.

Proof. As in the proof of Theorem 8.4, we assume our collision-finding adversary is “reasonable”,
in the sense that it makes ideal permutation queries corresponding to its output. We can easily
convert an arbitrary adversary into a reasonable one by forcing the adversary evaluate the hash
function on its output messages if it has not done so already. As we have defined it, q will be an
upper bound on the total number of ideal permutation queries made by our reasonable adversary.
So from now on, we assume a reasonable adversary A that makes at most q queries, and we bound
the probability that such A finds anything during its queries that can be “assembled” into a collision
(we make this more precise below).

We also assume that no queries are redundant. This means that if the adversary makes a ⇧-
query on a yielding b = ⇧(a), then the adversary never makes a ⇧�1-query on b, and never makes
another ⇧-query on a; similarly, if the adversary makes a ⇧�1-query on b yielding a = ⇧�1(b), then
the adversary never makes a ⇧-query on a, and never makes another ⇧�1-query on b. Of course,
there is no need for the adversary to make such redundant queries, which is why we exclude them;
moreover, doing so greatly simplifies the “bookkeeping” in the proof.

It helps to visualize the adversary’s attack as building up a directed graph G. The nodes in G
consist of the set of all 2n bit strings of length n. The graph G starts out with no edges, and every
query that A makes adds an edge to the graph: an edge a ! b is added if A makes a ⇧-query
on a that yields b or a ⇧�1-query on b that yields a. Notice that if we have an edge a ! b, then
⇧(a) = b, regardless of whether that edge was added via a ⇧-query or a ⇧�1-query. We say that
an edge added via a ⇧-query is a forward edge, and one added via a ⇧�1-query is a back edge.

Note that the assumption that the adversary makes no redundant queries means that an edge
gets added only once to the graph, and its classification is uniquely determined by the type of query
that added the edge.

We next define a notion of special type of path in the graph that corresponds to sponge evalu-
ation. For an n-bit string z, let R(z) be the first r bits of z and C(z) be the last c bits of z. We
refer to R(z) as the R-part of z and C(z) as the C-part of z. For s � 1, a C-path of length s
is a sequence of 2s nodes

a0, b1, a1, b2, a2, . . . , bs�1, as�1, bs,

where

• C(a0) = 0c and for i = 1, . . . , s� 1, we have C(bi) = C(ai), and

• G contains edges ai�1 ! bi for i = 1, . . . , s.

For such a path p, the message of p is defined as (m0, . . . , ms�1), where

m0 := R(a0) and mi := R(bi)�R(ai) for i = 1, . . . , s� 1.
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and the result of p is defined to be ms := R(bs). Such a C-path p corresponds to evaluating the
sponge at the message (m0, . . . , ms�1) and obtaining the (untruncated) output ms. Let us write
such a path as

m0|a0 �! b1|m1|a1 �! · · · �! bs�2|ms�2|as�2 �! bs�1|ms�1|as�1 �! bs|ms. (8.11)

The following diagram illustrates a C-path of length 3.

a0 ������! b1

m0 = R(a0) a1 ������! b2

0c = C(a0) m1 = R(b1) � R(a1) a2 ������! b3

C(b1) = C(a1) m2 = R(b2) � R(a2) m3 = R(b3)

C(b2) = C(a2)

The path has message (m0, m1, m2) and result m3. Using the notation in (8.11), we write this path
as

m0|a0 �! b1|m1|a1 �! b2|m2|a2 �! b3|m3.

We can now state what a collision looks like in terms of the graph G. It is a pair of C-paths
on di↵erent messages but whose results agree on their first v bits (recall v  r). Let us call such a
pair of paths colliding.

To analyze the probability of finding a pair of colliding paths, it will be convenient to define
another notion. Let p and p0 be two C-paths on di↵erent messages whose final edges are as�1 ! bs

and a 0t�1 ! b 0
t. Let us call such a pair of paths problematic if

(i) as�1 = a 0t�1, or

(ii) one of the edges in p or p0 are back edges.

Let W be the event that A finds a pair of colliding paths. Let Z be the event that A finds a
pair of problematic paths. Then we have

Pr[W ]  Pr[Z] + Pr[W and not Z]. (8.12)

First, we bound Pr[W and not Z]. For an n-bit string z, let V (z) be the first v bits of z, and
we refer to V (z) as the V -part of z. Suppose A is able to find a pair of colliding paths that is not
problematic. By definition, the final edges on these two paths correspond to ⇧-queries on distinct
inputs that yield outputs whose V -parts agree. That is, if W and not Z occurs, then it must be
the case that at some point A issued two ⇧-queries on distinct inputs a and a 0, yielding outputs b
and b 0 such that V (b) = V (b 0). We can use the union bound: for each pair of indices i < j, let Xij

be the event that the ith query is a ⇧-query on some value, say a, yielding b = ⇧(a), and the j-th
query is also a ⇧-query on some other value a 0 6= a, yielding b 0 = ⇧(a 0) such that V (b) = V (b 0). If
we fix i and j, fix the coins of A, and fix the outputs of all queries made prior to the jth query,
then the values a, b, and a 0 are all fixed, but the value b 0 is uniformly distributed over a set of size
at least 2n � j + 1. To get V (b) = V (b 0), the value of b 0 must be equal to one of the 2n�v strings
whose first v bits agree with that of b, and so we have

Pr[Xij ]  2n�v

2n � j + 1
.
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A simple calculation like that done in (8.4) in the proof of Theorem 8.4 yields

Pr[W and not Z]  q(q � 1)

2v
. (8.13)

Second, we bound Pr[Z], the probability that A finds a pair of problematic paths. The technical
heart of the of the analysis is the following:

Main Claim: If Z occurs, then one of the following occurs:

(E1) some query yields an output whose C-part is 0c, or

(E2) two di↵erent queries yield outputs whose C-parts are equal.

Just to be clear, (E1) means A made a query of the form:

(i) a ⇧�1 query on some value b such that C(⇧�1(b)) = 0c, or (ii) a ⇧ query on some
value a such that C(⇧(a)) = 0c,

and (E2) means A made pair of queries of the form:

(i) a ⇧-query on some value a and a ⇧�1 query on some value b, such that C(⇧(a)) =
C(⇧�1(b)), or (ii) ⇧-queries on two distinct values a and a 0 such that C(⇧(a)) =
C(⇧(a 0)).

First, suppose A is able to find a problematic pair of paths, and one of the paths contain a back
edge. So at the end of the execution, there exists a C-path containing one or more back edges. Let
p be such a path of shortest length, and write it as in (8.11). We observe that the last edge in p is
a back edge, and all other edges (if any) in p are forward edges. Indeed, if this is not the case, then
we can delete this edge from p, obtaining a shorter C-path containing a back edge, contradicting
the assumption that p is a shortest path of this type. From this observation, we see that either:

• s = 1 and (E1) occurs with the ⇧�1 query on b1, or

• s > 1 and (E2) occurs with the ⇧�1 query on bs and the ⇧-query on as�2.

Second, suppose A is able to find a problematic pair of paths, neither of which contains any
back edges. Let us call these paths p and p0. The argument in this case somewhat resembles the
“backwards walk” in the Merkle-Damg̊ard analysis. Write p as in (8.11) and write p0 as

m0
0|a 00 �! b 0

1|m0
1|a 01 �! · · · �! b 0

t�2|m0
t�2|a 0t�2 �! b 0

t�1|m0
t�1|a 0t�1 �! b 0

t|m0
t.

We are assuming that (m0, . . . , ms�1) 6= (m0
0, . . . , m

0
t�1) but as�1 = a 0t�1, and that none of these

edges are back edges. Let us also assume that we choose the paths so that they are shortest, in the
sense that s+ t is minimal among all C-paths of this type. Also, let us assume that s  t (swapping
if necessary). There are a few cases:

1. s = 1 and t = 1. This case is impossible, since in this case the paths are just m0|a0 ! b1|m1

and m0
0|a 00 ! b 0

1|m0
1, and we cannot have both m0 6= m0

0 and a0 = a 00.

2. s = 1 and t � 2. In this case, we have a0 = b 0
t�1, and so (E1) occurs on the ⇧-query on a 0t�2.
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3. s � 2 and t � 2. Consider the penultimate edges, which are forward edges:

as�2 ! bs�1|ms�1|as�1

and
a 0t�2 ! b 0

t�1|m0
t�1|a 0t�1.

We are assuming as�1 = a 0t�1. Therefore, the C-parts of bs�1 and b 0
t�1 are equal and their

R-parts di↵er by ms�1 �m0
t�1. There are two subcases:

(a) ms�1 = m0
t�1. We argue that this case is impossible. Indeed, in this case, we have

bs�1 = b 0
t�1, and therefore as�2 = a 0t�2, while the truncated messages (m0, . . . , ms�2)

and (m0
1, . . . , m

0
t�2) di↵er. Thus, we can simply throw away the last edge in each of the

two paths, obtaining a shorter pair of paths that contradicts the minimality of s + t.

(b) ms�1 6= m0
t�1. In this case, we know: the C-parts of bs�1 and b 0

t�1 are the same, but
their R-parts di↵er, and therefore, as�1 6= a 0t�2. Thus, (E2) occurs on the ⇧-queries on
as�2 and a 0t�2.

That proves the Main Claim. We can now turn to the problem of bounding the probability
that either (E1) or (E2) occurs. This is really just the same type of calculation we did at least
twice already, once above in obtaining (8.12), and earlier in the proof of Theorem 8.4. The only
di↵erence from (8.12) is that we are now counting collisions on the C-parts, and we have a new
type of “collision” to count, namely, “hitting 0c” as in (E1). We leave it to the reader to verify:

Pr[Z]  q(q + 1)

2c
. (8.14)

The theorem now follows from (8.12)–(8.14). 2

8.8.2 Case study: SHA3, SHAKE256, and SHAKE512

The NIST standard for SHA3 specifies a family of sponge-based hash functions. At the heart
of these hash functions is a permutation called Keccak, which maps 1600-bit strings to 1600-bit
strings. We denote by Keccak[c] the sponge derived from Keccak with capacity c, and using the
10⇤1 padding rule. This is a function that takes two inputs: a message m and output length v.
Here, the input m is an arbitrary bit string and the output of Keccak[c](m, v) is a v-bit string.

We will not describe the internal workings of the Keccak permutation; they can be found in
the SHA3 standard. We just describe the di↵erent parameter choices that are standardized. The
standard specifies four hash functions whose output lengths are fixed, and two hash functions with
variable length outputs.

Here are the four fixed-length output hash functions:

• SHA3-224(m) = Keccak[448](m k 01, 224);

• SHA3-256(m) = Keccak[512](m k 01, 256);

• SHA3-384(m) = Keccak[768](m k 01, 384);

• SHA3-512(m) = Keccak[1024](m k 01, 512).
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Note the two extra padding bits that are appended to the message. Note that in each case, the
capacity c is equal to twice the output length v. Thus, as the output length grows, the security
provided by the capacity grows as well, and the rate — and, therefore, the hashing speed —
decreases.

Here are the two variable-length output hash functions:

• SHAKE128(m, v) = Keccak[256](m k 1111, v);

• SHAKE256(m, v) = Keccak[512](m k 1111, v).

Note the four extra padding bits that are appended to the message. The only di↵erence between
these two is the capacity size, which a↵ects the speed and security. The various padding bits and
the 10⇤1 padding rule ensure that these six functions behave independently.

8.9 Key derivation and the random oracle model

Although hash functions like SHA-256 were initially designed to provide collision resistance, we
have already seen in Section 8.7 that practitioners are often tempted to use them to solve other
problems. Intuitively, hash functions like SHA-256 are designed to “thoroughly scramble” their
inputs, and so this approach seems to make some sense. Indeed, in Section 8.7, we looked at
the problem of taking an unkeyed hash function and turning it into a keyed function that is a
secure PRF, and found that it was indeed possible to give a security analysis under reasonable
assumptions.

In this section, we study another problem, called key derivation. Roughly speaking, the
problem is this: we start with some secret data, and we want to convert it into an n-bit string
that we can use as the key to some cryptographic primitive, like AES. Now, the secret data may
be random in some sense — at the very least, somewhat hard to guess — but it may not look
anything at all like a uniformly distributed, random, n-bit string. So how do we get from such a
secret s to a cryptographic key t? Hashing, of course. In practice, one takes a hash function H,
such as SHA-256 (or, as we will ultimately recommend, some function built out of SHA-256), and
computes t H(s).

Along the way, we will also introduce the random oracle model, which is a heuristic tool that is
useful not only for analyzing the key derivation problem, but a host of other problems as well.

8.9.1 The key derivation problem

Let us look at the key derivation problem in more detail. Again, at a high level, the problem is to
convert some discreet data that is hard to guess into an n-bit string we can use directly as a key
to some standard cryptographic primitive, such as AES. The solution in all cases will be to hash
the secret to obtain the key. We begin with some motivating examples.

• The secret might be a password. While such a password might be somewhat hard to guess, it
could be dangerous to use such a password directly as an AES key. Even if the password were
uniformly distributed over a large dictionary (already a suspect assumption), the distribution
of its encoding as a bit string is certainly not. It could very well that a significant fraction
of passwords correspond to “weak keys” for AES that make it vulnerable to attack. Recall
that AES was designed to be used with a random bit string as the key, so how it behaves on
passwords is another matter entirely.
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• The secret could be the log of various types of system events on a running computer (e.g., the
time of various interrupts such as those caused by key presses or mouse movements). Again,
it might be di�cult for an attacker who is outside the computer system to accurately predict
the contents of such a log. However, using the log directly as an AES key is problematic: it
is likely far too long, and far from uniformly distributed.

• The secret could be a cryptographic key which as been partially compromised. Imagine that
a user has a 128-bit key, but that 64 of the bits have been leaked to the adversary. The key
is still fairly di�cult to guess, but it is still not uniformly distributed from the adversary’s
point of view, and so should not be used directly as an AES key.

• Later, we will see examples of number-theoretic transformations that are widely used in
public-key cryptography. Looking ahead a bit, we will see that for a large, composite modulus
N , if x is chosen at random modulo N , and an adversary is given y := x3 mod N , it is
hard to compute x. We can view x as the secret, and similarly to the previous example,
we can view y as information that is leaked to the adversary. Even though the value of y
completely determines x in an information-theoretic sense, it is still widely believed to be
hard to compute. Therefore, we might want to treat x as secret data in exactly the same
way as in the previous examples. Many of the same issues arise here, not the least of which
is that x is typically much longer (typically, thousands of bits long) than an AES key.

As already mentioned, the solution that is adopted in practice is simply to hash the secret s
using a hash function H to obtain the key t H(s).

Let us now give a formal definition of the security property we are after.
We assume the secret s is sampled according to some fixed (and publicly known) probability

distribution P . We assume any such secret data can be encoded as an element of some finite set S.
Further, we model the fact that some partial information about s could be leaked by introducing
a function I, so that an adversary trying to guess s knows the side information I(s).

Attack Game 8.2 (Guessing advantage). Let P be a probability distribution defined on a
finite set S and let I be a function defined in S. For a given adversary A, the attack game runs as
follows:

• the challenger chooses s at random according to P and sends I(s) to A;

• the adversary outputs a guess ŝ for s, and wins the game if ŝ = s.

The probability that A wins this game is called its guessing advantage, and is denoted
Guessadv[A, P, I]. 2

In the first example above, we might simplistically model s as being a password that is uni-
formly distributed over (the encodings of) some dictionary D of words. In this case, there is no
side information given to the adversary, and the guessing advantage is 1/|D|, regardless of the
computational power of the adversary.

In the second example above, it seems very hard to give a meaningful and reliable estimate of
the guessing advantage.

In the third example above, s is uniformly distributed over {0, 1}128, and I(s) is (say) the first
64-bits of s. Clearly, any adversary, no matter how powerful, has guessing advantage no greater
than 2�64.
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In the fourth example above, s is the number x and I(s) is the number y. Since y completely
determines x, it is possible to recover s from I(s) by brute-force search. There are smarter and
faster algorithms as well, but there is no known e�cient algorithm to do this. So for all e�cient
adversaries, the guessing advantage appears to be negligible.

Now suppose we use a hash function H : S ! T to derive the key t from s. Intuitively, we
want t to “look random”. To formalize this intuitive notion, we use the concept of computational
indistinguishability from Section 3.11. So formally, the property that we want is that if s is sampled
according to P and t is chosen at random from T , the two distributions (I(s), H(s)) and (I(s), t) are
computationally indistinguishable. For an adversary A, let Distadv[A, P, I, H] be the adversary’s
advantage in Attack Game 3.3 for these two distributions.

The type of theorem we would like to be able to prove would say, roughly speaking, if H satisfies
some specific property, and perhaps some constraints are placed on P and I, then Distadv[A, P, I, H]
is not too much larger than Guessadv[A, P, I]. In fact, in certain situations it is possible prove such
a theorem. We will discuss this result later, in Section 8.9.4 — for now, we will simply say that this
rigorous approach is not widely used in practice, for a number of reasons. Instead, we will examine
in greater detail the heuristic approach of using an “o↵ the shelf” hash function like SHA-256 to
derive keys.

Sub-key derivation. Before moving on, we consider the following, related problem: what to do
with the key t derived from s. In some applications, we might use t directly as, say, and AES key.
In other applications, however, we might need several keys: for example, an encryption key and
a MAC key, or two di↵erent encryption keys for bi-directional secure communications (so Alice
has one key for sending encrypting messages to Bob, and Bob uses a di↵erent key for sending
encrypted messages to Alice). So once we have derived a single key t that “for all intents and
purposes” behaves like a random bit string, we wish to derive several sub-keys. We call this the
sub-key derivation problem to distinguish it from the key derivation problem. For the sub-key
derivation problem, we assume that we start with a truly random key t — it is not, but when t is
computationally indistinguishable from a truly random key, this assumption is justified.

Fortunately, for sub-key derivation, we already have all the tools we need at our disposal.
Indeed, we can derive sub-keys from t using either a PRG or a PRF. For example, in the above
example, if Alice and Bob have a shared key t, derived from a secret s, they can use a PRF F as
follows:

• derive a MAC key kmac  R F (t, "MAC-KEY");

• derive an Alice-to-Bob encryption key kAB  R F (t, "AB-KEY");

• derive a Bob-to-Alice encryption key kBA  R F (t, "BA-KEY").

Assuming F is a secure PRF, then the keys kmac, kAB, and kBA behave, for all intents and purposes,
as independent random keys. To implement F , we can even use a hash-based PRF, like HMAC, so
we can do everything we need — key derivation and sub-key derivation — using a single “o↵ the
shelf” hash function like SHA-256.

So once we have solved the key derivation problem, we can use well-established tools to solve
the sub-key derivation problem. Unfortunately, the practice of using “o↵ the shelf” hash functions
for key derivation is not very well understood or analyzed. Nevertheless, there are some useful
heuristic models to explore.
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8.9.2 Random oracles: a useful heuristic

We now introduce a heuristic that we can use to model the use of hash functions in a variety of
applications, including key derivation. As we will see later in the text, this has become a popular
heuristic that is used to justify numerous cryptographic constructions.

The idea is that we simply model a hash function H as if it were a truly random function
O. If H maps M to T , then O is chosen uniformly at random from the set Funs[M, T ]. We
can translate any attack game into its random oracle version: the challenger uses O in place of
H for all its computations, and in addition, the adversary is allowed to obtain the value of O at
arbitrary input points of his choosing. The function O is called a random oracle and security in
this setting is said to hold in the random oracle model. The function O is too large to write
down and cannot be used in a real construction. Instead, we only use O as a means for carrying
out a heuristic security analysis of the proposed system that actually uses H.

This approach to analyzing constructions using hash function is analogous to the ideal cipher
model introduced in Section 4.7, where we replace a block cipher E = (E, D) defined over (K, X )
by a family of random permutations {⇧k }k 2K.

As we said, the random oracle model is used quite a bit in modern cryptography, and it would
be nice to be able to use an “o↵ the shelf” hash function H, and model it as a random oracle.
However, if we want a truly general purpose tool, we have to be a bit careful, especially if we
want to model H as a random oracle taking variable length inputs. The basic rule of thumb is
that Merkle-Damg̊ard hashes should not be used directly as general purpose random oracles. We
will discuss in Section 8.9.3 how to safely (but again, heuristically) use Merkle-Damg̊ard hashes as
general purpose random oracles, and we will also see that the sponge construction (see Section 8.8)
can be used directly “as is”.

We stress that even though security results in the random oracle are rigorous, mathematical
theorems, they are still only heuristic results that do not guarantee any security for systems built
with any specific hash function. They do, however, rule out “generic attacks” on systems that would
work if the hash function were a random oracle. So, while such results do not rule out all attacks,
they do rule out generic attacks, which is better than saying nothing at all about the security of
the system. Indeed, in the real world, given a choice between two systems, S1 and S2, where S1

comes with a security proof in the random oracle model, and S2 comes with a real security proof
but is twice as slow as S1, most practitioners would (quite reasonably) choose S1 over S2.

Defining security in the random oracle model. Suppose we have some type of cryptographic
scheme S whose implementation makes use of a subroutine for computing a hash function H
defined over (M, T ). The scheme S evaluates H at arbitrary points of its choice, but does not
look at the internal implementation of H. We say that S uses H as an oracle. For example,
Fpre(k, x) := H(k k x), which we briefly considered in Section 8.7, is a PRF that uses the hash
function H as an oracle.

We wish to analyze the security of S. Let us assume that whatever security property we are
interested in, say “property X,” is modeled (as usual) as a game between a challenger (specific
to property X) and an arbitrary adversary A. Presumably, in responding to certain queries, the
challenger computes various functions associated with the scheme S, and these functions may in
turn require the evaluation of H at certain points. This game defines an advantage Xadv[A, S], and
security with respect to property X means that this advantage should be negligible for all e�cient
adversaries A.

320



If we wish to analyze S in the random oracle model, then the attack game defining security is
modified so that H is e↵ectively replaced by a random function O 2 Funs[M, T ], to which both the
adversary and the challenger have oracle access. More precisely, the game is modified as follows.

• At the beginning of the game, the challenger chooses O 2 Funs[M, T ] at random.

• In addition to its standard queries, the adversary A may submit random oracle queries: it
gives m 2M to the challenger, who responds with t = O(m). The adversary may make any
number of random oracle queries, arbitrarily interleaved with standard queries.

• In processing standard queries, the challenger performs its computations using O in place of
H.

The adversary’s advantage is defined using the same rule as before, but is denoted Xroadv[A, S] to
emphasize that this is an advantage in the random oracle model. Security in the random oracle
model means that Xroadv[A, S] should be negligible for all e�cient adversaries A.

A simple example: PRFs in the random oracle model. We illustrate how to apply the
random oracle framework to construct secure PRFs. In particular, we will show that Fpre is a
secure PRF in the random oracle model. We first adapt the standard PRF security game to obtain
a PRF security game in the random oracle model. To make things a bit clearer, if we have a PRF
F that uses a hash function H as an oracle, we denote by FO the function that uses the random
oracle O in place of H.

Attack Game 8.3 (PRF in the random oracle model). Let F be a PRF defined over (K, X , Y)
that uses a hash function H defined over (M, T ) as an oracle. For a given adversary A, we define
two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• O  R Funs[M, T ].

• The challenger selects f 2 Funs[X , Y] as follows:

if b = 0: k  R K, f  FO(k, ·);
if b = 1: f  R Funs[X , Y].

• The adversary submits a sequence of queries to the challenger.

– F -query: respond to a query x 2 X with y = f(x) 2 Y.

– O-query: respond to a query m 2M with t = O(m) 2 T .

• The adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to F as

PRFroadv[A, F ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 8.3. We say that a PRF F is secure in the random oracle model if for all e�cient
adversaries A, the value PRFroadv[A, F ] is negligible.
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Consider again the PRF Fpre(k, x) := H(k k x). Let us assume that Fpre is defined over
(K, X , T ), where K = {0, 1} and X = {0, 1}L, and that H is defined over (M, T ), where M
includes all bit strings of length at most  + L.

We will show that this is a secure PRF in the random oracle model. But wait! We already argued
in Section 8.7 that Fpre is completely insecure when H is a Merkle-Damg̊ard hash. This seems to be
a contradiction. The problem is that, as already mentioned, it is not safe to use a Merkle-Damg̊ard
hash directly as a random oracle. We will see how to fix this problem in Section 8.9.3.

Theorem 8.7. If K is large then Fpre is a secure PRF when H is modeled as a random oracle.

In particular, if A is a random oracle PRF adversary, as in Attack Game 8.3, that makes at
most QH oracle queries, then

PRFroadv[A, F
pre

]  QH/|K|

Note that Theorem 8.7 is unconditional, in the sense that the only constraint on A is on the
number of oracle queries: it does not depend on any complexity assumptions.

Proof idea. Once H is replaced with O, the adversary has to distinguish O(k k ·) from a random
function in Funs[X , T ], without the key k. Since O(k k ·) is a random function in Funs[X , T ], the
only hope the adversary has is to somehow use the information returned from queries to O. We
say that an O-query k0 k x0 is relevant if k0 = k. It should be clear that queries to O that are not
relevant cannot help distinguish O(k k ·) from random since the returned values are independent
of the function O(k k ·). Moreover, the probability that after QH queries the adversary succeeds in
issuing a relevant query is at most QH/|K|. 2

Proof. To make this proof idea rigorous we let A interact with two PRF challengers. For j = 0, 1,
let Wj to be the event that A outputs 1 in Game j.

Game 0. We write the challenger in Game 0 so that it is equivalent to Experiment 0 of Attack
Game 8.3, but will be more convenient for us to analyze. We assume the adversary never makes
the same Fpre-query twice. Also, we use an associative array Map mapping from M to T to build
up the random oracle on the fly, using the “faithful gnome” idea we have used so often. Here is
our challenger:

Initialization:
initialize the empty associative array Map : M! T
k  R K

Upon receiving an Fpre-query on x 2 {0, 1}L do:
t R T

(1) if (k k x) 2 Domain(Map) then t Map[k k x]
(2) Map[k k x] t

send t to A
Upon receiving an O-query m 2M do:

t R T
if m 2 Domain(Map) then t Map[m]
Map[m] t
send t to A
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It should be clear that this challenger is equivalent to that in Experiment 0 of Attack Game 8.3. In
Game 0, whenever the challenger needs to sample the random oracle at some input (in processing
either an Fpre-query or an O-query), it generates a random “default output”, overriding that default
if it turns out the oracle has already been sampled at that input; in either case, the associative
array records the input/output pair.

Game 1. We make our gnome “forgetful”: we modify Game 0 by deleting the lines marked (1) and
(2) in that game. Observe now that in Game 1, the challenger does not use Map or k in responding
to Fpre-queries: it just returns a random value. So it is clear (by the assumption that A never
makes the same Fpre-query twice) that Game 1 is equivalent to Experiment 1 of Attack Game 8.3,
and hence

PRFroadv[A, Fpre] = |Pr[W1]� Pr[W0]|.
Let Z be the event that in Game 1, the adversary makes an O-query at a point m = (k k x̂). It is
clear that both games result in the same outcome unless Z occurs, so by the by Di↵erence Lemma,
we have

|Pr[W1]� Pr[W0]|  Pr[Z].

Since the key k is completely independent of A’s view in Game 1, each O-query hits the key with
probability 1/|K|, and so a simple application of the union bound yields

Pr[Z]  QH/|K|.

That completes the proof. 2

Key derivation in the random oracle model. Let us now return to the key derivation problem
introduced in Section 8.9.1. Again, we have a secret s sampled from some distribution P , and
information I(s) is leaked to the adversary. We want to argue that if H is modeled as a random
oracle, then the adversary’s advantage in distinguishing (I(s), H(s)) from (I(s), t), where t is truly
random, is not too much more than the adversary’s advantage in guessing the secret s with only
I(s) (and not H(s)).

To model H as a random oracle O, we convert the computational indistinguishability At-
tack Game 3.3 to the random oracle model, so that the attacker is now trying to distinguish
(I(s), O(s)) from (I(s), t), given oracle access to O. The corresponding advantage is denoted
Distroadv[A, P, I, H].

Before stating our security theorem, it is convenient to generalize Attack Game 8.2 to allow the
adversary to output a list of guesses ŝ1, . . . , ŝQ, where and the adversary is said to win the game
if ŝi = s for some i = 1, . . . , Q. An adversary A’s probability of winning in this game is called his
list guessing advantage, denoted ListGuessadv[A, P, I].

Clearly, if an adversary A can win the above list guessing game with probability ✏, we can
convert him into an adversary that wins the singleton guessing game with probability ✏/Q: we
simply run A to obtain a list ŝ1, . . . , ŝQ, choose i = 1, . . . , Q at random, and output ŝi. However,
sometimes we can do better than this: using the partial information I(s) may allow us to rule out
some of the ŝi’s, and in some situations, we may be able to identify the correct ŝi uniquely. This
depends on the application.

Theorem 8.8. If H is modeled as a random oracle, then for every distinguishing adversary A
that makes at most QH random oracle queries, there exists a list guessing adversary B, which is an
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elementary wrapper around A, such that

Distroadv[A, P, I, H]  ListGuessadv[B, P, I]

and B outputs a list of size at most QH. In particular, there exists a guessing adversary B0, which
is an elementary wrapper around A, such that

Distroadv[A, P, I, H]  QH · Guessadv[B0, P, I].

Proof. The proof is almost identical to that of Theorem 8.7. We define two games, and for j = 0, 1,
let Wj to be the event that A outputs 1 in Game j.

Game 0. We write the challenger in Game 0 so that it is equivalent to Experiment 0 of the
(I(s), H(s)) vs (H(s), t) distinguishing game. We build up the random oracle on the fly with an
associative array Map : S ! T . Here is our challenger:

Initialization:
initialize the empty associative array Map : S ! T
generate s according to P
t R T

(⇤) Map[s] t
send (I(s), t) to A

Upon receiving an O-query ŝ 2 S do:
t̂ R T
if ŝ 2 Domain(Map) then t̂ Map[ŝ]
Map[ŝ] t̂
send t̂ to A

Game 1. We delete the line marked (⇤). This game is equivalent to Experiment 1 of this dis-
tinguishing game, as the value t is now truly independent of the random oracle. Moreover, both
games result in the same outcome unless the adversary A in Game 1 makes an O-query at the
point s. So our list guessing adversary B simply takes the value I(s) that it receives from its own
challenger, and plays the role of challenger to A as in Game 1. At the end of the game, B simply
outputs Domain(Map) — the list of points at which A made O-queries. The essential points are:
our B can play this role with no knowledge of s besides I(s), and it records all of the O-queries
made by A. So by the Di↵erence Lemma, we have

Distroadv[A] = |Pr[W0]� Pr[W1]|  ListGuessadv[B]. 2

8.9.3 Random oracles: safe modes of operation

We have already seen that Fpre(k, x) := H(k k x) is secure in the random oracle model, and yet
we know that it is completely insecure if H is a Merkle-Damg̊ard hash. The problem is that a
Merkle-Damg̊ard construction has a very simple, iterative structure which exposes it to “extension
attacks”. While this structure is not a problem from the point of view of collision resistance, it
shows that grabbing a hash function “o↵ the shelf” and using it as if it were a random oracle is a
dangerous move.

In this section, we discuss how to safely use a Merkle-Damg̊ard hash as a random oracle. We
will also see that the sponge construction (see Section 8.8) is already safe to use “as is”; in fact, the
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sponge was designed exactly for this purpose: to provide a variable-length input and variable-length
output hash function that could be used directly as a random oracle.

Suppose H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n⇥ {0, 1}` !
{0, 1}n. One recommended mode of operation is to safe HMAC with a zero key:

HMAC0(m) := HMAC(0`, m) = H(opad k H(ipad k m)).

While this construction foils the obvious extension attacks, why should we have any confidence at
all that HMAC0 is safe to use as a general purpose random oracle? We can only give heuristic
evidence. Essentially, what we want to argue is that there are no inherent structural weaknesses in
HMAC0 that give rise to a generic attack that treats the underlying compression function itself as
a random oracle — or perhaps more realistically, as a Davies-Meyer construction based on an ideal
cipher.

So basically, we want to show that using certain modes of operation, we can build a “big”
random oracle out of a “small” random oracle — or out of an ideal cipher or even permutation.
This is undoubtedly a rather quixotic task — using heuristics to justify heuristics — but we shall
sketch the basic ideas.

The mathematical tool used to carry out such a task is called indi↵erentiability. We shall
present a somewhat simplified version of this notion here. Suppose we are trying to build a “big”
random oracle O out of a smaller primitive ⇢, where ⇢ could be a random oracle on a small domain,
or an ideal cipher, or an ideal permutation. Let us denote by F [⇢] a particular construction for a
random oracle based on the ideal primitive ⇢.

Now consider a generic attack game defined by some challenger C and adversary A. Let us
write the interaction between C and A as hC, Ai, and that the interaction results in an output bit.
All of our security definitions are modeled in terms of games of this form.

In the random oracle model with the big random oracle O, we would give both the challenger
and adversary oracle access to the random function O, and we denote the interaction hCO, AOi.
However, if we are using the construction F [⇢] to implement the big random oracle, then while the
challenger accesses ⇢ only via the construction F , the adversary is allowed to directly query ⇢. We
denote this interaction as hCF [⇢], A⇢i.

For example, in the HMAC0 construction, the compression function h is modeled as a random
oracle ⇢, or if h itself is built via Davies-Meyer, then the underlying block cipher is modeled as
an ideal cipher ⇢. In either case, F [⇢] corresponds to the HMAC0 construction itself. Note the
asymmetry: in any attack game, the challenger only accesses ⇢ indirectly via F [⇢] (HMAC0 in this
case), while the adversary can access ⇢ itself (the compression function h or the underlying block
cipher).

We say that F [⇢] is indi↵erentiable from O if the following holds:

for every e�cient challenger C and e�cient adversary A, there exists an e�cient ad-
versary B, such that

�

�Pr[hCF [⇢], A⇢i outputs 1]� Pr[hCO, BOi outputs 1]
�

�

is negligible.

It should be clear from the definition that if we prove security of any cryptographic scheme in
the random oracle model for the big random oracle O, the scheme remains secure if we implement
O using F [⇢]: if an adversary A breaks the scheme with F [⇢], then the adversary B above will
break the scheme with O.
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The upshot. The HMAC0 construction can be proven to be indi↵erentiable from a random oracle
on variable length inputs, if we either model the compression function h itself as a random oracle,
or if h is built via Davies-Meyer and we model the underlying block cipher as an ideal cipher. The
sponge construction has been proven to be indi↵erentiable from a random oracle on variable length
inputs, if we model the underlying permutation as an ideal permutation (assuming 2c, where c is
the capacity is super-poly.) This includes the standardized implementations SHA3 (for fixed length
outputs) and the SHAKE variants (for variable length outputs), discussed in Section 8.8.2. The
special padding rules used in the SHA3 and SHAKE specifications ensure that all of the variants
act as independent random oracles.

8.9.4 The leftover hash lemma

We now return to the key derivation problem. Under the right circumstances, we can solve the key
derivation problem with no heuristics and no computational assumptions whatsoever. Moreover,
the solution is a surprising and elegant application of universal hash functions (see Section 7.1).
The result, known as the leftover hash lemma, says that if we use an ✏-UHF to hash a secret
that can be guessed with probability at most �, then provided ✏ and � are su�ciently small, the
output of the hash is statistically indistinguishable from a truly random value. Recall that a UHF
has a key, which we normally think of as a secret key; however, in this result, the key may be made
public — indeed, it could be viewed as a public, system parameter that is generated once and for
all, and used over and over again.

Our goal here is to simply state the result, and to indicate when and where it can (and cannot)
be used. To state the result, we will need to use the notion of the statistical distance between two
random variables, which we introduced in Section 3.11. Also, if s is a random variable taking values
in a set S, we define the guessing probability of s to be maxx2S Pr[s = x].

Theorem 8.9 (Leftover Hash Lemma). Let H be a keyed hash function defined over (K, S, T ).
Assume that H is a (1 + ↵)/N -UHF, where N := |T |. Let k, s1, . . . , sm be mutually independent
random variables, where k is uniformly distributed over K, and each si has guessing probability at
most �. Let � be the statistical di↵erence between

(k, H(k, s1), . . . , H(k, sm))

and the uniform distribution on K ⇥ T m. Then we have

�  1

2
m
p

N� + ↵.

Let us look at what the lemma says when m = 1. We have a secret s that can be guessed
with probability at most �, given whatever side information I(s) is known about s. To apply the
lemma, the bound � on the guessing probability must hold for all adversaries, even computationally
unbounded ones. We then hash s using a random hash key k. It is essential that s (given I(s)) and
k are independent — although we have not discussed the possibility here, there are potential use
cases where the distribution of s or the function I can be somehow biased by an adversary in a way
that depends on k, which is assumed public and known to the adversary. Therefore, to apply the
lemma, we must ensure that s (given I(s)) and k are truly independent. If all of these conditions
are met, then the lemma says that for any adversary A, even a computationally unbounded one,
its advantage in distinguishing (k, I(s), H(k, s)) from (k, I(s), t), where t is a truly random element
of T , is bounded by �, as in the lemma.
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Now let us plug in some realistic numbers. If we want the output to be used as an AES key, we
need N = 2128. We know how to build (1/N)-UHFs, so we can take ↵ = 0 (see Exercise 7.23 —
with ↵ non-zero, but still quite small, one can get by with significantly shorter hash keys). If we
want �  2�64, we will need the guessing probability � to be about 2�256.

So in addition to all the conditions listed above, we really need an extremely small guessing
probability for the lemma to be applicable. None of the examples discussed in Section 8.9.1 meet
these requirements: the guessing probabilities are either not small enough, or do not hold uncon-
ditionally against unbounded adversaries, or can only be heuristically estimated. So the practical
applicability to the Leftover Hash Lemma is limited — but when it does apply, it can be a very
powerful tool. Also, we remark that by using the lemma with m > 1, under the right conditions,
we can model the situation where the same hash key is used to derive many keys from many inde-
pendent secrets with small guessing probability. The distinguishing probability grows linearly with
the number of derivations, which is not surprising.

Because of these practical limitations, it is more typical to use cryptographic hash functions,
modeled as random oracles, for key derivation, rather than UHFs. Indeed, if one uses a UHF
and any of the assumptions discussed above turns out to be wrong, this could easily lead to a
catastrophic security breach. Using cryptographic hash functions, while only heuristically secure
for key derivation, are also more forgiving.

8.9.5 Case study: HKDF

HKDF is a key derivation function specified in RFC 5869, and is deployed in many standards.
HKDF is specified in terms of the HMAC construction (see Section 8.7). So it uses the function

HMAC(k, m), where k and m are variable length byte strings, which itself is implemented in terms
of a Merkle-Damg̊ard hash H, such as SHA-256.

Th input to HKDF consists of a secret s, an optional salt value salt (discussed below), an
optional info field (also discussed below), and an output length parameter L. The parameters s,
salt , and info are variable length byte strings.

The execution of HKDF consists of two stages, called extract (which corresponds to what we
called key derivation), and expand (which corresponds to what we called sub-key derivation).

In the extract stage, HKDF uses salt and s to compute

t HMAC(salt , s).

Using the intermediate key t, along with info, the expand (or sub-key derivation) stage computes
L bytes of output data, as follows:

q  dL/HashLene // HashLen is the output length (in bytes) of H
initialize z0 to the empty string
for i 1 to q do:

zi  HMAC(t, zi�1 k info k Octet(i)) // Octet(i) is a single byte whose value is i
output the first L octets of z1 k . . . k zq

When salt is empty, the extract stage of HKDF is the same as what we called HMAC0 in
Section 8.9.3. As discussed there, HMAC0 can heuristically be viewed as a random oracle, and so
we can use the analysis in Section 8.9.2 to show that this is a secure key derivation procedure in
the random oracle model. This, if s is hard to guess, then t is indistinguishable from random.
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Users of HKDF have the option of providing non-zero salt. The salt plays a role akin to the
random hash key used in the Leftover Hash Lemma (see Section 8.9.4); in particular, it need not
be secret, and may be reused. However, it is important that the salt value is independent of the
secret s and cannot be manipulated by an adversary. The idea is that under these circumstances,
the output of the extract stage of HKDF seems more likely to be indistinguishable from random,
without relying on the full power of the random oracle model. Unfortunately, the known security
proofs apply to limited settings, so in the general case, this is still somewhat heuristic.

The expand stage is just a simple application of HMAC as a PRF to derive sub-keys, as we
discussed at the end of Section 8.9.1. The info parameter may be used to “name” the derived sub-
keys, ensuring the independence of keys used for di↵erent purposes. Since the output length of the
underlying hash is fixed, a simple iterative scheme is used to generate longer outputs. This stage
can be analyzed rigorously under the assumption that the intermediate key t is indistinguishable
from random, and that HMAC is a secure PRF — and we already know that HMAC is a secure
PRF, under reasonable assumptions about the compression function of H.

8.10 Security without collision resistance

Theorem 8.1 shows how to extend the domain of a MAC using a collision resistant hash. It is
natural to ask whether MAC domain extension is possible without relying on collision resistant
functions. In this section we show that a weaker property called second preimage resistance is
su�cient.

8.10.1 Second preimage resistance

We start by defining two classic security properties for non-keyed hash functions. Let H be a hash
function defined over (M, T ).

• We say that H is one-way if given t := H(m) as input, for a random m 2M, it is di�cult
to find an m0 2M such that H(m0) = t. Such an m0 is called an inverse of t. In other words,
H is one-way if it is easy to compute but di�cult to invert.

• We say that H is 2nd-preimage resistant if given a random m 2M as input, it is di�cult
to find a di↵erent m0 2M such that H(m) = H(m0). In other words, it is di�cult to find an
m0 that collides with a given m.

• For completeness, recall that a hash function is collision resistant if it is di�cult to find two
distinct messages m, m0 2M such that H(m) = H(m0).

Definition 8.4. Let H be a hash function defined over (M, T ). We define the advantage
OWadv[A, H] of an adversary A in defeating the one-wayness of H as the probability of winning
the following game:

• the challenger chooses m 2M at random and sends t := H(m) to A;

• the adversary A outputs m0 2M, and wins if H(m0) = t.

H is one-way if OWadv[A, H] is negligible for every e�cient adversary A.
Similarly, we define the advantage SPRadv[A, H] of an adversary A in defeating the 2nd-

preimage resistance of H as the probability of winning the following game:
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• the challenger chooses m 2M at random and sends m to A;

• the adversary A outputs m0 2M, and wins if H(m0) = H(m) and m0 6= m.

H is 2nd-preimage resistant if SPRadv[A, H] is negligible for every e�cient adversary A.

We mention some trivial relations between these notions when M is at least twice the size of T .
Under this condition we have the following implications:

H is collision resistant ) H is 2nd-preimage resistant ) H is one-way

as shown in Exercise 8.22. The converse is not true. A hash function can be 2nd-preimage resistant,
but not collision resistant. For example, SHA-1 is believed to be 2nd-preimage resistant even though
SHA-1 is not collision resistant. Similarly, a hash function can be one-way, but not be 2nd-preimage
resistant. For example, the function h(x) := x2 mod N for a large odd composite N is believed to
be one-way. In other words, it is believed that given x2 mod N it is di�cult to find x (as long as the
factorization of N is unknown). However, this function H is trivially not 2nd-preimage resistant:
given x 2 {1, . . . , N} as input, the value �x is a second preimage since x2 mod N = (�x)2 mod N .

Our goal for this section is to show that 2nd-preimage resistance is su�cient for extending the
domain of a MAC and for providing file integrity. To give some intuition, consider the file integrity
problem (which we discussed at the very beginning of this chapter). Our goal is to ensure that
malware cannot modify a file without being detected. Recall that we hash all critical files on disk
using a hash function H and store the resulting hashes in read-only memory. For a file F it should
be di�cult for the malware to find an F 0 such that H(F 0) = H(F ). Clearly, if H is collision
resistant then finding such an F 0 is di�cult. It would seem, however, that 2nd-preimage resistance
of H is su�cient. To see why, consider malware trying to modify a specific file F without being
detected. The malware is given F as input and must come up with a 2nd-preimage of F , namely
an F 0 such that H(F 0) = H(F ). If H is 2nd-preimage resistant the malware cannot find such an
F 0 and it would seem that 2nd-preimage resistance is su�cient for file integrity. Unfortunately,
this argument doesn’t quite work. Our definition of 2nd-preimage resistance says that finding a
2nd-preimage for a random F in M is di�cult. But files on disk are not random bit strings —
it may be di�cult to find a 2nd-preimage for a random file, but it may be quite easy to find a
2nd-preimage for a specific file on disk.

The solution is to randomize the data before hashing it. To do so we first convert the hash
function to a keyed hash function. We then require that the resulting keyed function satisfy a
property called target collision resistance which we now define.

8.10.2 Randomized hash functions: target collision resistance

At the beginning of the chapter we mentioned two applications for collision resistance: extending
the domain of a MAC and protecting file integrity. In this section we describe solutions to these
problems that rely on a weaker security property than collision resistance. The resulting systems,
although more likely to be secure, are not as e�cient as the ones obtained from collision resistance.

Target collision resistance. Let H be a keyed hash function. We define what it means for H
to be target collision resistant, or TCR for short, using the following attack game, also shown
in Fig. 8.12.
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Figure 8.12: TCR Attack Game

Attack Game 8.4 (Target collision resistance). For a given keyed hash function H over
(K, M, T ) and adversary A, the attack game runs as follows:

• A sends a message m0 2M to the challenger.

• The challenger picks a random k  R K and sends k to A.

• A sends a second message m1 2M to the challenger.

The adversary is said to win the game if m0 6= m1 and H(k, m0) = H(k, m1). We define A’s
advantage with respect to H, denoted TCRadv[A, H], as the probability that A wins the game.
2

Definition 8.5. We say that a keyed hash function H over (K, M, T ) is target collision resistant
if TCRadv[A, H] is negligible.

Casting the definition in our formal mathematical framework is done exactly as for universal
hash functions (Section 7.1.2).

We note that one can view a collision resistant hash H over (M, T ) as a TCR function with
an empty key. More precisely, let K be a set of size one containing only the empty word. We can
define a keyed hash function H 0 over (K, M, T ) as H 0(k, m) := H(m). It is not di�cult to see that
if H is collision resistant then H 0 is TCR. Thus, a collision resistant function can be viewed as the
ultimate TCR hash — its key is the shortest possible.

8.10.3 TCR from 2nd-preimage resistance

We show how to build a keyed TCR hash function from a keyless 2nd-preimage resistant function
such as SHA-1. Let H, defined over (M, T ), be a 2nd-preimage resistant function. We construct
a keyed TCR function Htcr defined over (M, M, T ) as follows:

Htcr(k, m) = H(k �m) (8.15)

Note that the length of the key k is equal to the length of the message being hashed. This is a
problem for the applications we have in mind. As a result, we will only use this construction as a
TCR hash for short messages. First we prove that the construction is secure.

Theorem 8.10. Suppose H is 2nd-preimage resistant then H
tcr

is TCR.

In particular, for every TCR adversary A attacking Htcr as in Attack Game 8.4, there exists a
2nd-preimage finder B, which is an elementary wrapper around A, such that

TCRadv[A, Htcr]  SPRadv[B, H].

330



Proof. The proof is a simple direct reduction. Adversary B emulates the challenger in Attack
Game 8.4 and works as follows:

Input: Random m 2M
Output: m0 2M such that m 6= m0 and H(m) = H(m0)

1. Run A and obtain an m0 2M from A
2. k  m�m0

3. Send k as the hash key to A
4. A responds with an m1 2M
5. Output m0 := m1 � k

We show that SPRadv[B, H] = TCRadv[A, Htcr]. First, denote by W the event that in step (4) the
messages m0, m1 output by A are distinct and Htcr(k, m0) = Htcr(k, m1).

The input m given to B is uniformly distributed in M. Therefore, the key k given to A in
step (2) is uniformly distributed in M and independent of A’s current view, as required in Attack
Game 8.4. It follows that B perfectly emulates the challenger in Attack Game 8.4 and consequently
Pr[W ] = TCRadv[A, Htcr].

By definition of Htcr, we also have the following:

Htcr(k, m0) = H((m�m0)�m0) = H(m) (8.16)

Htcr(k, m1) = H(m1 � k) = H(m0)

Now, suppose event W happens. Then Htcr(k, m0) = Htcr(k, m1) and therefore, by (8.16), we
know that H(m) = H(m0). Second, we deduce that m 6= m0 which follows since m0 6= m1 and
m0 = m� (m1�m0). Hence, when event W occurs, B outputs a 2nd-preimage of m. It now follows
that:

SPRadv[B, H] � Pr[W ] = TCRadv[A, Htcr]

as required. 2

Target collision resistance for long inputs. The function Htcr in (8.15) shows that a 2nd-
preimage resistant function directly gives a TCR function. If we assume that the SHA-256 compres-
sion function h is 2nd-preimage resistant (a weaker assumption than assuming that h is collision
resistant) then, by Theorem 8.10 we obtain a TCR hash for inputs of length 512 + 265 = 768 bits.
The length of the required key is also 768 bits.

We will often need TCR functions for much longer inputs. Using the SHA-256 compression
function we already know how to build a TCR hash for short inputs using a short key. Thus, let
us assume that we have a TCR function h defined over (K, T ⇥M, T ) where M := {0, 1}` for
some small `, say ` = 512. We build a new TCR hash for much larger inputs. Let L 2 Z>0 be a
power of 2. We build a derived TCR hash H that hashes messages in {0, 1}`L using keys in
(K⇥ T 1+log2 L). Note that the length of the keys is logarithmic in the length of the message, which
is much better than (8.15).

To describe the function H we need an auxiliary function ⌫ : Z>0 ! Z>0 defined as:

⌫(x) := largest n 2 Z>0 such that 2n divides x.

Thus, ⌫(x) counts the number of least significant bits of x that are zero. For example, ⌫(x) = 0 if
x is odd and ⌫(x) = n if x = 2n. Note that ⌫(x)  7 for more than 99% of the integers.
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Figure 8.13: Extending the domain of a TCR hash

The derived TCR hash H is similar to Merkle-Damg̊ard. It uses the same padding block PB
as in Merkle-Damg̊ard and a fixed initial value IV. The derived TCR hash H is defined as follows
(see Fig. 8.13):

Input: Message M 2 {0, 1}`L and key (k1, k2) 2 K ⇥ T 1+log2 L

Output: t 2 T
M  M k PB
Break M into consecutive `-bit blocks so that

M = m1 k m2 k · · · k ms where m1, . . . , ms 2 {0, 1}`
t0  IV
for i = 1 to s do:

u k2[⌫(i)]� ti�1 2 T
ti  h(k1, (u, mi) ) 2 T

Output ts

We note that directly using Merkle-Damg̊ard to extend the domain of a TCR hash does not
work. Plugging h(k1, ·) directly into Merkle-Damg̊ard can fail to give a TCR hash.

Security of the derived hash. The following theorem shows that the derived hash H is TCR
assuming the underlying hash h is. We refer to [63, 48] for the proof of this theorem.

Theorem 8.11. Suppose h is a TCR hash function that hashes messages in (T ⇥ {0, 1}`). Then,
for any bounded L, the derived function H is a TCR hash for messages in {0, 1}`L.

In particular, suppose A is a TCR adversary attacking H (as in Attack Game 8.4). Then there
exists a TCR adversary B (whose running times are about the same as that of A) such that

TCRadv[A, H]  L · TCRadv[B, h].

As in Merkle-Damg̊ard this construction is inherently sequential. A tree-based construction
similar to Exercise 8.8 gives a TCR hash using logarithmic size keys that is more suitable for a
parallel machine. We refer to [6] for the details.
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8.10.4 Using target collision resistance

We now know how to build a TCR function for large inputs from a small 2nd-preimage resistant
function. We show how to use such TCR functions to extend the domain for a MAC and to ensure
file integrity. We start with file integrity.

File integrity

Let H be a TCR hash defined over (K, M, T ). We use H to protect integrity of files F1, F2, . . . 2M
using a small amount of read-only memory. The idea is to pick a random key ri in K for every file
Fi and then store the pair (ri, H(ri, Fi) ) in read-only memory. Note that we are using a little
more read-only memory than in the system based on collision resistance. To verify integrity of file
Fi we simply recompute H(ri, Fi) and compare to the hash stored in read-only memory.

Why is this mechanism secure? Consider malware targeting a specific file F . We store in read-
only memory the key r and t := H(r, F ). To modify F without being detected the malware must
come up with a new file F 0 such that t = H(r, F 0). In other words, the malware is given as input
the file F along with a random key r 2 K and must produce a new F 0 such that H(r, F ) = H(r, F 0).
The adversary (the malware writer in this case) chooses which file F to attack. But this is precisely
the TCR Attack Game 8.4 — the adversary chooses an F , gets a random key r, and must output
a new F 0 that collides with F under r. Hence, if H is TCR the malware cannot modify F without
being detected.

In summary, we can provide file integrity using a small amount of read-only memory and by
relying only on 2nd-preimage resistance. The cost, in comparison to the system based on collision
resistance, is that we need a little more read-only memory to store the key r. In particular, using the
TCR construction from the previous section, the amount of additional read-only memory needed is
logarithmic in the size of the files being protected. Using a recursive construction (see Exercise 8.24)
we can reduce the additional read-only memory used to a small constant, but still non-zero.

Extending the domain of a MAC

Let H be a TCR hash defined over (KH , M, T ). Let I = (S, V ) be a MAC for authenticating short
messages in KH ⇥ T using keys in K. We assume that M is much larger than T . We build a new
MAC I 0 = (S0, V 0) for authenticating messages in M using keys in K as follows:

S0(k, m) := V 0(k, m, (t, r) ) :=

r  R KH h H(r, m) (8.17)

h H(r, m) Output V (k, (r, h), t)

t S(k, (r, h) )

Output (t, r)

Note the MAC signing is randomized — we pick a random TCR key r, include r in the input to
the signing algorithm S, and output r as part of the final tag. As a result, tags produced by this
MAC are longer than tags produced from extending MACs using a collision resistance hash (as in
Section 8.2). Using the construction from the previous section, the length of r is logarithmic in the
size of the message being authenticated. This extra logarithmic size key is included in every tag.
On the plus side, this construction only relies on H being TCR which is a much weaker property
than collision resistance and hence much more likely to hold for H.
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The following theorem proves security of the construction in (8.17) above. The theorem is the
analog of Theorem 8.1 and its proof is similar. Note however, that the error bounds are not as
tight as the bounds in Theorem 8.1.

Theorem 8.12. Suppose the MAC system I 0 is a secure MAC and the hash function H is TCR.
Then the derived MAC system I 0 = (S0, V 0) defined in (8.17) is a secure MAC.

In particular, for every MAC adversary A attacking I 0 (as in Attack Game 6.1) that issues
at most q signing queries, there exist an e�cient MAC adversary BI and an e�cient TCR
adversary BH , which are elementary wrappers around A, such that

MACadv[A, I 0]  MACadv[BI , I] + q · TCRadv[BH , H].

Proof idea. Our goal is to show that no e�cient MAC adversary can successfully attack I 0. Such
an adversary A asks the challenger to sign a few long messages m1, m2, . . . 2M and gets back tags
(ti, ri) for i = 1, 2, . . . . It then tries to invent a new valid message-MAC pair (m, (t, r)). If A is
able to produce a valid forgery (m, (t, r)) then one of two things must happen:

1. either (r, H(r, m)) is equal to (ri, H(ri, mi)) for some i;

2. or not.

It is not di�cult to see that forgeries of the second type can be used to attack the underlying
MAC I. We show that forgeries of the first type can be used to break the target collision resistance
of H. Indeed, if (r, H(r, m)) = (ri, H(ri, mi)) then r = ri and therefore H(r, m) = H(r, mi). Thus
mi and m collide under the random key r. We will show that this lets us build an adversary BH

that wins the TCR game when attacking H. Unfortunately, BH must guess ahead of time which
of A’s queries to use as mi. Since there are q queries to choose from, BH will guess correctly with
probability 1/q. This is the reason for the extra factor of q in the error term. 2

Proof. Let X be the event that adversary A wins the MAC Attack Game 6.1 with respect to I 0.
Let m1, m2, . . . 2M be A’s queries during the game and let (t1, r1), (t2, r2), . . . be the challenger’s
responses. Furthermore, let (m, (t, r)) be the adversary’s final output. We define two additional
events:

• Let Y denote the event that for some i = 1, 2, . . . we have that (r, H(r, m)) = (ri, H(r, mi))
and m 6= mi.

• Let Z denote the event that A wins Attack Game 6.1 on I 0 and event Y did not occur.

Then

MACadv[A, I 0] = Pr[X]  Pr[X ^ ¬Y ] + Pr[Y ] = Pr[Z] + Pr[Y ] (8.18)

To prove the theorem we construct a TCR adversary BH and a MAC adversary BI such that

Pr[Y ]  q · TCRadv[BH , H] and Pr[Z] = MACadv[BI , I].

Adversary BI is essentially the same as in the proof of Theorem 8.1. Here we only describe the
TCR adversary BH , which emulates a MAC challenger for A as follows:
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k  R K
u R {1, 2, . . . , q}
Run algorithm A
Upon receiving the ith signing query mi 2M from A do:

If i 6= u then
ri  R KH

Else // i = u: for query number u get ri from the TCR challenger
BH sends m̂0 := mi to its TCR challenger
Bh receives a random key r̂ 2 K from its challenger
ri  r̂

h H(ri, mi)
t S(k, (ri, h) )
Send (t, r) to A

Upon receiving the final message-tag pair (m, (t, r) ) from A do:
BH sends m̂1 := m to its challenger

Algorithm BH responds to A’s signature queries exactly as in a real MAC attack game. Therefore,
event Y happens during the interaction with BH with the same probability that it happens in
a real MAC attack game. Now, when event Y happens there exists a j 2 {1, 2, . . .} such that
(r, H(r, m)) = (rj , H(rj , mj)) and m 6= mj . Suppose that furthermore j = u. Then r = rj = r̂
and therefore H(r̂, m) = H(r̂, mu). Hence, if event Y happens and j = u then BH wins the TCR
attack game. In symbols,

TCRadv[BH , H] = Pr[Y ^ (j = u)].

Notice that u is independent of A’s view — it is only used for choosing which random key ri is
from BH ’s challenger, but no matter what u is, the key ri given to A is always uniformly random.
Hence, event Y is independent of the event j = u. For the same reason, if the adversary makes a
total of w queries then Pr[j = u] = 1/w � 1/q. In summary,

TCRadv[BH , H] = Pr[Y ^ (j = u)] = Pr[Y ] · Pr[j = u] � Pr[Y ]/q

as required. 2

8.11 A fun application: commitment schemes

To be written.

8.12 Notes

Citations to the literature to be added.

8.13 Exercises

8.1 (Truncating a CRHF is dangerous). Let H be a collision resistant hash function defined
over (M, {0, 1}n). Use H to construct a hash function H 0 over (M, {0, 1}n) that is also collision
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resistant, but if one truncates the output of H 0 by one bit then H 0 is no longer collision resistant.
That is, H 0 is collision resistant, but H 00(x) := H 0(x)[0 . . n� 2] is not.

8.2 (CRHF combiners). We want to build a CRHF H using two CRHFs H1 and H2, so that if
at some future time one of H1 or H2 is broken (but not both) then H is still secure.

(a) Suppose H1 and H2 are defined over (M, T ). Let H(m) :=
�

H1(m), H2(m)
�

. Show that H
is a secure CRHF if either H1 or H2 is secure.

(b) Show that H 0(x) = H1(H2(x)) need not be a secure CRHF even if one of H1 or H2 is secure.

8.3. Suppose F is a secure PRF defined over (K, X , Y) and H is a collision resistant hash defined
over (M, X ). Show that F 0(k, m) = F (k, H(m)) is a secure PRF. This shows that H can be used
to extend the domain of a PRF.

8.4. Let H be a collision resistant hash defined over (M, X ) and let E = (E, D) be a secure
block cipher defined over (K, X ). Show that the encrypted-hash MAC system (S, V ) defined by
S(k, m) := E(k, H(m)) is a secure MAC.
Hint: use Theorem 8.1.

8.5 (Finding many collisions). Let H be a hash function defined over (M, T ) where N := |T |
and |M| � N . We showed that O(

p
N) evaluations of H are su�cient to find a collision for

H with probability 1/2. Show that O
⇣p

sN
⌘

evaluations of H are su�cient to find s collisions

(x(1)
0 , x(1)

1 ), . . . , (x(s)
0 , x(s)

1 ) for H with probability at least 1/2. Therefore, finding a million collisions
is only about a thousand times harder than finding a single collision.

8.6 (Finding multi-collisions). Continuing with Exercise 8.5, we say that an s-collision for H
is a set of s distinct points x1, . . . , xs in M such that H(x1) = · · · = H(xs). Show that for each
constant value of s, O

�

N (s�1)/s
�

evaluations of H are su�cient to find an s-collision for H, with
probability at least 1/2.

8.7 (Collision finding in constant space). Let H be a hash function defined over (M, T )
where N := |M|. In Section 8.3 we developed a method to find an H collision with constant
probability using O(

p
N) evaluations of H. However, the method required O(

p
N) memory space.

In this exercise we develop a constant-memory collision finding method that runs in about the
same time. More precisely, the method only needs memory to store two hash values in T . You may
assume that H : M! T is a random function chosen uniformly from Funs[M, T ] and T ✓M. A
collision should be produced with probability at least 1/2.

(a) Let x0  R M and define H(i)(x0) to be the ith iterate of H starting at x0. For example,
H(3)(x0) = H(H(H(x0))).

(i) Let i be the smallest positive integer satisfying H(i)(x0) = H(2i)(x0).

(ii) Let j be the smallest positive integer satisfying H(j)(x0) = H(j+i)(x0). Notice that j  i.

Show that H(j�1)(x0) and H(j+i�1)(x0) are an H collision with probability at least 3/4.

(b) Show that i from part (a) satisfies i = O(
p

N) with probability at least 3/4 and that it can
be found using O(

p
N) evaluations of H. Once i is found, finding j takes another O(

p
N)

evaluations, as required. The entire process only needs to store two elements in T at any
given time.
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Figure 8.14: Tree-based Merkle-Damg̊ard

8.8. The Merkle-Damg̊ard construction in Section 8.4 gives a sequential method for extending the
domain of a secure CRHF. The tree construction in Fig. 8.14 is a parallelizable approach. Prove
that the resulting hash function is collision resistant assuming f is collision resistant.

8.9. Prove that the h1, h2, and h3 variants of Davies-Meyer defined on page 298 are collision
resistant in the ideal cipher model.

8.10. Show that the h4 and h5 variants of Davies-Meyer defined on page 299 are not collision
resistant.

8.11. Let’s show that Davies-Meyer may not be collision resistant when instantiated with a real-
world block cipher. Let (E, D) be a block cipher defined over (K, X ) where K = X = {0, 1}n.
Suppose that

E(k̄, x̄) = E(k, x)

for all keys k 2 K and all x 2 X , where ȳ denotes the bit-wise complement of y. The DES block
cipher has precisely this property.

(a) Show that Davies-Meyer is not collision resistant when instantiated with algorithm E.

(b) Let (E0, D0) be the Even-Mansour block cipher built from a permutation ⇡ : X ! X . Show
that Davies-Meyer is not collision resistant when instantiated with algorithm E0.

8.12 (Merkle-Damg̊ard without length encoding). Suppose that in the Merkle-Damg̊ard
construction, we drop the requirement that the padding block encodes the message length. Let h
be the compression function, let H be the resulting hash function, and let IV be the prescribed
initial value.

(a) Show that H is collision resistant, assuming h is collision resistant and that it is hard to find
a preimage of IV under h.

(b) Show that if h is a Davies-Meyer compression function, and we model the underlying block
cipher as an ideal cipher, then for any fixed IV, it is hard to find a preimage of IV under h.
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8.13 (2nd-preimage resistance of Merkle-Damg̊ard). Let H be a Merkle-Damg̊ard hash
built out of a Davies-Meyer compression function h : {0, 1}n ⇥ {0, 1}` ! {0, 1}n. Consider the
attack game characterizing 2nd-preimage resistance in Definition 8.4. Let us assume that the
initial, random message in that attack game consists of s blocks. We shall model the underlying
block cipher used in the Davies-Meyer construction as an ideal cipher, and adapt the attack game to
work in the ideal cipher model. Show that for every adversary A that makes at most Q ideal-cipher
queries, we have

SPRicadv[A, H]  (Q + s)s

2n�1
.

Discussion: This bound for finding second preimages is significantly better than the bound for
finding arbitrary collisions. Unfortunately, we have to resort to the ideal cipher model to prove it.

8.14 (Fixed points). We consider the Davies-Meyer and Miyaguchi-Preneel compression functions
defined in Section 8.5.2.

(a) Show that for a Davies-Meyer compression function it is easy to find a pair (t, m) such that
hDM(t, m) = t. Such a pair is called a fixed point for hDM.

(b) Show that in the ideal cipher model it is di�cult to find fixed points for the Miyaguchi-Preneel
compression function.

The next exercise gives an application for fixed points.

8.15 (Finding second preimages in Merkle-Damg̊ard). In this exercise, we develop a second
preimage attack on Merkle-Damg̊ard that roughly matches the security bounds in Exercise 8.13.
Let HMD be a Merkle-Damg̊ard hash built out of a Davies-Meyer compression function h : {0, 1}n⇥
{0, 1}` ! {0, 1}n. Recall that HMD pads a given message with a padding block that encodes the
message length. We will also consider the hash function H, which is the same as HMD, but which
uses a padding block that does not encode the message length. Throughout this exercise, we model
the underlying block cipher in the Davies-Meyer construction as an ideal cipher. For concreteness,
assume ` = 2n.

(a) Let s ⇡ 2n/2. You are given a message M that consists of s random `-bit blocks. Show that
by making O(s) ideal cipher queries, with probability 1/2 you can find a message M 0 6= M
such that H(M 0) = H(M). Here, the probability is over the random choice of M , the random
permutations defining the ideal cipher, and the random choices made by your attack.
Hint: Repeatedly choose random blocks x in {0, 1}` until h(IV, x) is the same as one of
the s chaining variables obtained when computing H(M). Use this x to construct the second
preimage M 0.

(b) Repeat part (a) for HMD.
Hint: the attack in part (a) will likely find a second preimage M 0 that is shorter than M ;
because of length encoding, this will not be a second preimage under HMD; nevertheless, show
how to use fixed points (see previous exercise) to modify M 0 so that it has the same length
as M .

Discussion: Let H be a hash function with an n-bit output. If H is a random function then
breaking second preimage resistance takes about 2n time. This exercise shows that for Merkle-
Damg̊ard functions, breaking second preimage resistance can be done much faster, taking only
about 2n/2 time.
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8.16 (The envelope method is a secure PRF). Consider the envelope method for building a
PRF from a hash function discussed in Section 8.7: Fenv(k, M) := H(k kM k k). Here, we assume
that H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n⇥{0, 1}` ! {0, 1}n.
Assume that the keys for Fenv are `-bit strings. Furthermore, assume that the message M a bit
string whose length is an even multiple of ` (we can always pad the message, if necessary). Under
the assumption that both htop and hbot are secure PRFs, show that Fenv is a secure PRF.

Hint: use the result of Exercise 7.8; also, first consider a simplified setting where H does not
append the usual Merkle-Damg̊ard padding block to the inputs k kM k k (this padding block does
not really help in this setting, but it does not hurt either — it just complicates the analysis).

8.17. Consider the key-prepending method for building a PRF from a hash function discussed in
Section 8.7: Fpre(k, M) := H(k k M). Here, we assume that H is a Merkle-Damg̊ard hash built
from a compression function h : {0, 1}n ⇥ {0, 1}` ! {0, 1}n. Assume that the keys for Fpre are
`-bit strings. Under the assumption that both htop and hbot are secure PRFs, show that Fpre is a
prefix-free secure PRF.

8.18. Consider the following variant of the key-appending method for building a PRF from a hash
function discussed in Section 8.7: F 0

post(k, M) := H(M k PB k k). Here, we assume that H is a

Merkle-Damg̊ard hash built from a compression function h : {0, 1}n ⇥ {0, 1}` ! {0, 1}n. Also, PB
is the standard Merkle-Damg̊ard padding for M , which encodes the length of M . Assume that the
keys for F 0

post are `-bit strings. Under the assumption that h is collision resistant and htop is a
secure PRF, show that F 0

post is a secure PRF.

8.19 (Symmetric PRFs). The security analysis of HMAC assumes that the underlying com-
pression function is a secure PRF when either input is used as the key. A PRF with this property
is said to be a symmetric PRF. Let F be a secure PRF defined over (X , X , Y). We wish to build
a new PRF F̂ that is symmetric. Then F̂ can be used as a building block for HMAC.

• Show that the most natural construction F̂ (x, y) := F (x, y)�F (y, x) is insecure: there exists
a secure PRF F for which F̂ is not a symmetric PRF. Hint: start from a secure PRF F 0 and
the sabotage it to get the required F .

• Let G : {0, 1}n ! {0, 1}2n be a secure PRG. Let G0(s) be the left n bits of G(s) and G1(s)
be the right n bits of G(s). Define

F̂ (x, y) := F ( G0(x), G0(y) ) � F ( G1(y), G1(x) ).

Prove that F̂ that is a symmetric PRF.

8.20 (Sponge with low capacity is insecure). Let H be a sponge hash with rate r and
capacity c, built from a permutation ⇡ : {0, 1}n ! {0, 1}n, where n = r + c (see Section 8.8).
Assume r � 2c. Show how to find a collision for H with probability at least 1/2 in time O(2c/2).
The colliding messages can be 2r bits each.

8.21 (Sponge as a PRF). Let H be a sponge hash with rate r and capacity c, built from a
permutation ⇡ : {0, 1}n ! {0, 1}n, where n = r + c (see Section 8.8). Consider again the PRF built
from H by pre-pending the key: Fpre(k, M) := H(k k M). Assume that the key is r bits and the
output of Fpre is also r bits. Prove that in the ideal permutation model, where ⇡ is replaced by a
random permutation ⇧, this construction yields a secure PRF, assuming 2r and 2c are super-poly.
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Note: this follows immediately from the fact that H is indi↵erentiable from a random oracle
(see Section 8.9.3) and Theorem 8.7. However, you are to give a direct proof of this fact. Hint: use
the same domain splitting strategy as outlined in Exercise 7.20.

8.22 (Relations among definitions). Let H be a hash function over (M, T ) where |M| � 2|T |.
We say that an element m 2M has a second preimage if there exists a di↵erent m0 2M such that
H(m) = H(m0).

(a) Show that at least half the elements of M have a second preimage.

(b) Use part (a) to show that a 2nd-preimage hash must be one-way.

(c) Show that a collision resistant hash must be 2nd-preimage resistant.

8.23. Let H be a TCR hash defined over (K, M, T ). Choose a random r 2 M. Prove that
f(x) := H(r, x) k r is 2nd-preimage resistant, where r is treated as a system parameter.

8.24. The file integrity construction in Section 8.10.4 uses additional read-only memory propor-
tional to log |F | where |F | is the size of the file F being protected.

(a) By first hashing the file F and then hashing the key r, show how to reduce the amount of ad-
ditional read-only memory used to O(log log |F |). This requires storing additional O(log |F |)
bits on disk.

(b) Generalize your solution from part (1) to show how to reduce read-only overhead to constant
size independent of |F |. The extra information stored on disk is still of size O(log |F |).

8.25 (Strong 2nd preimage resistance). Let H be a hash function defined over (X ⇥ Y , T )
where X := {0, 1}n. We say that H is strong 2nd-preimage resistant, or simply strong-
SPR, if no e�cient adversary, given a random x in X as input, can output y, x0, y0 such that
H(x, y) = H(x0, y0) with non-negligible probability.

(a) Let H be a strong-SPR. Use H to construct a collision resistant hash function H 0 defined
over (X ⇥ Y, T ).

(b) Let us show that a function H can be a strong-SPR, but not collision resistant. For example,
consider the hash function:

H 00(0, 0) := H 00(0, 1) := 0 and H 00(x, y) := H(x, y) for all other inputs.

Prove that if |X | is super-poly and H is a strong-SPR then so is H 00. However, H 00 is clearly
not collision resistant.

(c) Show that HTCR(k, (x, y)) := H((k � x), y) is a TCR hash function assuming H is a strong-
SPR hash function.

8.26. Let H be a keyed hash function defined over (K, M, T ). We say that H is an enhanced-
TCR if no e�cient adversary can win the following game with non-negligible advantage: the
adversary outputs m 2 M, is given random k 2 K and outputs (k0, m0) such that H(k, m) =
H(k0, m0).
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(a) Let H be a strong-SPR hash function over (X ⇥ Y, T ), as defined in Exercise 8.25, where
X := {0, 1}n. Show that H 0(k, (x, y)) := H((k � x), y) is an enhanced-TCR hash function.

(b) Show how to use an enhanced-TCR to extend the domain of a MAC. Let H be a enhanced-
TCR defined over (KH , M, X ) and let (S, V ) be a secure MAC defined over (K, X , T ). Show
that the following is a secure MAC:

S0(k, m) := { r  R KH , t S(k, H(r, m)), output (r, t)}
V 0�k, m, (r, t)

�

:= { accept if t = V (k, H(r, m))}

8.27 (Weak collision resistance). Let H be a keyed hash function defined over (K, M, T ). We
say that H is a weak collision resistant (WCR) if no e�cient adversary can win the following
game with non-negligible advantage: the challenger chooses a random key k 2 K and lets the
adversary query the function H(k, ·) at any input of its choice. The adversary wins if it outputs a
collision m0, m1 for H(k, ·).

(a) Show that WCR is a weaker notion than a secure MAC: (1) show that every deterministic
secure MAC is WCR, (2) give an example of a secure WCR that is not a secure MAC.

(b) MAC domain extension with a WCR: let (S, V ) be a secure MAC and let H be a WCR. Show
that the MAC system (S0, V 0) defined by S0�(k0, k1), m

�

:= S
�

k1, H(k0, m)
�

is secure.

(c) Show that Merkle-Damg̊ard expands a compressing fixed-input length WCR to a variable
input length WCR. In particular, let h be a WCR defined over (K, X ⇥ Y, X ), where X :=
{0, 1}n and Y := {0, 1}`. Define H as a keyed hash function over (K, {0, 1}L, X ) as follows:

H
�

(k1, k2), M
�

:=

8
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>

:

pad and break M into `-bit blocks: m1, . . . , ms

t0  0n 2 X
for i = 1 to s do:

ti  h
�

k1, (ti�1, mi)
�

encode s as a block b 2 Y
ts+1  h

�

k2, (ts, b)
�

output ts+1
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;

Show that H is a WCR if h is.
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Chapter 9

Authenticated Encryption

Our discussion of encryption in Chapters 2 to 8 leads up to this point. In this chapter we, construct
systems that ensure both data secrecy (confidentiality) and data integrity, even against very aggres-
sive attackers that can interact with the sender and receiver quite maliciously and arbitrarly. Such
systems are said to provide authenticated encryption or are simply said to be AE-secure. This
chapter concludes our discussion of symmetric encryption. It is the culmination of our symmetric
encryption story.

Recall that in our discussion of CPA security in Chapter 5 we stressed that CPA security does
not provide any integrity. An attacker can tamper with the output of a CPA-secure cipher without
being detected by the decryptor. We will present many real-world settings where undetected
ciphertext tampering comprises both message secrecy and message integrity. Consequently, CPA
security by itself is insu�cient for almost all applications. Instead, applications should almost
always use authenticated encryption to ensure both message secrecy and integrity. We stress that
even if secrecy is the only requirement, CPA security is insu�cient.

In this chapter we develop the notion of authenticated encryption and construct several AE
systems. There are two general paradigms for construction AE systems. The first, called generic
composition, is to combine a CPA-secure cipher with a secure MAC. There are many ways to
combine these two primitives and not all combinations are secure. We briefly consider two examples.

Let (E, D) be a cipher and (S, V ) be a MAC. Let kenc be a cipher key and kmac be a MAC key.
Two options for combining encryption and integrity immediately come to mind, which are shown
in Fig. 9.1 and work as follows:

Encrypt-then-MAC Encrypt the message, c  R E(kenc, m), then MAC the ciphertext, tag  R
S(kmac, c); the result is the ciphertext-tag pair (c, tag). This method is supported in the
TLS 1.2 protocol and later versions as well as in the IPsec protocol and in a widely-used
NIST standard called GCM (see Section 9.6).

MAC-then-encrypt MAC the message, tag  R S(kmac, m), then encrypt the message-tag pair,
c  R E

�

kenc, (m, t)
�

; the result is the ciphertext c. This method is used in older versions
of TLS (e.g., SSL 3.0 and its successor called TLS 1.0) and in the 802.11i WiFi encryption
protocol.

As it turns out, only the first method is secure for every combination of CPA-secure cipher and
secure MAC. The intuition is that the MAC on the ciphertext prevents any tampering with the
ciphertext. We will show that the second method can be insecure — the MAC and cipher can
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Figure 9.1: Two methods to combine encryption and MAC

interact badly and cause the resulting system to not be AE-secure. This has lead to many attacks
on widely deployed systems.

The second paradigm for building authenticated encryption is to build them directly from a
block cipher or a PRF without first constructing either a standalone cipher or MAC. These are
sometimes called integrated schemes. The OCB encryption mode is the primary example in this
category (see Exercise 9.14). Other examples include IAPM, XCBC, CCFB, and others.

Authenticated encryption standards. Cryptographic libraries such as OpenSSL often provide
an interface for CPA-secure encryption (such as counter mode with a random IV) and a separate
interface for computing MACs on messages. In the past, it was up to developers to correctly
combine these two primitives to provide authenticated encryption. Every system did it di↵erently
and not all incarnations used in practice were secure.

More recently, several standards have emerged for secure authenticated encryption. A popular
method called Galois Counter Mode (GCM) uses encrypt-then-MAC to combine random counter
mode encryption with a Carter-Wegman MAC (see Section 9.6). We will examine the details
of this construction and its security later on in the chapter. Developers are encouraged to use
an authenticated encryption mode provided by the underlying cryptographic library and to not
implement it themselves.

9.1 Authenticated encryption: definitions

We start by defining what it means for a cipher E to provide authenticated encryption. It must
satisfy two propertes. First, E must be CPA-secure. Second, E must provide ciphertext integrity,
as defined below. Ciphertext integrity is a new property that captures the fact that E should
have properties similar to a MAC. Let E = (E, D) be a cipher defined over (K, M, C). We define
ciphertext integrity using the following attack game, shown in Fig. 9.2. The game is analogous to
the MAC Attack Game 6.1.

Attack Game 9.1 (ciphertext integrity). For a given cipher E = (E, D) defined over (K, M, C),
and a given adversary A, the attack game runs as follows:

• The challenger chooses a random k  R K.
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Challenger Adversary A
k  R K mi

ci  E(k, mi)

c

Figure 9.2: Ciphertext integrity game (Attack Game 9.1)

• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists of a
message mi 2M. The challenger computes ci  R E(k, mi), and gives ci to A.

• Eventually A outputs a candidate ciphertext c 2 C that is not among the cipher-
texts it was given, i.e.,

c 62 {c1, c2, . . .}.

We say that A wins the game if c is a valid ciphertext under k, that is, D(k, c) 6= reject. We define
A’s advantage with respect to E , denoted CIadv[A, E ], as the probability that A wins the game.
Finally, we say that A is a Q-query adversary if A issues at most Q encryption queries. 2

Definition 9.1. We say that a E = (E, D) provides ciphertext integrity, or CI for short, if for
every e�cient adversary A, the value CIadv[A, E ] is negligible.

CPA security and ciphertext integrity are the properties needed for authenticated encryption.
This is captured in the following definition.

Definition 9.2. We say that a cipher E = (E, D) provides authenticated encryption, or is
simply AE-secure, if E is (1) semantically secure under a chosen plaintext attack, and (2) provides
ciphertext integrity.

Why is Definition 9.2 the right definition? In particular, why are we requiring ciphertext in-
tegrity, rather than some notion of plaintext integrity (which might seem more natural)? In Sec-
tion 9.2, we will describe a very insideous class of attacks called chosen ciphertext attacks, and
we will see that our definition of AE-security is su�cient (and, indeed, necessary) to prevent such
attacks. In Section 9.3, we give a more high-level justification for the definition.

One-time authenticated encryption

In practice, one often uses a symmetric key to encrypt a single message. The key is never used
again. For example, when sending encrypted email one often picks an ephemeral key and encrypts
the email body under this ephemeral key. The ephemeral key is then encrypted and transmitted
in the email header. A new ephemeral key is generated for every email.

In these settings one can use a one-time encryption scheme such as a stream cipher. The
cipher must be semantically secure, but need not be CPA-secure. Similarly, it su�ces that the
cipher provide one-time ciphertext integrity, which is a weaker notion than ciphertext-integrity. In
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particular, we change Attack Game 9.1 so that the adversary can only obtain the encryption of a
single message m.

Definition 9.3. We say that E = (E, D) provides one-time ciphertext integrity if for every
e�cient single-query adversary A, the value CIadv[A, E ] is negligible.

Definition 9.4. We say that E = (E, D) provides one-time authenticated encryption, or is
1AE-secure for short, if E is semantically secure and provides one-time ciphertext integrity.

In applications that only use a symmetric key once, 1AE-security su�ces. We will show that
the encrypt-then-MAC construction of Fig. 9.1 using a semantically secure cipher and a one-time
MAC, provides one-time authenticated encryption. Replacing the MAC by a one-time MAC can
lead to e�ciency improvements.

9.2 Chosen ciphertext attacks

Before constructing AE-secure systems, let us first play with Definition 9.1 a bit to see what it
implies. Consider a sender, Alice, and a receiver, Bob, who have a shared secret key k. Alice sends
a sequence of messages to Bob over a public network. Each message is encrypted with an AE-secure
cipher E = (E, D) using the key k.

For starters, consider an eavesdropping adversary A. Since E is CPA-secure this does not help
A learn any new information about messages sent from Alice to Bob.

Now consider a more aggressive adversary A that attempts to make Bob receive a message that
was not sent by Alice. We claim this cannot happen. To see why, consider the following single-
message example: Alice encrypts to Bob a message m and the resulting ciphertext c is intercepted
by A. The adversary’s goal is to create some ĉ such that m̂ := D(k, ĉ) 6= reject and m̂ 6= m.
This ĉ would fool Bob into thinking that Alice sent m̂ rather than m. But then A could also win
Attack Game 9.1 with respect to E , contradicting E ’s ciphertext integrity. Consequently, A cannot
modify c without being detected. More generally, applying the argument to multiple messages
shows that A cannot cause Bob to receive any messages that were not sent by Alice. The more
general conclusion here is that ciphertext integrity implies message integrity.

9.2.1 Chosen ciphertext attacks: a motivating example

We now consider an even more aggressive type of attack, called a chosen ciphertext attack or
CCA for short. As we will see, an AE-secure cipher provides mesage secrecy and message integrity
even against such a powerful attack.

To motivate CCA attacks suppose Alice sends an email message to Bob. For simplicity let us
assume that every email starts with the letters To: followed by the recipient’s email address. So, an
email to Bob starts with To:bob@mail.com and an email to Eve begins with To:eve@mail.com. The
mail server decrypts every incoming email and writes it into the recipient’s inbox: emails that start
with To:bob@mail.com are written to Bob’s inbox and emails that start with To:eve@mail.com

are written to Eve’s inbox.
Eve, the attacker in this story, wants to read the email that Alice sent to Bob. Unfortunately

for Eve, Alice was careful and encrypted the email using a key known only to Alice and to the mail
server. When the ciphertext c is received at the mail server it will be decrypted and the resulting
message is placed into Bob’s inbox. Eve will be unable to read it.
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Nevertheless, let us show that if Alice encrypts the email with a CPA secure cipher such as
randomized counter mode or randomized CBC mode then Eve can quite easily obtain the email
contents. Here is how: Eve will intercept the ciphertext c en-route to the mail server and modify it
to obtain a ciphertext ĉ so that the decryption of ĉ starts with To:eve@mail.com, but is otherwise
the same as the original message. Eve then forwards ĉ to the mail server. When the mail server
receives ĉ it will decrypt it and (incorrectly) place the plaintext into Eve’s inbox where Eve can
easily read it.

To successfully carry out this attack, Eve must first solve the following problem: given an encryp-
tion c of some message (u k m) where u is a fixed known prefix (in our case u := To:bob@mail.com),
compute a ciphertext ĉ that will decrypt to the message (v k m), where v is some other prefix (in
our case v := To:eve@mail.com).

Let us show that Eve can easily solve this problem, assuming the encryption scheme is either
randomized counter mode or randomized CBC. For simplicity, we also assume that u and v are
binary strings whose length is the same as the block size of the underlying block cipher. As usual
c[0] and c[1] are the first and second blocks of c where c[0] is the random IV. Eve constructs ĉ as
follows:

• randomized counter mode: define ĉ to be the same as c except that ĉ[1] := c[1]� u� v.

• randomized CBC mode: define ĉ to be the same as c except that ĉ[0] := c[0]� u� v.

It is not di�cult to see that in either case the decryption of ĉ starts with the prefix v (see Sec-
tion 3.3.2). Eve is now able to obtain the decryption of ĉ and read the secret message m in the
clear.

What just happened? We proved that both encryption modes are CPA-secure, and yet we
just showed how to break them. This attack is an example of a chosen ciphertext attack
— by querying for the decryption of ĉ Eve was able to deduce the decryption of c. As we just
saw, a CPA-secure system can become completely insecure when an attacker can decrypt certain
ciphertexts, even if she cannot directly decrypt a ciphertext that interests her. Put another way,
the lack of ciphertext integrity can completely compromise secrecy — even if plaintext integrity is
not a security requirement.

We informally argue that if Alice used an AE-secure cipher E = (E, D) then it would be
impossible to mount the attack we just described. Suppose Eve intercepts a ciphertext c := E(k, m).
She tries to create another ciphertext ĉ such that (1) m̂ := D(k, ĉ) starts with prefix v, and (2)
the adversary can recover m from m̂, in particular m̂ 6= reject. Ciphertext integrity, and therefore
AE-security, implies that the attacker cannot create this ĉ. In fact, the attacker cannot create any
new valid ciphertexts and therefore an AE-secure cipher foils the attack.

In the next section we consider a more general chosen ciphertext attack: the attacker intercepts a
ciphertext c and wants to decrypt it. It can request the decryption of multiple ciphertexts ĉ1, . . . , ĉQ
of its choice, possibly derived from c. However, it cannot directly request the decryption of c. The
attacker “wins” if using these decryption queries it can learn something about the decryption of c.
We will show that if E is AE-secure then even these powerful chosen ciphertext queries do not help
the attacker break semantic security. The fact that authenticated encryption foils the email attack
above is a special case of this more general result.
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9.2.2 Chosen ciphertext attacks: definition

In the previous section we saw an example where the adversary could obtain the decryption of some
ciphertexts, but not others. We showed that this enabled the adversary to decrypt any ciphertext
of his choice. Here, we take this idea to the extreme:

• Suppose the adversary intercepts a number of ciphertexts L := {c1, c2, . . .} all encrypted
under the same key k. It wants to learn something about the decryption of these ciphertexts.

• We allow the adversary to request the decryption (under the key k) of any ciphertext ĉ of his
choice as long as ĉ is not one of the challenge ciphertexts in L.

We say that the system is chosen ciphertext secure if the adversary cannot learn any information
about the decryption of ciphertexts in L. Achieving this level of security would appear to be a
daunting task, and yet we will show that any AE-secure system is chosen ciphertext secure. This
provides yet another justification for insisting that only AE-secure systems be used for general-
purpose applications: it prevents chosen ciphertext attacks that frequently come up in practice.
We start with a definition of chosen ciphertext security using the following attack game.

Attack Game 9.2 (CCA security). For a given cipher E = (E, D) defined over (K, M, C), and
for a given adversary A, we define two experiments. For b = 0, 1, we define

Experiment b:

• The challenger selects k  R K.

• The adversary then makes a series of queries to the challenger, each of which is either an en-
cryption query or a decryption query. The adversary is allowed to make many encryption
and decryption queries interleaved in any order.

– upon receiving an encryption query (m0, m1) 2M2 from the adversary, the challenger
computes c R E(k, mb) and sends c to the adversary.

– upon receiving a ciphertext ĉ 2 C, with ĉ 62 {c1, . . . , ci} where c1, . . . , ci are all the
responses to encryption queries so far. The challenger computes m̂ D(k, ĉ), and sends
m̂ to the adversary.

• At the end of the game, the adversary outputs a bit b̂ 2 {0, 1}.

Let Wb is the event that A outputs 1 in Experiment b and define A’s advantage with respect
to E as

CCAadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 9.5 (CCA security). A cipher E is called semantically secure against a chosen
ciphertext and plaintext attack, or simply CCA-secure, if for all e�cient adversaries A, the
value CCAadv[A, E ] is negligible.

In some settings a new key is generated for every message so that a particular key k is only
used to encrypt a single message. The system needs to be secure against chosen ciphertext attacks
where the attacker fools the user into decrypting multiple ciphertexts using k. For these settings
we define security against an adversary that can only issue a single encryption query, but many
decryption queries.
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Definition 9.6 (1CCA security). A cipher E is semantically secure against chosen cipher-
text attack, or simply, 1CCA-secure, if for all e�cient adversaries A that make at most a single
encryption query in Attack Game 9.2 the value CCAadv[A, E ] is negligible.

9.2.3 Authenticated encryption implies chosen ciphertext security

We now show that every AE-secure system is also CCA-secure. Similarly, every one-time AE-
secure system is 1CCA-secure. Our concrete security bounds and proofs work using the bit-guessing
versions of the CCA and CCA attack games (see Section 2.3.5).

Theorem 9.1. Let E = (E, D) be an authenticated encryption system. Then E is CCA-secure.

In particular, suppose A is a CCA-adversary for E that makes at most Qd encryption queries
and Qe decryption queries. Then there exist a CPA-adversary B

1

and a CI-adversary B
2

, where
B

1

and B
2

are elementary wrappers around A, such that

CCAadv⇤[A, E ]  CPAadv⇤[B
1

, E ] + Qe · CIadv[B
2

, E ].

Moreover, B
1

and B
2

both make at most Qd encryption queries.

Before proving this theorem, we point out a converse of sorts: if a cipher is CCA-secure and
provides plaintext integrity, then it must be AE-secure. You are asked to prove this in Exercise 9.11.
These two results together provide strong support for the claim that AE-security is the right notion
of security for general purpose communication over an insecure network. We also note that it is
possible to build a CCA-secure cipher that does not provide ciphertext (or plaintext) integrity —
see Exercise 9.8 for an example.

Proof idea. A CCA-adversary A issues encryption and allowed decryption queries. We first argue
that the response to all these decryption queries must be reject. To see why, observe that if the
adversary ever issues a valid decryption query ci whose decryption is not reject, then this ci can be
used to win the ciphertext integrity game. Hence, since all of A’s decryption queries are rejected,
the adversary learns nothing by issuing decryption queries and they may as well be discarded. After
removing decryption queries we end up with a standard CPA game. The adversary cannot win
this game because E is CPA-secure. We conclude that A has negligible advantage in winning the
CCA-game. 2

Proof. To make this proof idea rigorous it is convenient to work with the bit-guessing version of the
CCA Attack Game 9.2 (as discussed in Section 2.3.5). The challenger in this game, called Game 0,
works as follows:

b R {0, 1} // A will try to guess b
k  R K, L ;
upon receiving an encryption query (m0, m1) from A do:

Send c E(k, mb) to A and add c to the set L, that is, L L [ {c}
upon receiving a decryption query ĉ 62 L from A do:

(1) Send D(k, ĉ) to A
Eventually the adversary outputs a guess b̂ 2 {0, 1}. We say that A wins the game if b = b̂ and we
denote this event by W0. By definition, the bit-guessing advantage is

CCAadv⇤[A, E ] = |Pr[W0]� 1/2|. (9.1)
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Game 1. We now modify line (1) in the challenger as follows:

upon receiving a decryption query ĉ 62 L from A do:
(1) Send reject to A

We argue that A cannot distinguish this challenger from the original. Let Z be the event that in
Game 1, A issues a decryption query ĉ such that D(k, c) 6= reject. Clearly, Games 0 and 1 proceed
identically as long as Z does not happen. Hence, by the Di↵erence Lemma (i.e., Theorem 4.7) it
follows that |Pr[W0]� Pr[W1]|  Pr[Z].

Using a “guessing strategy” similar to that used in the proof of Theorem 6.1, we can use A to
build a CI-adversary B2 that wins the CI attack game with probability at least Pr[Z]/Qe. Note
that in Game 2, the decryption algorithm is not used at all. Adversary B2’s strategy is simply to
guess a random number ! 2 {1, . . . , Qe}, and then to play the role of challenger to A:

• when A makes an encryption query, B2 forwards this to its own challenger, and returns the
response to A;

• when A makes a decryption query ĉ, B2 simply sends reject to A, except that if this is the
!th such request, B2 outputs ĉ and halts.

It is not hard to see that CIadv[B2, E ] � Pr[Z]/Qe, and so

|Pr[W0]� Pr[W1]|  Pr[Z]  Qe · CIadv[B2, E ]. (9.2)

Final reduction. Since all decryption queries are rejected in Game 1, this is essentially a CPA
attack game. More precisely, we can construct a CPA adversary B1 that plays the role of challenger
to A as follows:

• when A makes an encryption query, B1 forwards this to its own challenger, and returns the
response to A;

• when A makes a decryption query ĉ, B1 simply sends reject to A.

At the end of the game, B1 simply outputs the bit b̂ that A outputs. Clearly,

|Pr[W1]� 1/2| = CPAadv⇤[B1, E ] (9.3)

Putting equations (9.1)–(9.3) together proves the theorem. 2

9.3 Encryption as an abstract interface

To further motivate the definition of authenticated encryption we show that it precisely captures
an intuitive notion of secure encryption as an abstract interface. AE-security implies that the real
implementation of this interface may be replaced by an idealized implementation in which messages
literally jump from sender to receiver, without going over the network at all (even in encrypted
form). We now develop this idea more fully.

Suppose a sender S and receiver R are using some arbitrary Internet-based system (e.g, gam-
bling, auctions, banking — whatever). Also, we assume that S and R have already established
a shared, random encryption key k. During the protocol, S will send encryptions of messages
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m1, m2, . . . to R. The messages mi are determined by the logic of the protocol S is using, whatever
that happens to be. We can imagine S placing a message mi in his “out-box”, the precise details
of how the out-box works being of no concern to S. Of course, inside S’s out-box, we know what
happens: an encryption ci of mi under k is computed, and this is sent out over the wire to R.

On the receiving end, when a ciphertext ĉ is received at R’s end of the wire, it is decrypted
using k, and if the decryption is a message m̂ 6= reject, the message m̂ is placed in R’s “in-box”.
Whenever a message appears in his in-box, R can retrieve it and processes it according to the logic
of his protocol, without worrying about how the message got there.

An attacker may try to subvert communication between S and R in a number of ways.

• First, the attacker may drop, re-order, or duplicate the ciphertexts sent by S.

• Second, the attacker may modify ciphertexts sent by S, or inject ciphertexts created out of
“whole cloth”.

• Third, the attacker may have partial knowledge of some of the messages sent by S, or may
even be able to influence the choice of some of these messages.

• Fourth, by observing R’s behavior, the attacker may be able to glean partial knowledge of
some of the messages processed by R. Even the knowledge of whether or not a ciphertext
delivered to R was rejected or not could be useful.

Having described an abstract encryption interface and its implementation, we now describe an
ideal implementation of this interface that captures in an intuitive way the guarantees ensured by
authenticated encryption. When S drops mi in its out-box, instead of encrypting mi, the ideal
implementation creates a ciphertext ci by encrypting a dummy message dummy i, that has nothing
to do with mi (except that it should be of the same length). Thus, ci serves as a placeholder for mi,
but does not contain any information about mi (other than its length). When ci arrives at R, the
corresponding message mi is magically copied from S’s out-box to R’s in-box. If a ciphertext arrives
at R that is not among the previously generated ci’s, the ideal implementation simply discards it.

This ideal implementation is just a thought experiment. It obviously cannot be physically
realized in any e�cient way (without first inventing teleportation). As we shall argue, however, if
the underlying cipher E provides authenticated encryption, the ideal implementation is — for all
practical purposes — equivalent to the real implementation. Therefore, a protocol designer need
not worry about any of the details of the real implementation or the nuances of cryptographic
definitions: he can simply pretend he is using the abstract encryption interface with its ideal
implementation, in which ciphertexts are just placeholders and messages magically jump from S
to R. Hopefully, analyzing the security properties of the higher-level protocol will be much easier
in this setting.

Note that even in the ideal implementation, the attacker may still drop, re-order, or duplicate
ciphertexts, and these will cause the corresponding messages to be dropped, re-ordered, or dupli-
cated. Using sequence numbers and bu↵ers, it is not hard to deal with these possibilities, but that
is left to the higher-level protocol.

We now argue informally that when E provides authenticated encryption, the real world im-
plementation is indistinguishable from the ideal implementation. The argument proceeds in three
steps. We start with the real implementation, and in each step, we make a slight modification.

350



• First, we modify the real implementation of R’s in-box, as follows. When a ciphertext ĉ
arrives on R’s end, the list of ciphertexts c1, c2, . . . previously generated by S is scanned, and
if ĉ = ci, then the corresponding message mi is magically copied from S’s out-box into R’s
in-box, without actually running the decryption algorithm.

The correctness property of E ensures that this modification behaves exactly the same as the
real implementation.

• Second, we modify the implementation on R’s in-box again, so that if a ciphertext ĉ arrives
on R’s end that is not among the ciphertexts generated by S, the implementation simply
discards ĉ.

The only way the adversary could distinguish this modification from the first is if he could
create a ciphertext that would not be rejected and was not generated by S. But this is not
possible, since E has ciphertext integrity.

• Third, we modify the implementation of S’s out-box, replacing the encryption of mi with
the encryption of dummy i. The implementation of R’s in-box remains as in the second
modification. Note that the decryption algorithm is never used in either the second or third
modifications. Therefore, an adversary who can distinguish this modification from the second
can be used to directly break the CPA-security of E . Hence, since E is CPA-secure, the two
modifications are indistinguishable.

Since the third modification is identical to the ideal implementation, we see that the real and ideal
implementations are indistinguishable from the adversary’s point of view.

A technical point we have not considered is the possibility that the ci’s generated by S are not
unique. Certainly, if we are going to view the ci’s as “placeholders” in the ideal implementation,
uniqueness would seem to be an essential property. In fact, CPA-security implies that the ci’s gen-
erated in the ideal implementation are unique with overwhelming probability — see Exercise 5.10.

9.4 Authenticated encryption ciphers from generic composition

We now turn to constructing authenticated encryption by combining a CPA-secure cipher and a
secure MAC. We show that encrypt-then-MAC is always AE-secure, but MAC-then-encrypt is not.

9.4.1 Encrypt-then-MAC

Let E = (E, D) be a cipher defined over (K, M, C) and let I = (S, V ) be a MAC defined over
(K, C, T ). To keep the notation simple we assume that E and I use keys in the same key space K.
The encrypt-then-MAC system EEtM = (EEtM, DEtM), or EtM for short, is defined as follows:

EEtM( (ke, km), m) := c R E(ke, m), t R S(km, c)
Output (c, t)

DEtM((ke, km), (c, t) ) := if V (km, c, t) = reject then output reject
otherwise, output D(ke, c)

The EtM system is defined over (K2, M, C ⇥ T ). We emphasize that no plaintext data should
be output before the integrity tag over the entire message is verified. The following theorem shows
that EEtM provides authenticated encryption.
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Theorem 9.2. Let E = (E, D) be a cipher and let I = (S, V ) be a MAC. Then EEtM is AE-secure
assuming E is CPA-secure and I is a secure MAC.

In particular, for every ciphertext integrity adversary A
ci

that attacks E
EtM

as in Attack
Game 9.1 there exists a MAC adversary B

mac

that attacks I as in Attack Game 6.1, where
B

mac

is an elementary wrapper around A
ci

, such that

CIadv[A
ci

, E
EtM

] = MACadv[B
mac

, I].

For every CPA adversary A
cpa

that attacks E
EtM

as in Attack Game 5.2 there exists a CPA
adversary B

cpa

that attacks E as in Attack Game 5.2, where B
cpa

is an elementary wrapper
around A

cpa

, such that
CPAadv[A

cpa

, E
EtM

] = CPAadv[B
cpa

, E ]

Proof. Let us first show that EEtM provides ciphertext integrity. The proof is by a straight forward
reduction. Suppose Aci is a ciphertext integrity adversary attacking EEtM. We construct a MAC
adversary Bmac attacking I.

Adversary Bmac plays the role of adversary in a MAC attack game for I. It interacts with
a MAC challenger Cmac that starts by picking a random km  R K. Adversary Bmac works by
emulating a EEtM ciphertext integrity challenger for Aci, as follows:

ke  R K
upon receiving a query mi 2M from Aci do:

ci  R E(ke, mi)
Query Cmac on ci and obtain ti  R S(km, ci) in response
Send (ci, ti) to Aci // then (ci, ti) = EEtM( (ke, km), mi)

eventually Aci outputs a ciphertext (c, t) 2 C ⇥ T
output the message-tag pair (c, t)

It should be clear that Bmac responds to Aci’s queries as in a real ciphertext integrity attack game.
Therefore, with probability CIadv[Aci, EEtM] adversary Aci outputs a ciphertext (c, t) that makes
it win Attack Game 9.1 so that (c, t) 62 {(c1, t1), . . .} and V (km, c, t) = accept. It follows that (c, t)
is a message-tag pair that lets Bmac win the MAC attack game and therefore CIadv[Aci, EEtM] =
MACadv[Bmac, I], as required.

It remains to show that if E is CPA-secure then so is EEtM. This simply says that the tag included
in the ciphertext, which is computed using the key km (and does not involve the encryption key ke
at all), does not help the attacker break CPA security of EEtM. This is straightforward and is left
as an easy exercise (see Exercise 5.19). 2

Recall that our definition of a secure MAC from Chapter 6 requires that given a message-tag
pair (c, t) the attacker cannot come up with a new tag t0 6= t such that (c, t0) is a valid message-tag
pair. At the time it seemed odd to require this: if the attacker already has a valid tag for c, why
do we care if he finds another tag for c? Here we see that if the attacker could come with a new
valid tag t0 for c then he could break ciphertext integrity for EtM. From an EtM ciphertext (c, t)
the attacker could construct a new valid ciphertext (c, t0) and win the ciphertext integrity game.
Our definition of secure MAC ensures that the attacker cannot modify an EtM ciphertext without
being detected.
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Common mistakes in implementing encrypt-then-MAC

A common mistake when implementing encrypt-then-MAC is to use the same key for the cipher and
the MAC, i.e., setting ke = km. The resulting system need not provide authenticated encryption
and can be insecure, as shown in Exercise 9.4. In the proof of Theorem 9.2 we relied on the fact
that the two keys ke and km are chosen independently in K.

Another common mistake is to apply the MAC signing algorithm to only part of the ciphertext.
We look at an example. Suppose the underlying CPA-secure cipher E = (E, D) is randomized CBC
mode (Section 5.4.3) so that the encryption of a message m is (r, c) R E(k, c) where r is a random
IV. When implementing encrypt-then-MAC EEtM = (EEtM, DEtM) the encryption algorithm is
incorrectly defined as

EEtM
�

(ke, km), m
�

:=
�

(r, c) R E(ke, m), t R S(km, c), output (r, c, t)
 

.

Here, E(ke, m) outputs the ciphertext (r, c), but the MAC signing algorithm is only applied to
c; the IV is not protected by the MAC. This mistake completely destroys ciphertext integrity:
given a ciphertext (r, c, t) an attacker can create a new valid ciphertext (r0, c, t) for some r0 6= r.
The decryption algorithm will not detect this modification of the IV and will not output reject.
Instead, the decryption algorithm will output D

�

ke, (r0, c)
�

. Since (r0, c, t) is a valid ciphertext the
adversary wins the ciphertext integrity game. Even worse, if (r, c, t) is the encryption of a message
m then changing (r, c, t) to (r��, c, t) for any � causes the CBC decryption algorithm to output a
message m0 where m0[0] = m[0]��. This means that the attacker can change header information
in the first block of m to any value of the attacker’s choosing. The first edition of the ISO 19772
standard from 2009 for authenticated encryption made precisely this mistake [?].

9.4.2 MAC-then-encrypt is not generally secure: padding oracle attacks on SSL

Next, we consider the MAC-then-encrypt generic composition of a CPA secure cipher and a secure
MAC. We show that this construction need not be AE-secure and can lead to many real-world
problems.

To define MAC-then-encrypt precisely, let I = (S, V ) be a MAC defined over (K, M, T ) and
let E = (E, D) be a cipher defined over (K, M ⇥ T , C). The MAC-then-encrypt system
EMtE = (EMtE, DMtE), or MtE for short, is defined as follows:

EMtE( (ke, km), m) := t R S(km, m), c R E(kc, (m, t) )
Output c

DEtM((ke, km), c ) := (m, t) D(ke, c)
if V (km, m, t) = reject then output reject
otherwise, output m

The MtE system is defined over (K2, M, C).

A badly broken MtE cipher. We show that MtE is not guaranteed to be AE-secure even if E
is a CPA-secure cipher and I is a secure MAC. In fact, MtE can fail to be secure for widely-used
ciphers and MACs and this has lead to many significant attacks on deployed systems.

Consider the SSL 3.0 protocol used to protect WWW tra�c for over two decades (the protocol
is disabled in modern browsers). SSL 3.0 uses MtE to combine randomized CBC mode encryption
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and a secure MAC. We showed in Chapter 5 that randomized CBC mode encryption is CPA-secure,
yet this combination is badly broken: an attacker can e↵ectively decrypt all tra�c using a chosen
ciphertext attack. This leads to a devastating attack on SSL 3.0 called POODLE [16].

Let us assume that the underlying block cipher used in CBC operates on 16 byte blocks, as
in AES. Recall that CBC mode encryption pads its input to a multiple of the block length and
SSL 3.0 does so as follows: if a pad of length p > 0 bytes is needed, the scheme pads the message
with p�1 arbitrary bytes and adds one additional byte whose value is set to (p�1). If the message
length is already a multiple of the block length (16 bytes) then SSL 3.0 adds a dummy block of 16
bytes where the last byte is set to 15 and the first 15 bytes are arbitrary. During decryption the
pad is removed by reading the last byte and removing that many more bytes.

Concretely, the cipher EMtE = (EMtE, DMtE) obtained from applying MtE to randomized CBC
mode encryption and a secure MAC works as follows:

• EMtE( (ke, km), m): First use the MAC signing algorithm to compute a fixed-length tag
t  R S(km, m) for m. Next, encrypt m k t with randomized CBC encryption: pad the
message and then encrypt in CBC mode using key ke and a random IV. Thus, the following
data is encrypted to generate the ciphertext c:

message m tag t pad p (9.4)

Notice that the tag t does not protect the integrity of the pad. We will exploit this to break
CPA security using a chosen-ciphertext attack.

• DMtE( (ke, km), c): Run CBC decryption to obtain the plaintext data in (9.4). Next, remove
the pad p by reading the last byte in (9.4) and removing that many more bytes from the data
(i.e., if the last byte is 3 then that byte is removed plus 3 additional bytes). Next, verify the
MAC tag and if valid return the remaining bytes as the message. Otherwise, output reject.

Both SSL 3.0 and TLS 1.0 use a defective variant of randomized CBC encryption, discussed in
Exercise 5.11, but this is not relevant to our discussion here. Here we will assume that a correct
implementation of randomized CBC encryption is used.

The chosen-ciphertext attack. We show a chosen ciphertext attack on the system EMtE that
lets the adversary decrypt any ciphertext of its choice. It follows that EMtE need not be AE-secure,
even though the underlying cipher is CPA-secure. Throughout this section we let (E, D) denote
the block cipher used in CBC mode encryption. It operates on 16-byte blocks.

Suppose the adversary intercepts a valid ciphertext c := EMtE( (ke, km), m) for some unknown
message m. The length of m is such that after a MAC tag t is appended to m the length of (m k t)
is a multiple of 16 bytes. This means that a full padding block of 16 bytes is appended during CBC
encryption and the last byte of this pad is 15. Then the ciphertext c looks as follows:

c = c[0]
| {z }

IV

c[1] · · ·
| {z }

encryption of m

c[`� 1]
| {z }

encrypted tag

c[`]
| {z }

encrypted pad

Lets us first show that the adversary can learn something about m[0] (the first 16-byte block
of m). This will break semantic security of EMtE. The attacker prepares a chosen ciphertext query ĉ
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by replacing the last block of c with c[1]. That is,

ĉ := c[0] c[1] · · · c[`� 1] c[1]
| {z }

encrypted pad?

(9.5)

By definition of CBC decryption, decrypting the last block of ĉ yields the 16-byte plaintext block

v := D
�

ke, c[1]
�� c[`� 1] = m[0]� c[0]� c[`� 1].

If the last byte of v is 15 then during decryption the entire last block will be treated as a padding
block and removed. The remaining string is a valid message-tag pair and will decrypt properly. If
the last byte of v is not 15 then most likely the response to the decryption query will be reject.

Put another way, if the response to a decryption query for ĉ is not reject then the attacker
learns that the last byte of m[0] is equal to the last byte of u := 15� c[0]� c[`� 1]. Otherwise, the
attacker learns that the last byte of m[0] is not equal to the last byte of u. This directly breaks
semantic security of the EMtE: the attacker learned something about the plaintext m.

We leave it as an instructive exercise to recast this attack in terms of an adversary in a chosen
ciphertext attack game (as in Attack Game 9.2). With a single plaintext query followed by a single
ciphertext query the adversary has advantage 1/256 in winning the game. This already proves that
EMtE is insecure.

Now, suppose the attacker obtains another encryption of m, call it c0, using a di↵erent IV.
The attacker can use the ciphertexts c and c0 to form four useful chosen ciphertext queries: it can
replace the last block of either c or c0 with either of c[1] or c0[1]. By issuing these four ciphertext
queries the attacker learns if the last byte of m[0] is equal to the last byte of one of

15� c[0]� c[`� 1], 15� c[0]� c0[`� 1], 15� c0[0]� c[`� 1], 15� c0[0]� c0[`� 1].

If these four values are distinct they give the attacker four chances to learn the last byte of m[0].
Repeating this multiple times with more fresh encryptions of the message m will quickly reveal the
last byte of m[0]. Each chosen ciphertext query reveals that byte with probability 1/256. Therefore,
on average, with 256 chosen ciphertext queries the attacker learns the exact value of the last byte
of m[0]. So, not only can the attacker break semantic security, the attacker can actually recover one
byte of the plaintext. Next, suppose the adversary could request an encryption of m shifted one
byte to the right to obtain a ciphertext c1. Plugging c1[1] into the last block of the ciphertexts from
the previous phase (i.e., encryptions of the unshifted m) and issuing the resulting chosen ciphertext
queries reveals the second to last byte of m[0]. Repeating this for every byte of m eventually reveals
all of m. We show next that this gives a real attack on SSL 3.0.

A complete break of SSL 3.0. Chosen ciphertext attacks may seem theoretical, but they
frequently translate to devastating real-world attacks. Consider a Web browser and a victim Web
server called bank.com. The two exchange information encrypted using SSL 3.0. The browser and
server have a shared secret called a cookie and the browser embeds this cookie in every request
that it sends to bank.com. That is, abstractly, requests from the browser to bank.com look like:

GET path cookie: cookie

where path identifies the name of a resource being requested from bank.com. The browser only
inserts the cookie into requests it sends to bank.com
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The attacker’s goal is to recover the secret cookie. First it makes the browser visit attacker.com
where it sends a Javascript program to the browser. This Javascript program makes the browser
issue a request for resource “/AA” at bank.com. The reason for this particular path is to ensure
that the length of the message and MAC is a multiple of the block size (16 bytes), as needed for
the attack. Consequently, the browser sends the following request to bank.com

GET /AA cookie: cookie (9.6)

encrypted using SSL 3.0. The attacker can intercept this encrypted request c and mounts the
chosen ciphertext attack on MtE to learn one byte of the cookie. That is, the attacker prepares ĉ
as in (9.5), sends ĉ to bank.com and looks to see if bank.com responds with an SSL error message.
If no error message is generated then the attacker learns one byte of the cookie. The Javascript can
cause the browser to repeatedly issue the request (9.6) giving the adversary the fresh encryptions
needed to eventually learn one byte of the cookie.

Once the adversary learns one byte of the cookie it can shift the cookie one byte to the right
by making the Javascript program issue a request to bank.com for

GET /AAA cookie: cookie

This gives the attacker a block of ciphertext, call it c1[2], where the cookie is shifted one byte to the
right. Resending the requests from the previous phase to the server, but now with the last block
replaced by c1[2], eventually reveals the second byte of the cookie. Iterating this process for every
byte of the cookie eventually reveals the entire cookie.

In e↵ect, Javascript in the browser provides the attacker with the means to mount the desired
chosen plaintext attack. Intercepting packets in the network, modifying them and observing the
server’s response, gives the attacker the means to mount the desired chosen ciphertext attack. The
combination of these two completely breaks MtE encryption in SSL 3.0.

One minor detail is that whenever bank.com responds with an SSL error message the SSL
session shuts down. This does not pose a problem: every request that the Javascript running in
the browser makes to bank.com initiates a new SSL session. Hence, every chosen ciphertext query
is encrypted under a di↵erent session key, but that makes no di↵erence to the attack: every query
tests if one byte of the cookie is equal to one known random byte. With enough queries the attacker
learns the entire cookie.

9.4.3 More padding oracle attacks.

TLS 1.0 is an updated version of SSL 3.0. It defends against the attack of the previous section by
adding structure to the pad as explained in Section 5.4.4: when padding with p bytes, all bytes
of the pad are set to p � 1. Moreover, during decryption, the decryptor is required to check that
all padding bytes have the correct value and reject the ciphertext if not. This makes it harder to
mount the attack of the previous section. Of course our goal was merely to show that MtE is not
generally secure and SSL 3.0 made that abundantly clear.

A padding oracle timing attack. Despite the defenses in TLS 1.0 a naive implementation of
MtE decryption may still be vulnerable. Suppose the implementation works as follows: first it
applies CBC decryption to the received ciphertext; next it checks that the pad structure is valid
and if not it rejects the ciphertext; if the pad is valid it checks the integrity tag and if valid it returns
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the plaintext. In this implementations the integrity tag is checked only if the pad structure is valid.
This means that a ciphertext with an invalid pad structure is rejected faster than a ciphertext with
a valid pad structure, but an invalid tag. An attacker can measure the time that the server takes
to respond to a chosen ciphertext query and if a TLS error message is generated quickly it learns
that the pad structure was invalid. Otherwise, it learns that the pad structure was valid.

This timing channel is called a padding oracle side-channel. It is a good exercise to devise a
chosen ciphertext attack based on this behavior to completely decrypt a secret cookie, as we did for
SSL 3.0. To see how this might work, suppose an attacker intercepts an encrypted TLS 1.0 record
c. Let m be the decryption of c. Say the attacker wishes to test if the last byte of m[2] is equal
to some fixed byte value b. Let B be an arbitrary 16-byte block whose last byte is b. The attacker
creates a new ciphertext block ĉ[1] := c[1] � B and sends the 3-block record ĉ = (c[0], ĉ[1], c[2]) to
the server. After CBC decryption of ĉ, the last plaintext block will be

m̂[2] := ĉ[1]�D(k, c[2]) = m[2]�B.

If the last byte of m[2] is equal to b then m̂[2] ends in zero which is a valid pad. The server will
attempt to verify the integrity tag resulting in a slow response. If the last byte of m[2] is not equal
to b then m̂[2] will not end in 0 and will likely end in an invalid pad, resulting in a fast response.
By measuring the response time the attacker learns if the last byte of m[2] is equal to b. Repeating
this with many chosen ciphertext queries, as we did for SSL 3.0, reveals the entire secret cookie.

An even more sophisticated padding oracle timing attack on MtE, as used in TLS 1.0, is called
Lucky13 [4]. It is quite challenging to implement TLS 1.0 decryption in way that hides the timing
information exploited by the Lucky13 attack.

Informative error messages. To make matter worse, the TLS 1.0 specification [1] states
that the server should send one type of error message (called bad record mac) when a received
ciphertext is rejected because of a MAC verification error and another type of error message
(decryption failed) when the ciphertext is rejected because of an invalid padding block. In
principle, this tells the attacker if a ciphertext was rejected because of an invalid padding block or
because of a bad integrity tag. This could have enabled the chosen ciphertext attack of the previous
paragraph without needing to resort to timing measurements. Fortunately, the error messages are
encrypted and the attacker cannot see the error code.

Nevertheless, there is an important lesson to be learned here: when decryption fails, the system
should never explain why. A generic ‘decryption failed’ code should be sent without o↵ering any
other information. This issue was recognized and addressed in TLS 1.1. Moreover, upon decryption
failure, a correct implementation should always take the same amount of time to respond, no matter
the failure reason.

9.4.4 Secure instances of MAC-then-encrypt

Although MtE is not generally secure when applied to a CPA-secure cipher, it can be shown to be
secure for specific CPA ciphers discussed in Chapter 5. We show in Theorem 9.3 below that if E
happens to implement randomized counter mode then MtE is secure. In Exercise 9.5 we show that
the same holds for randomized CBC, assuming there is no message padding.

Surprisingly, Theorem 9.3 shows that MAC-then-encrypt with randomized counter mode is AE-
secure even if the MAC is a one-time MAC. That is, it su�ces to use a weak MAC that is only
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secure against an adversary that makes a single chosen message query. Intuitively, the reason we
can prove security using such a weak MAC is that the MAC value is encrypted and consequently it
is harder for the adversary to attack the MAC. Since one-time MACs are a little shorter and faster
than many-time MACs, MAC-then-encrypt with randomized counter mode has a small advantage
over encrypt-then-MAC. Nevertheless, the attacks on encrypt-then-MAC presented in the previous
section suggest that it should not be used.

Let E = (E, D) be an instance of randomized counter-mode built from a secure PRF F taking
inputs in X := {0, 1}`. Let I = (S, V ) be a secure one-time MAC defined over (K, M, T ) where
M := {0, 1}`m and T := {0, 1}`t . The MAC-then-encrypt cipher EMtE = (EMtE, DMtE) built from F
and I and taking messages in M is defined as follows:

EMtE
�

(ke, km), m
�

:=
�

t R S(km, m), c R E
�

ke, (m k t)
�

, output c
 

DEtM
�

(ke, km), c
�

:=

8

>

<

>

:

(m k t) D(ke, c)

if V (km, m, t) = reject then output reject
otherwise, output m

9

>

=

>

;

(9.7)

Theorem 9.3. The cipher EMtE = (EMtE, DMtE) in (9.7) built from the PRF F and MAC I
provides authenticated encryption assuming I is a secure one-time MAC and F is a secure PRF
where 1/|X | is negligible.

In particular, for every Q-query ciphertext integrity adversary A
ci

that attacks E
MtE

as in Attack
Game 9.1 there exists two MAC adversaries BRMmac and B0

mac

that attack I as in Attack
Game 6.1, and a PRF adversary B

prf

that attacks F as in Attack Game 4.2, each of which is
an elementary wrapper around A

ci

, such that

CIadv[A
ci

, E
MtE

]  PRFadv[B
prf

, F ] +

Q · MAC
1

adv[B
mac

, I] + MAC
1

adv[B0
mac

, I] +
2Q2(`m + `t)

|X | .
(9.8)

For every CPA adversary A
cpa

that attacks E
EtM

as in Attack Game 5.2 there exists a CPA
adversary B

cpa

that attacks E as in Attack Game 5.2, which is an elementary wrapper around
A

cpa

, such that
CPAadv[A

cpa

, E
MtE

] = CPAadv[B
cpa

, E ]

Proof idea. CPA security of the system follows immediately from CPA security of randomized
counter mode. The challenge is to prove ciphertext integrity for EMtE. To do so we let Aci interact
with the following challengers:

• First, we replace the pseudo-random pads in the counter-mode cipher by truly independent
one-time pads. We show that since F is a secure PRF and 1/|X | is negligible, the adversary
will not notice the di↵erence.

• The adversary requests a number of ciphertexts c1, . . . , cQ. Each ciphertext ci given to Aci is a
pair (IVi, ei) where IVi is an initial value and ei is a one-time pad encryption of a message-tag
pair. At the beginning of the game the challenger picks a random !  R {1, . . . , Q} and hopes
that the final forgery c = (IV, e) from Aci uses the same IV as in c!, namely IV = IV!. We
show that this happens with probability at least 1/Q.
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• Finally, in ciphertexts c1, . . . , cQ given to Aci, the challenger need not embed a valid MAC.
Indeed, since the tags are encrypted using a one-time pad the adversary cannot distinguish a
ciphertext containing a valid tag from a ciphertext with an invalid tag. The only exception
is the critical ciphertext c! where the challenger must embed a valid tag so that the final
forgery c from Aci is well defined.

This final challenger only needs a single valid tag throughout its interaction with Aci. It therefore,
implies a one-time MAC adversary that succeeds in breaking the one-time MAC I whenever Aci

produces a valid ciphertext forgery. We note that this proof is also the solution to Exercise 7.21. 2

Proof. To prove ciphertext integrity, we let Aci interact with a number of closely related challengers.
For j = 0, 1, 2, 3, 4 we define Wj to be the event that the adversary wins in Game j.

Game 0. As usual, we begin by letting Aci interact with the standard ciphertext integrity chal-
lenger in Attack Game 9.1 as it applies to EMtE. Then Pr[W0] = CIadv[Aci, EMtE].

Game 1. Now, we replace the pseudo-random pads in the counter-mode cipher by truly indepen-
dent one-time pads. Since F is a secure PRF and 1/|X | is negligible, the adversary will not notice
the di↵erence. The resulting CI challenger for EMtE works as follows.

kmac  R K // pick random MAC key
!  R {1, . . . , Q} // this ! will be used in Game 2
upon receiving the ith query mi 2 {0, 1}`m for i = 1, 2, . . . do:

(1) ti  S(kmac, mi) 2 T // compute the tag for mi

IVi  R X // Pick a random IV

ri  R {0, 1}`m+`t // pick a su�ciently long truly random one-time pad

ei  (mi k ti)� ri, ci  (IVi, ei) // build ciphertext
send ci to the adversary

At the end of the game, Aci outputs c = (IV, e), which is not among c1, . . . , cQ, and the winning
condition is evaluated as follows:

// decrypt ciphertext c
(2) if IV = IVj for some j then (m k t) e� rj
(3) otherwise, r  R {0, 1}`m+`t and (m k t) e� r

Aci wins if V (kmac, m, t) = accept // check resulting message-tag pair

The analysis in Theorem 5.3 shows that there exists a PRF adversary Bprf whose running time is
about the same as that of Aci such that:

|Pr[W1]� Pr[W0]|  PRFadv[Bprf, F ] + 2Q2(`m + `t)/|X | (9.9)

Game 2. Now we restrict the adversary’s winning condition to require that the IV used in the
final ciphertext c is the same as one of the IVs given to Aci during the game. In particular, we
replace line (3) with

(3) otherwise, the adversary loses in Game 2.

Let Z1 be the event that the final ciphertext c from Aci is valid despite using a previously unused
IV 2 X . We know that the two games proceed identically, unless event Z1 happens. When even Z1
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happens in Game 1 then the resulting pair (m, t) is uniformly random in {0, 1}`m+`t . Such a pair is
unlikely to form a valid message-tag pair. In particular, there is a trivial MAC adversary B0

mac such
that Pr[Z1]  MAC1adv[B0

mac, I]. Adversary B0
mac simply outputs a random pair in {0, 1}`m+`t .

Hence, by the di↵erence lemma, we have that

|Pr[W2]� Pr[W1]|  MAC1adv[B0
mac, I] (9.10)

Game 3. We further constrain the adversary’s winning condition by requiring that the ciphertext
forgery use the IV from ciphertext number ! given to Aci. Here ! is a random number in {1, . . . , Q}
chosen by the challenger. The only change to the winning condition of Game 2 is that line (2) now
becomes:

(2) if IV = IV! then (m k t) e� r!
(3) otherwise, the adversary loses in Game 2.

Since ! is independent of Aci’s view we know that

Pr[W3] � (1/Q) · Pr[W2] (9.11)

Game 4. Finally, we change the challenger so that it only computes a valid tag for query number !
issued by Aci. For all other queries the challenger just makes up an arbitrary (invalid) tag. Since
the tags are encrypted using one-time pads the adversary cannot tell that he is given encryptions
of invalid tags. In particular, the only di↵erence from Game 3 is that we change line (1) as follows:

(1) ti  0`t 2 T
if i = ! then ti  S(km, mi) 2 T // only compute correct tag for m!

Since the adversary’s view in this game is identical to its view in Game 3 we have

Pr[W4] = Pr[W3] (9.12)

Final reduction. We claim that there is a one-time MAC forger Bmac so that

Pr[W4] = MAC1adv[Bmac, I] (9.13)

Adversary Bmac interacts with a MAC challenger C and works as follows:

!  R {1, . . . , Q}
upon receiving the ith query mi 2 {0, 1}`m for i = 1, 2, . . . do:

ti  0`t 2 T
if i = ! then query C for the tag on mi and let ti 2 T be the response

IVi  R X // Pick a random IV
ri  R {0, 1}`m+`t // Pick a su�ciently long random one-time pad
ei  (mi k ti)� ri, ci  (IVi, ei)
send ci to the adversary

when Aci outputs c = (IV, e) from Aci do:
if IV = IV! then

(m k t) e� r!
output (m, t) as the message-tag forgery

Since c 6= c! we know that (m, t) 6= (m!, t!). Hence, whenever Aci wins Game 4 we know that
Bmac does not abort and outputs a pair (m, t) that lets it win the one-time MAC attack game. It
follows that Pr[W4] = MAC1adv[Bmac, I] as required. In summary, putting equations (9.9)–(9.13)
together proves the theorem. 2
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Choosing keys. As we discussed at the end of Section 9.4.1, the proof of Theorem 9.3 relies
heavily on the fact that the two keys ke and km are chosen independently. Setting ke = km will
invalidate the proof.

9.4.5 Encrypt-then-MAC or MAC-then-encrypt?

So far we proved the following facts about the MtE and EtM modes:

• EtM provides authenticated encryption whenever the cipher is CPA-secure and the MAC is
secure. The MAC on the ciphertext prevents any tampering with the ciphertext.

• MtE is not generally secure — there are examples of CPA-secure ciphers for which the MtE
system does is not AE-secure. Moreover, MtE is di�cult to implement correctly due to a
potential timing side-channel that leads to serious chosen ciphertext attacks. However, for
specific ciphers, such as randomized counter mode and randomized CBC, the MtE mode is
AE-secure even if the MAC is only one-time secure.

• A third mode, called encrypt-and-MAC (EaM), is discussed in Exercise 9.6. The exercise
shows that EaM is secure when using randomized counter-mode cipher as long as the MAC
is a secure PRF. EaM is inferior to EtM in every respect and should not be used.

These facts, and the example attacks on MtE, suggest that EtM is the better mode to use.
Of course, it is critically important that the underlying cipher be CPA-secure and the underlying
MAC be a secure MAC. Otherwise, EtM may provide no security at all.

Given all the past mistakes in implementing these modes it is advisable that developers not
implement EtM themselves. Instead, it is best to use an encryption standard, like GCM (see
Section 9.6), that uses EtM to provide authenticated encryption out of the box.

9.5 Nonce-based authenticated encryption with associated data

In this section we extend the syntax of authenticated encryption to match the way in which it is
commonly used. First, as we did for encryption and for MACs, we define nonce-based authenticated
encryption where we make the encryption and decryption algorithms deterministic, but let them
take as input a unique nonce. This approach can reduce ciphertext size and also improve security.

Second, we extend the encryption algorithm by giving it an additional input message, called
associated data, whose integrity is protected by the ciphertext, but its secrecy is not. The need
for associated data comes up in a number of settings. For example, when encrypting packets in
a networking protocol, authenticated encryption protects the packet body, but the header must
be transmitted in the clear so that the network can route the packet to its intended destination.
Nevertheless, we want to ensure header integrity. The header is provided as the associated data
input to the encryption algorithm.

A cipher that supports associated data is called an AD cipher. The syntax for a nonce-based
AD cipher E = (E, D) is as follows:

c = E(k, m, d, N ),

where c 2 C is the ciphertext, k 2 K is the key, m 2M is the message, d 2 D is the associated data,
and N 2 N is the nonce. Moreover, the encryption algorithm E is required to be deterministic.
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Likewise, the decryption syntax becomes

D(k, c, d, N )

which outputs a message m or reject. We say that the nonce-based AD cipher is defined over
(K, M, D, C, N ). As usual, we require that ciphertexts generated by E are correctly decrypted
by D, as long as both are given the same nonce and associated data. The cipher must satisfy the
following correctness property: for all keys k, all messages m, all associated data d and all
nonces N 2 N :

Pr
⇥

D
�

k, E(k, m, d, N ), d, N
�

= m
⇤

= 1.

If the message m given as input to the encryption algorithm is the empty message then cipher
(E, D) essentially becomes a MAC system for the associated data d.

CPA security. A nonce-based AD cipher is CPA-secure if it does not leak any useful information
to an eavesdropper assuming that no nonce is used more than once in the encryption process. CPA
security for a nonce-based AD cipher is defined as CPA security for a standard nonce-based cipher
(Section 5.5). The only di↵erence is in the encryption queries. Encryption queries in Experiment b,
for b = 0, 1, are processed as follows:

The ith encryption query is a pair of messages, mi0, mi1 2 M, of the same length,
associated data di 2 D, and a unique nonce N i 2 N \ {N 1, . . . , N i�1}.

The challenger computes ci  E(k, mib, di, N i), and sends ci to the adversary.

Nothing else changes from the definition in Section 5.5. Note that the associated data di is under
the adversary’s control, as are the nonces N i, subject to the nonces being unique. For b = 0, 1, let
Wb be the event that A outputs 1 in Experiment b. We define A’s advantage with respect to E as

nCPAadadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

Definition 9.7 (nonce-based CPA security). A nonce-based AD cipher is called semantically
secure against chosen plaintext attack, or simply CPA-secure, if for all e�cient adversaries
A, the quantity nCPAadadv[A, E ] is negligible.

Ciphertext integrity. A nonce-based AD cipher provides ciphertext integrity if an attacker who
can request encryptions under key k for messages, associated data, and nonces of his choice cannot
output a new triple (c, d, N ) that is accepted by the decryption algorithm. The adversary, however,
must never issue an encryption query using a previously used nonce.

More precisely, we modify the ciphertext integrity game (Attack Game 9.1) as follows:

Attack Game 9.3 (ciphertext integrity). For a given AD cipher E = (E, D) defined over
(K, M, D, C, N ), and a given adversary A, the attack game runs as follows:

• The challenger chooses a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists
of a message mi 2 M, associated data di 2 D, and a previously unused nonce
N i 2 N \ {N 1, . . . , N i�1}. The challenger computes ci  R E(k, mi, di, N i), and gives
ci to A.
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• Eventually A outputs a candidate triple (c, d, N ) where c 2 C, d 2 D, and N 2 N
that is not among the triples it was given, i.e.,

(c, d, N ) 62 {(c1, d1, N 1), (c2, d2, N 2), . . .}.

We say that A wins the game if D(k, c, d, N ) 6= reject. We define A’s advantage with respect to E ,
denoted nCIadadv[A, E ], as the probability that A wins the game. 2

Definition 9.8. We say that a nonce-based AD cipher E = (E, D) has ciphertext integrity if
for all e�cient adversaries A, the value nCIadadv[A, E ] is negligible.

Authenticated encryption. We can now define nonce-based authenticated encryption for an
AD cipher. We refer to this notion as a nonce-based AEAD cipher which is shorthand for
authenticated encryption with associated data.

Definition 9.9. We say that a nonce-based AD cipher E = (E, D) provides authenticated encryp-
tion, or is simply a nonce-based AEAD cipher, if E is CPA-secure and has ciphertext integrity.

Generic encrypt-then-MAC composition. We construct a nonce-based AEAD cipher E =
(EEtM, DEtM) by combining a nonce-based CPA-secure cipher (E, D) with a nonce-based secure
MAC (S, V ) as follows:

EEtM( (ke, km), m, d, N ) := c R E(ke, m, N ), t R S(km, (c, d), N )
Output (c, t)

DEtM((ke, km), (c, t), d, N ) := if V (km, (c, d), t, N ) = reject then output reject
otherwise, output D(ke, c, d, N )

The EtM system is defined over (K2, M, C ⇥ T ). The following theorem shows that EEtM is a
secure AEAD cipher.

Theorem 9.4. Let E = (E, D) be a nonce-based cipher and let I = (S, V ) be a nonce-based MAC.
Then EEtM is a nonce-based AEAD cipher assuming E is CPA-secure and I is a secure MAC.

The proof of Theorem 9.4 is essentially the same as the proof of Theorem 9.2.

9.6 Case study: Galois counter mode (GCM)

Galois counter mode (GCM) is a popular nonce-based AEAD cipher standardized by NIST in 2007.
GCM is an encrypt-then-MAC cipher combining a CPA-secure cipher and a secure MAC. The
CPA secure cipher is nonce-based counter mode, usually using AES. The secure MAC is a Carter-
Wegman MAC built from a keyed hash function called GHASH, a variant of the function Hxpoly

from Section 7.4. When encrypting the empty message the cipher becomes a MAC system called
GMAC providing integrity for the associated data.

GCM uses an underlying block cipher E = (E, D) such as AES defined over (K, X ) where
X := {0, 1}128. The block cipher is used for both counter mode encryption and the Carter-Wegman
MAC. The GHASH function is defined over (X , X`, X ) for ` := 232 � 1.

GCM can take variable size nonces, but let us first describe GCM using a 96-bit nonce N which
is the simplest case. The GCM encryption algorithm operates as follows:
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input: key k 2 K, message m, associated data d, and nonce N 2 {0, 1}96
km  E(k, 0n) // first, generate the key for GHASH (a variant of Hxpoly)

Compute the initial value of the counter in counter mode encryption:
x (N k 0311) 2 {0, 1}128
x0  x + 1 // initial value of counter

c {encryption of m using counter mode starting the counter at x0}
d0  {pad d with zeros to closest multiple of 128 bits}
c0  {pad c with zeros to closest multiple of 128 bits}
Compute the Carter-Wegman MAC:

(⇤) h GHASH
⇣

km,
�

d0 k c0 k length(d) k length(c)
�

⌘

2 {0, 1}128
t h� E(k, x) 2 {0, 1}128

output (c, t) // encrypt-then-MAC ciphertext

Each of the length fields on line (⇤) is a 64-bit value indicating the length in bytes of the
respective field. If the input nonce N is not 96-bits long, then N is padded to the closest multiple
of 128 bits, yielding the padded string N 0, and the initial counter value x is computed as x  
GHASH

�

km, (N 0 k length(N ))
�

which is a value in {0, 1}128.
As usual, the integrity tag t can be truncated to whatever length is desired. The shorter the

tag t the more vulnerable the system becomes to ciphertext integrity attacks.
Messages to be encrypted must be less than 232 blocks each (i.e., messages must be in X v for

some v < 232). Recommendations in the standard suggest that a single key k should not be used
to encrypt more than 232 messages.

The GCM decryption algorithm takes as input a key k 2 K, a ciphertext (c, t), associate data d
and a nonce N . It operates as in encrypt-then-MAC: it first derives km  E(k, 0n) and checks the
Carter-Wegman integrity tag t. If valid it outputs the counter mode decryption of c. We emphasize
that decryption must be atomic: no plaintext data is output before the integrity tag is verified over
the entire message.

GHASH. It remains to describe the keyed hash function GHASH defined over (X , X`, X ). This
hash function is used in a Carter-Wegman MAC and therefore, for security, must be a DUF. In
Section 7.4 we showed that the function Hxpoly is a DUF and GHASH is essentially the same
thing. Recall that Hxpoly(k, z) works by evaluating a polynomial derived from z at the point k. We
described Hxpoly using arithmetic modulo a prime p so that both blocks of z and the output are
elements in Zp.

The hash function GHASH is almost the same as Hxpoly, except that the input message blocks
and the output are elements of {0, 1}128. Also, the DUF property holds with respect to the XOR
operator �, rather than subtraction modulo some number. As discussed in Remark 7.4, to build
an XOR-DUF we use polynomials defined over the finite field GF(2128). This is a field of 2128

elements called a Galois field, which is where GCM gets its name. This field is defined by the
irreducible polynomial g(X) := X128 + X7 + X2 + X + 1. Elements of GF(2128) are polynomials
over GF(2) of degree less than 128, with arithmetic done modulo g(X). While that sounds fancy,
an element of GF(2128) can be conveniently represented as a string of 128 bits (each bit encodes
one of the coe�cients of the polynomial). Addition in the field is just XOR, while multiplication
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is a bit more complicated, but still not too di�cult (see below — many modern computers provide
direct hardware support).

With this notation, for k 2 GF(2128) and z 2 �GF(2128)
�v

the function GHASH(k, z) is simply
polynomial evaluation in GF(2128):

GHASH(k, z) := z[0]kv + z[1]kv�1 + . . . + z[v � 1]k 2 GF(2128) (9.14)

That’s it. Appending the two length fields to the GHASH input on line (⇤) ensures that the
XOR-DUF property is maintained even for messages of di↵erent lengths.

Security. The AEAD security of GCM is similar to the analysis we did for generic composition
of encrypt-then-MAC (Theorem 9.4), and follows from the security of the underlying block cipher
as a PRF. The main di↵erence between GCM and our generic composition is that GCM “cuts a
few corners” when it comes to keys: it uses just a single key k and uses E(k, 0n) as the GHASH
key, and E(k, x) as the pad that is used to mask the output of GHASH, which is similar to, but not
exactly the sames as, what is done in Carter-Wegman. Importantly, the counter mode encryption
begins with the counter value x0 := x + 1, so that the inputs to the PRF that are used to encrypt
the message are guaranteed to be distinct from the inputs used to derive the GHASH key and pad.
The above discussion focused on the case where the nonce is 96 bits. The other case, where GHASH
is applied to the nonce to compute x, requires a more involved analysis — see Exercise 9.10.

GCM has no nonce re-use resistance. If a nonce is accidentally re-used on two di↵erent messages
then all secrecy for those message is lost. Even worse, the GHASH secret key km is exposed
(Exercise 7.16) and this can be used to break ciphertext integrity. Hence, it is vital that nonces
not be re-used in GCM.

Optimizations and performance. There are many ways to optimize the implementation of
GCM and GHASH. In practice, the polynomial in (9.14) is evaluated using Horner’s method so that
processing each block of plaintext requires only one addition and one multiplication in GF(2128).

Intel recently added a special instruction (called PCLMULQDQ) to their instruction set to
quickly carry out binary polynomial multiplication. This instruction cannot be used directly to im-
plement GHASH because of incompatibility with how the standard represents elements in GF(2128).
Fortunately, work of Gueron shows how to overcome these di�culties and use the PCLMULQDQ
instruction to speed-up GHASH on Intel platforms.

Since GHASH needs only one addition and one multiplication in GF(2128) per block one would
expect that the bulk of the time during GCM encryption and decryption is spent on AES in counter
mode. However, due to improvements in hardware implementations of AES, especially pipelining
of the AES-NI instructions, this is not always the case. On Intel’s Haswell processors (introduced
in 2013) GCM is about three times slower than pure counter mode due to the extra overhead of
GHASH. However, upcoming improvements in the implementation of PCLMULQDQ will likely
make GCM just slightly more expensive than pure counter mode, which is the best one can hope
for.

We should point out that it already is possible to implement secure authenticated encryption
at a cost that is not much more than the cost of AES counter mode — this can be achieved using
an integrated scheme such as OCB (see Exercise 9.14).
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9.7 Case study: the TLS 1.3 record protocol

The Transport Layer Security (TLS) protocol is by far the most widely deployed security protocol.
Virtually every online purchase is protected by TLS. Although TLS is primarily used to protect
Web tra�c, it is a general protocol that can protect many types of tra�c: email, messaging, and
many others.

The original version of TLS was designed at Netscape where it was called the Secure Socket
Layer protocol or SSL. SSL 2.0 was designed in 1994 to protect Web e-commerce tra�c. SSL 3.0,
designed in 1995, corrected several significant security problems in SSLv2. For example, SSL 2.0
uses the same key for both the cipher and the MAC. While this is bad practice — it invalidates
the proofs of security for MtE and EtM — it also implies that if one uses a weak cipher key, say
do to export restrictions, then the MAC key must also be weak. SSL 2.0 supported only a small
number of algorithms and, in particular, only supported MD5-based MACs.

The Internet Engineering Task Force (IETF) created the Transport Layer Security (TLS) work-
ing group to standardize an SSL-like protocol. The working group produced a specification for the
TLS 1.0 protocol in 1999 [1]. TLS 1.0 is a minor variation of SSL 3.0 and is often referred to as
SSL version 3.1. TLS is supported by most major browsers and web servers and TLS 1.3 is the
recommended protocol to use. We will mostly focus on TLS 1.3 here.

The TLS 1.3 record protocol. Abstractly, TLS consists of two components. The first, called
TLS session setup, negotiates the cipher suite that will be used to encrypt the session and then
sets up a shared secret between the browser and server. The second, called the TLS record
protocol uses this shared secret to securely transmit data between the two sides. TLS session
setup uses public-key techniques and will be discussed later in Chapter ??. Here we focus on the
TLS record protocol.

In TLS terminology, the shared secret generated during session setup is called a master-secret.
This high entropy master secret is used to derive two keys kb!s and ks!b. The key kb!s encrypts
messages from the browser to the server while ks!b encrypts messages in the reverse direction. TLS
derives the two keys by using the master secret and other randomness as a seed for a key derivation
function called HKDF (Section 8.9.5) to derive enough pseudo-random bits for the two keys. This
step is carried out by both the browser and server so that both sides have the keys kb!s and ks!b.

The TLS record protocol sends data in records whose size is at most 214 bytes. If one side needs
to transmit more than 214 bytes, the record protocol fragments the data into multiple records each
of size at most 214. Each party maintains a 64-bit write sequence number that is initialized to
zero and is incremented by one for every record sent by that party.

TLS 1.3 uses a nonce-based AEAD cipher (E, D) to encrypt a record. Which nonce-based
AEAD cipher is used is determined by negotiation during TLS session setup. The AEAD encryption
algorithm is given the following arguments:

• secret key: kb!s or ks!b depending on whether the browser or server is encrypting.

• plaintext data: up to 214 bytes.

• associated data: a concatenation of three fields: the encrypting party’s 64-bit write sequence
number, a 1-byte record type (a value of 23 means application data), and a 2-byte protocol
version (set to 3.1 in TLS 3.1).
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• nonce (8 bytes or longer): the nonce is computed by (1) padding the encrypting party’s
64-bit write sequence number on the left with zeroes to the expected nonce length and (2)
XORing this padded sequence number with a random string (called client write iv or
server write iv, depending on who is encrypting) that was derived from the master secret
during session setup and is fixed for the life of the session. TLS 1.3 could have used an
equivalent and slightly easier to comprehend method: choose the initial nonce value at random
and then increment it sequentially for each record. The method used by TLS 1.3 is a little
easier to implement.

The AEAD cipher outputs a ciphertext c which is then formatted into an encrypted TLS record
as follows:

type version length ciphertext c

where type is a 1-byte record type (handshake record or application data record), version is a
2-byte protocol version set to 3.1 for TLS 3.1, length is a 2-byte field indicating the length of c,
and c is the ciphertext. The type, version, and length fields are all sent in the clear. Notice that
the nonce is not part of the encrypted TLS record. The recipient computes the nonce by itself.

Why is the initial nonce value chosen at random? Why not simply set it to zero? In networking
protocols the first message block sent over TLS is usually a fixed public value. If the nonce were
set to zero then the first ciphertext would be computed as c0  E(k, m0, d, 0) where the adversary
knows m0 and associate data d. This opens up the system to an exhaustive search attack for the
key k using a time-space tradeo↵ discussed in Chapter 18. The attack shows that with a large
amount of pre-computation and su�cient storage, an attacker can quickly recover k from c0 with
non-negligible advantage — for 128-bit keys, such attacks may be feasible in the not-too-distant
future. Randomizing the initial nonce “future proofs” TLS against such attacks.

When a record is received, the receiving party runs the AEAD decryption algorithm to decrypt c.
If decryption results in reject then the party sends a fatal bad record mac alert to its peer and
shuts down the TLS session.

The length field. In TLS 1.3, as in earlier versions of TLS, the record length is sent in the clear.
Several attacks based on tra�c analysis exploit record lengths to deduce information about the
record contents. For example, if an encrypted TLS record contains one of two images of di↵erent
size then the length will reveal to an eavesdropper which image was encrypted. Chen et al. [20]
show that the lengths of encrypted records can reveal considerable information about private data
that a user supplies to a cloud application. They use an online tax filing system as their example.
Other works show attacks of this type on many other systems. Since there is no complete solution
to this problem, it is often ignored.

When encrypting a TLS record the length field is not part of the associated data and conse-
quently has no integrity protection. The reason is that due to variable length padding, the length
of c may not be known before the encryption algorithm terminates. Therefore, the length cannot
be given as input to the encryption algorithm. This does not compromise security: a secure AEAD
cipher will reject a ciphertext that is a result of tampering with the length field.

Replay prevention. An attacker may attempt to replay a previous record to cause the wrong
action at the recipient. For example, the attacker could attempt to make the same purchase order be
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processed twice, by simply replaying the record containing the purchase order. TLS uses the 64-bit
sequence number to discard such replicated packets. TLS assumes in-order record delivery so that
the recipient already knows what sequence number to expect without any additional information
in the record. A replicated record will be discarded because the AEAD decryption algorithm will
be given the wrong nonce as input.

9.8 Case study: an attack on non-atomic decryption in SSH

SSH (secure shell) is a popular command line tool for securely exchanging information with a
remote host. SSH is designed to replace (insecure) UNIX tools such as telnet, rlogin, rsh, and rcp.
Here we describe a fascinating vulnerability in an older cipher suite used in SSH. This vulnerability
is an example of what can go wrong when decryption is not atomic, that is, when the decryption
algorithm releases fragments of a decrypted record before verifying integrity of the entire record.

First, a bit of history. The first version of SSH, called SSHv1, was made available in 1995. It
was quickly pointed out that SSHv1 su↵ers from serious design flaws.

• Most notably, SSHv1 provides data integrity by computing a Cyclic Redundancy Check
(CRC) of the plaintext and appending the resulting checksum to the ciphertext in the clear.
CRC is a simple keyless, linear function — so not only does this directly leak information
about the plaintext, it is also not too hard to break integrity either.

• Another issue is the incorrect use of CBC mode encryption. SSHv1 always sets the CBC
initial value (IV) to 0. Consequently, an attacker can tell when two SSHv1 packets contain
the same prefix. Recall that for CPA security one must choose the IV at random.

• Yet another problem, the same encryption key was used for both directions (user to server
and server to user).

To correct these issues, a revised and incompatible protocol called SSHv2 was published in 1996.
Session setup results in two keys ku!s, used to encrypt data from the user to the server, and ks!u,
used to encrypt data in the reverse direction. Here we focus only how these keys are used for
message transport in SSHv2.

SSHv2 encryption. Let us examine an older cipher suite used in SSHv2. SSHv2 combines a
CPA-secure cipher with a secure MAC using encrypt-and-MAC (Exercise 9.6) in an attempt to
construct a secure AEAD cipher. Specifically, SSHv2 encryption works as follows (Fig. 9.3):

1. Pad. Pad the plaintext with random bytes so that the total length of

plaintext := packet-length k pad-length k message k pad

is a multiple of the cipher block length (16 bytes for AES). The pad length can be anywhere
from 4 bytes to 255 bytes. The packet length field measures the length of the packet in bytes,
not including the integrity tag or the packet-length field itself.

2. Encrypt. Encrypt the gray area in Fig. 9.3 using AES in randomized CBC mode with
either ku!s or ks!u, depending on the encrypting party. SSHv2 uses a defective version of
randomized CBC mode encryption described in Exercise 5.11.
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Gray area is encrypted; Boxed area is authenticated by integrity tag

packet len

pad len

message

pad

integrity tag

32 bits

Figure 9.3: An SSHv2 packet

3. MAC. A MAC is computed over a sequence-number and the plaintext data in the thick
box in Fig. 9.3. Here sequence-number is a 32-bit sequence number that is initialized to zero
for the first packet, and is incremented by one after every packet. SSHv2 can use one of a
number of MAC algorithms, but HMAC-SHA1-160 must be supported.

When an encrypted packet is received the decryption algorithm works as follows: first it decrypts
the packet-length field using either ku!s or ks!u. Next, it reads that many more packets from
the network plus as many additional bytes as needed for the integrity tag. Next it decrypts the rest
of the ciphertext and verifies validity of the integrity tag. If valid, it removes the pad and returns
the plaintext message.

Although SSH uses encrypt-and-MAC, which is not generally secure, we show in Exercise 9.6
that for certain combinations of cipher and MAC, including the required ones in SSHv2, encrypt-
and-MAC provides authenticated encryption.

SSH boundary hiding via length encryption. An interesting aspect of SSHv2 is that the
encryption algorithm encrypts the packet length field, as shown in Fig. 9.3. The motivation for
this is to ensure that if a sequence of encrypted SSH packets are sent over an insecure network as a
stream of bytes, then an eavesdropper should be unable to determine the number of packets sent or
their lengths. This is intended to frustrate certain tra�c analysis attacks that deduce information
about the plaintext from its size.

Hiding message boundaries between consecutive encrypted messages is outside the requirements
addressed by authenticated encryption. In fact, many secure AEAD modes do not provide this level
of secrecy. TLS 1.0, for example, sends the length of the every record in the clear making it easy
to detect boundaries between consecutive encrypted records. Enhancing authenticated encryption
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to ensure boundary hiding has been formalized by Boldyreva, Degabriele, Paterson, and Stam [18],
proposing a number of constructions satisfying the definitions.

An attack on non-atomic decryption. Notice that CBC decryption is done in two steps: first
the 32-bit packet-length field is decrypted and used to decide how many more bytes to read from
the network. Next, the rest of the CBC ciphertext is decrypted.

Generally speaking, AEAD ciphers are not designed to be used this way: plaintext data should
not be used until the entire ciphertext decryption process is finished; however, in SSHv2 the de-
crypted length field is used before its integrity has been verified.

Can this be used to attack SSHv2? A beautiful attack [2] shows how this non-atomic decryption
can completely compromise secrecy. Here we only describe the high-level idea, ignoring many
details. Suppose an attacker intercepts a 16-byte ciphertext block c and it wants to learn the first
four bytes of the decryption of c. It does so by abusing the decryption process as follows: first, it
sends the ciphertext block c to the server as if it were the first block of a new encrypted packet.
The server decrypts c and interprets the first four bytes as a length field `. The server now expects
to read ` bytes of data from the network before checking the integrity tag. The attacker can slowly
send to the server arbitrary bytes, one byte at a time, waiting after each byte to see if the server
responds. Once the server reads ` bytes it attempts to verify the integrity tag on the bytes it
received and this most likely fails causing the server to send back an error message. Thus, once `
bytes are read the attacker receives an error message. This tells the attacker the value of ` which
is what it wanted.

In practice, there are many complications in mounting an attack like this. Nevertheless, it shows
the danger of using decrypted data — the length field in this case — before its integrity has been
verified. As mentioned above, we refer to [18] for encryption methods that securely hide packet
lengths.

A clever tra�c analysis attack on SSH. SSHv2 operates by sending one network packet
for every user keystroke. This gives rise to an interesting tra�c analysis attack reported in [65].
Suppose a network eavesdropper knows that the user is entering a password at his or her keyboard.
By measuring timing di↵erences between consecutive packets, the eavesdropper obtains timing
information between consecutive keystrokes. This exposes information about the user’s password:
a large timing gap between consecutive keystrokes reveals information about the keyboard position
of the relevant keys. The authors show that this information can significantly speed up an o✏ine
password dictionary attack. To make matters worse, password packets are easily identified since
applications typically turn o↵ echo during password entry so that password packets do not generate
an echo packet from the server.

Some SSH implementations defend against this problem by injecting randomly timed “dummy”
messages to make tra�c analysis more di�cult. Dummy messages are identified by setting the
first message byte to SSH MSG IGNORE and are ignored by the receiver. The eavesdropper cannot
distinguish dummy records from real ones thanks to encryption.

9.9 Case study: 802.11b WEP, a badly broken system

The IEEE 802.11b standard ratified in 1999 defines a protocol for short range wireless communica-
tion (WiFi). Security is provided by a Wired Equivalent Privacy (WEP) encapsulation of 802.11b
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Figure 9.4: WEP Encryption

data frames. The design goal of WEP is to provide data privacy at the level of a wired network.
WEP, however, completely fails on this front and gives us an excellent case study illustrating how
a weak design can lead to disastrous results.

When WEP is enabled, all members of the wireless network share a long term secret key k. The
standard supports either 40-bit keys or 128-bit keys. The 40-bit version complies with US export
restrictions that were in e↵ect at the time the standard was drafted. We will use the following
notation to describe WEP:

• WEP encryption uses the RC4 stream cipher. We let RC4(s) denote the pseudo random
sequence generated by RC4 given the seed s.

• We let CRC(m) denote the 32-bit CRC checksum of a message m 2 {0, 1}⇤. The details of
CRC are irrelevant for our discussion and it su�ces to view CRC as some fixed function from
bit strings to {0, 1}32.

Let m be an 802.11b cleartext frame. The first few bits of m encode the length of m. To encrypt
an 802.11b frame m the sender picks a 24-bit IV and computes:

c �

m k CRC(m)
� � RC4(IV k k)

cfull  (IV, c)

The WEP encryption process is shown in Fig. 9.4. The receiver decrypts by first computing
c�RC4(IV k k) to obtain a pair (m, s). The receiver accepts the frame if s = CRC(m) and rejects
it otherwise.

Attack 1: IV collisions. The designers of WEP understood that a stream cipher key should
never be reused. Consequently, they used the 24-bit IV to derive a per-frame key kf := IV k k.
The standard, however, does not specify how to choose the IVs and many implementations do so
poorly. We say that an IV collision occurs whenever a wireless station happens to send two frames,
say frame number i and frame number j, encrypted using the same IV. Since IVs are sent in the
clear, an eavesdropper can easily detect IV collisions. Moreover, once an IV collision occurs the
attacker can use the two-time pad attack discussed in Section 3.3.1 to decrypt both frames i and j.

So, how likely is an IV collision? By the birthday paradox, an implementation that chooses
a random IV for each frame will cause an IV collision after only an expected

p
224 = 212 = 4096

frames. Since each frame body is at most 1156 bytes, a collision will occur after transmitting about
4MB on average.
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Alternatively, an implementation could generate the IV using a counter. The implementation
will exhaust the entire IV space after 224 frames are sent, which will take about a day for a wireless
access point working at full capacity. Even worse, several wireless cards that use the counter method
reset the counter to 0 during power-up. As a result, these cards will frequently reuse low value IVs,
making the tra�c highly vulnerable to a two-time pad attack.

Attack 2: related keys. A far more devastating attack on WEP encryption results from the use
of related RC4 keys. In Chapter 3 we explained that a new and random stream cipher key must be
chosen for every encrypted message. WEP, however, uses keys 1 k k, 2 k k, . . . which are all closely
related — they all have the same su�x k. RC4 was never designed for such use, and indeed, is
completely insecure in these settings. Fluhrer, Mantin, and Shamir [27] showed that after about a
million WEP frames are sent, an eavesdropper can recover the entire long term secret key k. The
attack was implemented by Stubblefield, Ioannidis, and Rubin [68] and is now available in a variety
of hacking tools such as WepCrack and AirSnort.

Generating per frame keys should have been done using a PRF, for example, setting the key for
frame i to ki := F (k, IV) — the resulting keys would be indistinguishable from random, independent
keys. Of course, while this approach would have prevented the related keys problem, it would not
solve the IV collision problem discussed above, or the malleability problem discussed next.

Attack 3: malleability. Recall that WEP attempts to provide authenticated encryption by
using a CRC checksum for integrity. In a sense, WEP uses the MAC-then-encrypt method, but it
uses CRC instead of a MAC. We show that despite the encryption step, this construction utterly
fails to provide ciphertext integrity.

The attack uses the linearity of CRC. That is, given CRC(m) for some message m, it is easy to
compute CRC(m��) for any �. More precisely, there is a public function L such that for any m
and � 2 {0, 1}` we have that

CRC(m��) = CRC(m)� L(�)

This property enables an attacker to make arbitrary modifications to a WEP ciphertext without
ever being detected by the receiver. Let c be a WEP ciphertext, namely

c =
�

m, CRC(m)
� � RC4(IV k k)

For any � 2 {0, 1}`, an attacker can create a new ciphertext c0  c� �

�, L(�)
�

, which satisfies

c0 = RC4(IV k k) � �

m, CRC(m)
� � �

�, L(�)
�

=

RC4(IV k k) � �

m��, CRC(m)� L(�)
�

=

RC4(IV k k) � �

m��, CRC(m��)
�

Hence, c0 decrypts without errors to m ��. We see that given the encryption of m, an attacker
can create a valid encryption of m�� for any � of his choice. We explained in Section 3.3.2 that
this can lead to serious attacks.

Attack 4: Chosen ciphertext attack. The protocol is vulnerable to a chosen ciphertext attack
called chop-chop that lets the attacker decrypt an encrypted frame of its choice. We describe a
simple version of this attack in Exercise 9.13.

372



1 2 3 4 5 6

IPsec IPsec

gateway gateway

Internet

west branch east branch

Figure 9.5: A virtual private network (VPN) between east and west o�ce branches

Attack 5: Denial of Service. We briefly mention that 802.11b su↵ers from a number of serious
Denial of Service (DoS) attacks. For example, in 802.11b a wireless client sends a “disassociate”
message to the wireless station once the client is done using the network. This allows the station
to free memory resources allocates to that client. Unfortunately, the “disassociate” message is
unauthenticated, allowing anyone to send a disassociate message on behalf of someone else. Once
disassociated, the victim will take a few seconds to re-establish the connection to the base station.
As a result, by sending a single “disassociate” message every few seconds, an attacker can prevent
a computer of their choice from connecting to the wireless network. These attacks are implemented
in 802.11b tools such as Void11.

802.11i. Following the failures of the 802.11b WEP protocol, a new standard called 802.11i was
ratified in 2004. 802.11i provides authenticated encryption using a MAC-then-encrypt mode called
CCM. In particular, CCM uses (raw) CBC-MAC for the MAC and counter mode for encryption.
Both are implemented in 802.11i using AES as the underlying PRF. CCM was adopted by NIST
as a federal standard [54].

9.10 Case study: IPsec

The IPsec protocol provides confidentiality and integrity for Internet IP packets. The protocol was
first published in 1998 and was subsequently updated in 2005. The IPsec protocol consists of many
sub-protocols that are not relevant for our discussion here. In this section we will focus on the most
commonly used IPsec protocol called encapsulated security payload (ESP) in tunnel mode.

Virtual private networks (VPNs) are an important application for IPsec. A VPN enables two
o�ce branches to communicate securely over a public Internet channel, as shown in Fig. 9.5.
Here, packets from machines 1,2,3 are encrypted at the west gateway using IPsec and transmitted
over the public channel. The east gateway decrypts each received packet and forwards it to its
destination inside the east branch, namely, one of 4,5,6. We note that all packets sent from west
to east are encrypted using the same cryptographic key kw!e. Packets sent from east to west are
processed similarly, but encrypted using a di↵erent key, ke!w. We will use this VPN example as
our motivating example for IPsec.

To understand IPsec one first needs a basic understanding of the IP protocol. Here we focus on
IP version 4 (IPv4), which is currently widely deployed. The left side of Fig. 9.6 shows a (cleartext)
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Figure 9.6: Cleartext IPv4 packet and an IPsec ESP packet
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IPv4 packet. The packet consists of a packet header and a packet payload. The header contains a
bunch of fields, but only a few are relevant to our discussion:

• The first four bits indicate the version number which is set to 4 for IPv4.

• The 2-byte packet length field contains the length in bytes of the entire packet including
the header.

• The 1-byte protocol field describes the packet payload For example, protocol = 6 indicates
a TCP payload.

• the 2-byte header checksum contains a checksum of all header bytes (excluding the check-
sum field). The checksum is used to detect random transmission errors in the header. Packets
with an invalid checksum are dropped at the recipient. The checksum can be computed by
anyone and consequently provides no integrity against an attacker. In fact, Internet routers
regularly change fields in the packet header as the packet moves from router to router and
recompute the checksum.

• The source and destination IP indicate the source and destination addresses for the packet.

• The payload contains the packet contents and is variable length.

IPsec encapsulated security payload (ESP). The right side of Fig. 9.6 shows the result of
encrypting a packet with ESP in tunnel mode. We first describe the fields in the encrypted packet
and then describe the encryption process.

IPsec key management — the SPI field. Every ESP endpoint maintains a security associa-
tion database (SAD). A record in the SAD is called a security association (SA) and is identified
by a 32 bit identifier called a security parameters index (SPI). A SAD record (an SA) contains
many connection-specific parameters, such as the ESP encryption algorithm (e.g. 3DES-CBC or
AES-CBC), the ESP secret key (e.g. kw!e or ke!w), the source and destination IP addresses, the
SPI, and various key-exchange parameters.

When the east branch gateway sends out a packet, it uses the packet’s destination IP address
and other parameters to choose a security association (SA) in its security association database
(SAD). The gateway embeds the 32-bit SPI of the chosen SA in the packet header and encrypts
the packet using the secret key specified in the SA. When the packet arrives at its destination, the
recipient locates an appropriate SA in its own SAD using the following algorithm:

1. First, look for an SA matching the received (SPI, dest address, source address);
2. If no match is found, the recipient looks for a match based on the (SPI, dest address) pair;
3. Otherwise, it looks for a match based on the SPI only.

If no SA exists for the received packet, the packet is discarded. Otherwise, the gateway decrypts the
packet using the secret key specified in the chosen SA. Most often an SA is used for transmitting
packets in one direction, e.g., from east to west. A bi-directional TCP connection between east and
west uses two separate SAs — one for packets from east to west and one for packets from west to
east. Generally, an ESP endpoint maintains two SAD records for each peer.

The SAD at a particular host is managed semi-manually. Some parameters are managed man-
ually while others are negotiated between the communicating hosts. In particular, an SA secret
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key can be set manually at both endpoints or it can be negotiated using an IPsec key exchange
protocol called IKE [?]. We will not discuss SAD management here.

ESP anti-replay — the sequence number field. The sequence number enables the recipient
to detect and discard duplicate packets. Duplication can result from a network error or can be
caused by an attacker who is deliberately replaying old packets. Every ESP end point maintains a
sequence number for each security association. By default the sequence number is 64 bits long
(called an extended sequence number), although older versions of ESP use a shorter 32 bit sequence
number. The sequence number is initialized to zero when the security association is created and
is incremented by one for each packet sent using the SA. The entire 64 bits are included in the
MAC calculation. However, only the 32 least significant bits (LSB) are included in the ESP packet
header. In other words, ESP endpoints maintain 64-bit counters, of which the 32 MSBs are implicit
while the 32 LSBs are explicit in the packet header.

For our discussion of sequence numbers, we assume that there is at most a single host sending
packets for each security association (SA). Hence, for a particular SA there is no danger of two hosts
sending a packet with the same sequence number. Note that multiple hosts can receive packets for
a particular SA, as in the case of multicast. We only disallow multiple hosts from sending packets
using a single SA.

For a particular SA, the recipient must discard any packet that contains a 32-bit sequence
number that was previously contained in an earlier packet. Since packets can arrive out of order,
verifying sequence number unicity at the recipient takes some e↵ort. RFC 4303 recommends that
the recipient maintain a window (e.g. bit vector) of size 32. The “right” edge of the window
represents the highest, validated sequence number value received on this SA. Packets that contain
sequence numbers lower than the “left” edge of the window are discarded. Received packets falling
within the window are checked against the list of received packets within the window, and are
discarded if their sequence number was already seen. The window shifts whenever a valid packet
with a sequence number on the “right” of the current window is received. Consequently, the receiver
recovers gracefully from a long sequence of lost packets

If more than 232 consecutive packets are lost, then the 64-bit sequence numbers at the sender
and receiver will go out of sync — the 32 MSBs implicitly maintained by the two will di↵er. As
a result, all further packets will be rejected due to MAC validation failure. This explains why the
designers of ESP chose to include 32 bits in the packet header — a loss of 232 packets in unlikely.
Including fewer bits (e.g. 16 bits) would have greatly increased the chance of communication failure.

Padding and the next header field. ESP first appends a pad to ensure that the length of the
data to encrypt is a multiple of the block length of the chosen encryption algorithm (e.g. a multiple
of 16 bytes for AES-CBC). It also ensures that the resulting ciphertext length is a multiple of four
bytes. The pad length is anywhere from 0 to 255 bytes. An additional pad-length byte is appended
to indicate the number of padding bytes preceding it. Finally, a next header (next-hdr) byte, is
appended to indicate the payload type. Most often the payload type is an IPv4 packet in which
case next-hdr=4.

ESP supports an optional tra�c flow confidentiality (TFC) service where the sender at-
tempts to hide the length of the plaintext packet. To do so, the sender appends dummy (unspeci-
fied) bytes to the payload before padding takes place. The length of the TFC pad is arbitrary. The
packet length field in the plaintext IP header indicates the beginning of the TFC pad. The TFC
pad is removed after decryption.

ESP also supports “dummy” packets to defeat tra�c analysis. The goal is to prevent an observer
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from telling when the sender transmits data. For example, one can instruct the sender to transmit a
packet every millisecond, whether it has data to send or not. When no data is available, the sender
transmits a “dummy” packet which is indicated by setting next-hdr=59. Since the next-hdr field
is encrypted an observer cannot tell dummy packets from real packets. However, at the destination,
all dummy packets are discarded immediately after decryption.

The encryption process. ESP implements the encrypt-then-MAC method in four steps. We
discuss each step in turn.

1. Pad. The pad, including the optional TFC pad and next header field, are appended to the
plaintext IP packet.

2. Encrypt. The gray area in Fig. 9.6 is encrypted with the algorithm and key specified by the
SA. ESP supports a variety of encryption algorithms, but is required to support 3DES-CBC,
AES-CBC, and AES counter mode. For CBC modes the IV is prepended to the encrypted
payload and is sent in the clear. The encryption algorithm can be set to NULL in which case
no encryption takes place. This is used when ESP provides integrity but no confidentiality.

3. MAC. An integrity tag is computed using an algorithm and key specified in the SA. The tag
is computed over the following data

SPI k 64-bit sequence number k ciphertext

where ciphertext is the result of Step 2. Note that the tag is computed over the 64 bit
sequence number even though only 32 bits are embedded in the packet. The resulting tag
is placed in the integrity tag field following the ciphertext. ESP supports a variety of MAC
algorithms, but is required to support HMAC-SHA1-96, HMAC-MD5-96, and AES-XCBC-
MAC-96 (XCBC-MAC is a variant of CMAC). The integrity tag field is optional and is
omitted if the encryption algorithm already provides authenticated encryption, as in the case
of GCM.

4. Encapsulate. Finally, an IPv4 packet header is prepended to obtain an ESP packet as shown
on the right side of Fig. 9.6. The protocol field in the IPv4 header is set to 50 indicating an
ESP payload.

Decryption follows a similar process. The recipient first checks the 32-bit sequence number. If
the value is repeated or outside the allowed window, the packet is dropped. Next, the recipient
checks the tag field, and rejects the packet if MAC verification fails. The packet is then decrypted
and the padding removed. If the packet is a dummy packet (i.e. the next header field is equal to
59), the packet is discarded. Finally, the original cleartext packet is reconstructed and sent to the
destination. Note that in principle, the sequence number field could have been encrypted. The
designers of ESP chose to send the field in the clear so as to reduce the time until a duplicate packet
is rejected.

Security. IP packets can arrive at any order, be duplicated, and even modified. By relying on
encrypt-then-MAC and on the sequence number, ESP ensures that the recipient sees a data stream
identical to the one transmitted by the sender. One issue that haunts ESP is a setting that provides
CPA-secure encryption without an integrity check. RFC 4303 states that
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ESP allows encryption-only SAs because this may o↵er considerably better performance
and still provide adequate security, e.g., when higher-layer authentication/integrity pro-
tection is o↵ered independently.

Relying on a higher application layer for integrity is highly risky. On the sender side the application
layer processes data before passing it to the IP layer. Hence, this implements MAC-then-encrypt
which from a theoretical point view we know can be insecure. More importantly, in practice it
is dangerous to assume that the higher layer will protect the entire IP packet. For example, a
higher layer such as SSL may provide integrity without encryption. Combining encryption-only
ESP and integrity-only SSL will be insecure since the SSL layer will not provide integrity for the
encrypted packet header. As a result, an attacker can tamper with the destination IP field in the
encrypted packet. The recipient’s IPsec gateway will decrypt the packet and forward the result to
an unintended destination, thus causing a serious privacy breach. This and other dangers of the
ESP encryption-only mode are discussed in [7, 55].

We note, however, that when the cipher used provides authenticated encryption (such as GCM
mode) it is perfectly fine to use encryption without an integrity check, since the cipher already
provides authenticated encryption.

9.11 A fun application: private information retrieval

To be written.

9.12 Notes

Citations to the literature to be added.

9.13 Exercises

9.1. Let (E, D) be an AE-secure cipher. Consider the following derived ciphers:

(a) E1(k, m) :=
�

E(k, m), E(k, m)
�

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if D(k, c1) = D(k, c2)

reject otherwise

(b) E2(k, m) :=
�

c E(k, m), output (c, c)
 

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if c1 = c2

reject otherwise

Show that part (b) is AE-secure, but part (a) is not.

9.2. Let (E, D) be a CPA-secure cipher defined over (K, M, C) and let H1 : M! T and H2 : C !
T be collision resistant hash functions. Define the following two ciphers:

E1(k, m) :=
�

E(k, m), H1(m)
�

; D1
�

k, (c1, c2)
�

:=

(

D(k, c1) if H1(D(k, c1)) = c2

reject otherwise

E2(k, m) :=
�

E(k, m), H2(c)
�

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if H2(c1) = c2

reject otherwise
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Show that both ciphers are not AE-secure.

9.3. Let (E, D) be an AE-secure cipher defined over (K, M, C) where D(k, reject) := reject for all
keys k 2 K. Consider the following derived cipher:

E0�(k1, k2), m
�

:= E(k2, E(k1, m)); D0�(k1, k2), c
�

:= D(k1, D(k2, c))

(a) Show that (E0, D0) is AE-secure if the adversary knows k1 but not k2.

(b) Show that (E0, D0) is not AE-secure if the adversary knows k2 but not k1.

(c) Design a cipher built from (E, D) where keys are pairs (k1, k2) 2 K2 and the cipher remains
AE-secure even if the adversary knows one of the keys, but not the other.

9.4. Let us see an example of a CPA-secure cipher and a secure MAC that are insecure when used
in encrypt-then-MAC when the same secret key k is used for both the cipher and the MAC. Let
(E, D) be a block cipher defined over (K, X ) where X = {0, 1}n and |X | is super-poly. Consider
randomized CBC mode encryption built from (E, D) as the CPA-secure cipher for single block
messages: an encryption of m 2 X is the pair c := (r, E(k, r �m)) where r is the random IV.
Use RawCBC built from (E, D) as the secure MAC. This MAC is secure in this context because
it is only being applied fixed length messages (messages in X 2): the tag on a ciphertext c 2 X 2 is
t := E

�

k, E(k, c[0])� c[1]
�

. Show that using the same key k for both the cipher and the MAC in
encrypt-then-MAC results in a cipher that is not CPA secure.

9.5 (MAC-then-encrypt). Prove that MAC-then-encrypt provides authenticated encryption
when the underlying cipher is randomized CBC mode encryption and the MAC is a secure MAC.
For concreteness, if the underlying cipher works on blocks of a fixed size, a message m is a sequence
of full blocks, and the tag t for the MAC is one full block, so the message that is CBC-encrypted
is the block sequence m k t.

9.6 (An AEAD from encrypt-and-MAC). Let (E, D) be randomized counter mode encryption
defined over (K, M, C) where the underlying secure PRF has domain X . We let E(k, m; r) denote
the encryption of message m with key k using r 2 X as the IV. Let F be a secure PRF defined over
(K, (M ⇥ D ⇥ N ), X ). Show that the following cipher (E1, D1) is a secure nonce-based AEAD
cipher assuming |X | is super-poly.

E1
�

(ke, km), m, d, N
�

:=
�

t F
�

km, (m, d, N )
�

, c R E(kc, m; t), output (c, t)
 

D1
�

(ke, km), (c, t), d, N )
�

:=

⇢

m D(ke, c; t)
if F

�

km, (m, d, N )
� 6= t output reject, otherwise output m

�

This method is loosely called enrypt-and-MAC because the message m is both encrypted by the
cipher and is the input to the MAC signing algorithm, which here is a PRF.
Discussion: this construction is related to the authenticated SIV cipher (Exercise 9.7) and o↵ers
similar nonce re-use resistance. One down-side of this system is that the tag t cannot be
truncated as one often does with a PRF-based MAC.

9.7 (Authenticated SIV). We discuss a modification of the SIV construction, introduced in
Exercise 5.7, that provides ciphertext integrity without enlarging the ciphertext any further. We
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call this the authenticated SIV construction. With E = (E, D), F , and E 0 = (E0, D0) as in
Exercise 5.7, we define E 00 = (E0, D00), where

D00�(k, k0), c
�

:=

⇢

m D(k, c)
if E0((k, k0), m) = c output m, otherwise output reject

�

Assume that |R| is super-poly and that for very fixed key k 2 K and m 2 M, the function
E(k, m; ·) : R ! C is one to one (which holds for counter and CBC mode encryption). Show that
E 00 provides ciphertext integrity. Note: since the encryption algorithm of E 00 is the same as that of
E 0 we know that E 00 is deterministic CPA-secure, assuming that E is CPA-secure (as was shown in
Exercise 5.7).

9.8. Let (E, D) be a block cipher defined over (K, M⇥R).

(a) As in Exercise 5.5, let (E0, D0) be defined as

E0(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output c
 

D0(k, c) :=
�

(m, r0) D(k, c), output m
 

Show that (E0, D0) is CCA-secure provided (E, D) is a strongly secure block cipher and 1/|R|
is negligible.

Note: this is an example of a CCA-secure cipher that clearly does not provide ciphertext
integrity.

(b) Let (E00, D00) be defined as

E00(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output (c, r)
 

D00�k, (c, r)
�

:=

⇢

(m, r0) D(k, c)
if r = r0 output m, otherwise output reject

�

This cipher is defined over
�K, M, (M⇥R)⇥R�

. Show that (E00, D00) is AE-secure provided
(E, D) is a strongly secure block cipher and 1/|R| is negligible.

(c) Suppose that 0 2 R and we modify algorithms E00 and D00 to work as follows:

Ẽ00(k, m) :=
�

r  0, c R E
�

k, (m, r)
�

, output c
 

D̃00�k, c
�

:=

⇢

(m, r0) D(k, c)
if r0 = 0 output m, otherwise output reject

�

Show that (Ẽ00, D̃00) is one-time AE-secure provided (E, D) is a strongly secure block cipher,
and 1/|R| is negligible.

9.9. Let (E, D) be a cipher defined over (K, M, C). Define the following MAC system (S, V ) also
defined over (K, M, C):

S(k, m) := E(k, m); V (k, m, t) :=

(

accept if D(k, t) = m

reject otherwise

Show that if (E, D) has ciphertext integrity then (S, V ) is a secure MAC system.
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9.10 (GCM analysis). Give a complete security analysis of GCM (see Section 9.6). Show that
it is nonce-based AEAD secure assuming the security of the underlying block cipher as a PRF
and that GHASH is an XOR-DUF. Start out with the easy case when the nonce is 96-bits. Then
proceed to the more general case where GHASH may be applied to the nonce to compute x.

9.11. Consider a weaker notion of integrity called plaintext integrity, or simply PI. The PI game
is identical to the CI game except that the winning condition is relaxed to:

• D(k, c) 6= reject, and
• D(k, c) 62 {m1, m2, . . .}

Prove that the following holds:

(a) Show that MAC-then-Encrypt is both CPA and PI secure.
Note that the MAC-then-Encrypt counter-example (Section 9.4.2) shows that a system that
is CPA and PI secure is not necessarily AE-secure.

(b) Prove that a system that is CCA and PI secure is also AE-secure. The proof only needs a
weak version of CCA, namely where the adversary issues a single decryption query and is
told whether the ciphertext is accepted or rejected. Also, you may assume a super-poly-sized
message space.

9.12 (Encrypted UHF MAC). Let H be a hash function defined over (KH , M, X ) and (E, D)
be a cipher defined over (KE , X , C). Define the encrypted UHF MAC system I = (S, V ) as
follows: for key (k1, k2) and message m 2M define

S
�

(k1, k2), m
�

:= E
�

k1, H(k2, m)
�

V
�

(k1, k2), m, c
�

:=

(

accept if H(k2, m) = D(k1, c),

reject otherwise.

Show that I is a secure MAC system assuming H is a computational UHF and (E, D) provides
authenticated encryption. Recall from Section 7.4 that CPA security of (E, D) is insu�cient for
this MAC system to be secure.

9.13 (chop-chop attack). A parity b for a message m 2 {0, 1}⇤ is just the XOR of all the bits in
m. After appending the parity bit, the message m0 = m k b has the property that the XOR of all
the bits is zero. Parity bits are sometimes used as a very simple form of error detection: they are
meant to provide a little protection against random errors.

Consider a cipher where encryption is done using randomized counter mode without any
padding. Messages are variable length bit strings and ciphertexts are bit strings of the same
length as plaintext. No MAC is used, but before the plaintext is encrypted, the sender appends a
parity bit to the end of the plaintext. After receiver decrypts, he checks the parity bit and returns
either the plaintext or reject.

Design a chosen-ciphertext attack that recovers the complete plaintext of every encrypted mes-
sage. Hint: use the fact that the system encrypts variable length messages. A variant of this attack,
called chopchop, was used successfully against encryption in the 802.11b protocol. The name is a
hint for how the attack works.
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9.14 (Simplified OCB mode). OCB is an elegant and e�cient AE cipher built from a tweakable
block cipher (as defined in Exercise 4.12). Let (E, D) be a tweakable block cipher defined over
(K, X , T ) where X := {0, 1}n and the tweak set is T := N ⇥ {�`, . . . , `}. Consider the following
nonce-based cipher (E0, D0) with key space K, message space X`, ciphertext space X `+1, and
nonce space N . For simplicity, the cipher does not support associated data.

E0(k, m, N ) :=
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

create (uninitialized) c 2 X |m|

checksum 0n

for i = 0, . . . , |m|� 1 :
c[i] E

�

k, m[i], (N , i + 1)
�

checksum checksum�m[i]

t E
�

k, checksum, (N ,�|m|)�
output (c, t)

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

D0(k, (c, t), N ) :=
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

create (uninitialized) m 2 X |c|

checksum 0n

for i = 0, . . . , |c|� 1 :
m[i] D

�

k, c[i], (N , i + 1)
�

checksum checksum�m[i]

t0  E
�

k, checksum, (N ,�|c|)�
if t = t0 output m, else reject

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(a) Prove that (E0, D0) is a nonce-based AE-secure cipher assuming (E, D) is a strongly secure
tweakable block cipher and |X | is super-poly.

(b) Show that if t were computed as t  E
�

k, checksum, (N , 0)
�

then the scheme would be
insecure: it would have no ciphertext integrity.

9.15 (Middlebox encryption). In this exercise we develop a mode of encryption that lets a
middlebox placed between the sender and recipient inspect all tra�c in the clear, but prevents
the middlebox for modifying tra�c en-route. This is often needed in enterprise settings where a
middlebox ensures that no sensitive information is accidentally sent out. Towards this goal let us
define a middlebox cipher as a tuple of four algorithms (E, D, D0, K) where E(k, m) and D(k, c)
are the usual encryption and decryption algorithms used by the end-points, K is an algorithm
that derives a sub-key k0 from the primary key k (i.e., k0  R K(k)), and D0(k0, c) is the decryption
algorithm used by the middlebox with the sub-key k0. We require the usual correctness properties:
D(k, c) and D0(k0, c) output m whenever c R E(k, m) and k0  R K(k).

(a) Security for a middlebox cipher (E, D, D0, K) captures our desired confidentiality and integrity
requirements. In particular, we say that a middlebox cipher is secure if the following three
properties hold:

(i) the cipher is secure against a chosen plaintext attack (CPA security) when the adversary
knows nothing about k,

(ii) the cipher provides ciphertext integrity with respect to the decryption algorithm D0(k0, ·),
and the adversary knows nothing about k, and

(iii) the cipher provides ciphertext integrity with respect to the decryption algorithm D(k, ·),
and the adversary is given a sub-key k0  R K(k), but again knows nothing about k.

The second requirement says that the middlebox will only decrypt authentic ciphertexts. The
third requirement says that the receiving end-point will only decrypt authentic ciphertexts,
even if the middlebox is corrupt.

Formalize these requirements as attack games.
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(b) Give a construction that satisfies your definition from part (a). You can use an AE secure
cipher and a secure MAC as building blocks.

383



Part II

Public key cryptography

384



Part III

Protocols

523



Part IV

Appendices

631



Appendix A

Basic number theory

A.1 Cyclic groups

Notation: for a finite cyclic group G we let G⇤ denote the set of generators of G.

A.2 Arithmetic modulo primes

A.2.1 Basic concepts

We use the letters p and q to denote prime numbers. We will be using large primes, e.g. on the
order of 300 digits (1024 bits).

1. For a prime p let Zp = {0, 1, 2, . . . , p� 1}.
Elements of Zp can be added modulo p and multiplied modulo p. For x, y 2 Zp we write x+y
and x · y to denote the sum and product of x and y modulo p.

2. Fermat’s theorem: gp�1 = 1 for all 0 6= g 2 Zp

Example: 34 mod 5 = 81 mod 5 = 1

3. The inverse of x 2 Zp is an element a satisfying a · x = 1.
The inverse of x in Zp is denoted by x�1.
Example: 1. 3�1 in Z5 is 2 since 2 · 3 = 1 mod 5.

2. 2�1 in Zp is p+1
2 .

4. All elements x 2 Zp except for x = 0 are invertible.
Simple (but ine�cient) inversion algorithm: x�1 = xp�2 mod p.
Indeed, xp�2 · x = xp�1 = 1 mod p.

5. We denote by Z⇤
p the set of invertible elements in Zp. Then Z⇤

p = {1, 2, . . . , p� 1}.

6. We now have algorithm for solving linear equations in Zp: a · x = b.
Solution: x = b · a�1 = b · ap�2.
What about an algorithm for solving quadratic equations?
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A.2.2 Structure of Z⇤
p

1. Z⇤
p is a cyclic group.

In other words, there exists g 2 Z⇤
p such that Z⇤

p = {1, g, g2, g3, . . . , gp�2}.
Such a g is called a generator of Z⇤

p.
Example: in Z⇤

7: h3i = {1, 3, 32, 33, 34, 35, 36} = {1, 3, 2, 6, 4, 5} (mod 7) = Z⇤
7.

2. Not every element of Z⇤
p is a generator.

Example: in Z⇤
7 we have h2i = {1, 2, 4} 6= Z⇤

7.

3. The order of g 2 Z⇤
p is the smallest positive integer a such that ga = 1.

The order of g 2 Z⇤
p is denoted orderp(g).

Example: order7(3) = 6 and order7(2) = 3.

4. Lagrange’s theorem: for all g 2 Z⇤
p we have that orderp(g) divides p � 1. Observe that

Fermat’s theorem is a simple corollary:
for g 2 Z⇤

p we have gp�1 = (gorder(g))(p�1)/order(g) = (1)(p�1)/order(g) = 1.

5. If the factorization of p� 1 is known then there is a simple and e�cient algorithm to
determine orderp(g) for any g 2 Z⇤

p.

A.2.3 Quadratic residues

1. The square root of x 2 Zp is a number y 2 Zp such that y2 = x mod p.
Example: 1.

p
2 in Z7 is 3 since 32 = 2 mod 7.

2.
p

3 in Z7 does not exist.

2. An element x 2 Z⇤
p is called a Quadratic Residue (QR for short) if it has a square root in Zp.

3. How many square roots does x 2 Zp have?
If x2 = y2 in Zp then 0 = x2 � y2 = (x� y)(x + y).
Zp is an “integral domain” which implies that x� y = 0 or x + y = 0, namely x = ±y.
Hence, elements in Zp have either zero square roots or two square roots.
If a is the square root of x then �a is also a square root of x in Zp.

4. Euler’s theorem: x 2 Zp is a QR if and only if x(p�1)/2 = 1.
Example: 2(7�1)/2 = 1 in Z7 but 3(7�1)/2 = �1 in Z7.

5. Let g 2 Z⇤
p. Then a = g(p�1)/2 is a square root of 1. Indeed, a2 = gp�1 = 1 in Zp.

Square roots of 1 in Zp are 1 and �1.
Hence, for g 2 Z⇤

p we know that g(p�1)/2 is 1 or �1.

6. Legendre symbol: for x 2 Zp define
⇣

x
p

⌘

:=

8

<

:

1 if x is a QR in Zp

�1 if x is not a QR in Zp

0 if x = 0 mod p
.

7. By Euler’s theorem we know that
⇣

x
p

⌘

= x(p�1)/2 in Zp.

=) the Legendre symbol can be e�ciently computed.
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8. Easy fact: let g be a generator of Z⇤
p. Let x = gr for some integer r.

Then x is a QR in Zp if and only if r is even.
=) the Legendre symbol reveals the parity of r.

9. Since x = gr is a QR if and only if r is even it follows that exactly half the elements of Zp

are QR’s.

10. When p = 3 mod 4 computing square roots of x 2 Zp is easy.
Simply compute a = x(p+1)/4 in Zp.
a =
p

x since a2 = x(p+1)/2 = x · x(p�1)/2 = x · 1 = x in Zp.

11. When p = 1 mod 4 computing square roots in Zp is possible but somewhat more complicated;
it requires a randomized algorithm.

12. We now have an algorithm for solving quadratic equations in Zp.
We know that if a solution to ax2 + bx + c = 0 mod p exists then it is given by:

x1,2 =
�b ±pb2 � 4ac

2a

in Zp. Hence, the equation has a solution in Zp if and only if � = b2 � 4ac is a QR in Zp.
Using our algorithm for taking square roots in Zp we can find

p
� mod p and recover x1 and

x2.

13. What about cubic equations in Zp? There exists an e�cient randomized algorithm that solves
any equation of degree d in time polynomial in d.

A.2.4 Computing in Zp

1. Since p is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.

2. Elements of Zp are stored in buckets where each bucket is 32 or 64 bits long depending on
the processor’s chip size.

3. Adding two elements x, y 2 Zp can be done in linear time in the length of p.

4. Multiplying two elements x, y 2 Zp can be done in quadratic time in the length of p. If p is
n bits long, better algorithms work in time O(n1.7) (rather than O(n2)).

5. Inverting an element x 2 Zp can be done in quadratic time in the length of p.

6. Using the repeated squaring algorithm, xr mod p can be computed in time (log2 r)O(n2)
where p is n bits long. Note, the algorithm takes linear time in the length of r.

A.2.5 Summary: arithmetic modulo primes

Let p be a 1024 bit prime. Easy problems in Zp:

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod p is easy even if r is very large.
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3. Inverting an element. Solving linear systems.

4. Testing if an element is a QR and computing its square root if it is a QR.

5. Solving polynomial equations of degree d can be done in polynomial time in d.

Problems that are believed to be hard in Zp:

1. Let g be a generator of Z⇤
p. Given x 2 Z⇤

p find an r such that x = gr mod p. This is known
as the discrete log problem.

2. Let g be a generator of Z⇤
p. Given x, y 2 Z⇤

p where x = gr1 and y = gr2 . Find z = gr1r2 . This
is known as the Di�e-Hellman problem.

A.3 Arithmetic modulo composites

We are dealing with integers n on the order of 300 digits long, (1024 bits). Unless otherwise stated,
we assume that n is the product of two equal size primes, e.g. on the order of 150 digits each (512
bits).

1. For a composite n let Zn = {0, 1, 2, . . . , n� 1}.
Elements of Zn can be added and multiplied modulo n.

2. The inverse of x 2 Zn is an element y 2 Zn such that x · y = 1 mod n.
An element x 2 Zn has an inverse if and only if x and n are relatively prime. In other words,
gcd(x, n) = 1.

3. Elements of Zn can be e�ciently inverted using Euclid’s algorithm. If gcd(x, n) = 1 then
using Euclid’s algorithm it is possible to e�ciently construct two integers a, b 2 Z such that
ax + bn = 1. Reducing this relation modulo n leads to ax = 1 mod n. Hence a = x�1 mod n.
note: this inversion algorithm also works in Zp for a prime p and is more e�cient than
inverting x by computing xp�2 mod p.

4. We let Z⇤
n denote the set of invertible elements in Zn.

5. We now have an algorithm for solving linear equations: a · x = b mod n.
Solution: x = b · a�1 where a�1 is computed using Euclid’s algorithm.

6. How many elements are in Z⇤
n? We denote by '(n) the number of elements in Z⇤

n. We already
know that '(p) = p� 1 for a prime p.

7. One can show that if n = pe11 · · · pemm then '(n) = n ·Qm
i=1

⇣

1� 1
pi

⌘

.

In particular, when n = pq we have that '(n) = (p� 1)(q � 1) = n� p� q + 1.
Example: '(15) =

�

�{1, 2, 4, 7, 8, 11, 13, 14}�� = 8 = 2 ⇤ 4.

8. Euler’s theorem: all a 2 Z⇤
n satisfy a'(n) = 1 in Zn.

note: For primes p Euler’s theorem implies that a'(p) = ap�1 = 1 for all a 2 Z⇤
p. Hence,

Euler’s theorem is a generalization of Fermat’s theorem.
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Structure of Zn

Theorem A.1 (Chinese Remainder Theorem (CRT)). state theorem

Summary

Let n be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in Zn:

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod n is easy even if r is very large.

3. Inverting an element. Solving linear systems.

Problems that are believed to be hard if the factorization of n is unknown, but become easy if the
factorization of n is known:

1. Finding the prime factors of n.

2. Testing if an element is a QR in Zn.

3. Computing the square root of a QR in Zn. This is provably as hard as factoring n. When the
factorization of n = pq is known one computes the square root of x 2 Z⇤

n by first computing
the square root in Zp of x mod p and the square root in Zq of x mod q and then using the
CRT to obtain the square root of x in Zn.

4. Computing e’th roots modulo n when gcd(e, '(n)) = 1.

5. More generally, solving polynomial equations of degree d > 1. This problem is easy if the
factorization of n is known: one first finds the roots of the polynomial equation modulo the
prime factors of n and then uses the CRT to obtain the roots in Zn.

Problems that are believed to be hard in Zn:

1. Let g be a generator of Z⇤
n. Given x 2 Z⇤

n find an r such that x = gr mod n. This is known
as the discrete log problem.

2. Let g be a generator of Z⇤
n. Given x, y 2 Z⇤

n where x = gr1 and y = gr2 . Find z = gr1r2 . This
is known as the Di�e-Hellman problem.
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Appendix B

Basic probability theory

Includes a description of statistical distance.

B.1 Birthday Paradox

Theorem B.1. Let M be a set of size n and let X1, . . . , Xk be k independent random variables
uniform in M. Let C be the event that for some distinct i, j 2 {1, . . . , k} we have that Xi = Xj.
Then

(i) Pr[C] � 1� e�k(k�1)/2n � min
nk(k � 1)

4n
, 0.63

o

, and

(ii) Pr[C]  1� e�k(k�1)/n when k < n/2.

Proof. These all follow easily from the inequality

1� x  e�x  1� x/2,

which holds for all x 2 [0, 1]. 2

Most frequently we will use the lower bound to say that a collision happens with at least a
certain probability. But occasionally we will use the upper bound to argue that collisions do not
happen.

It is well documented that birthdays are not really uniform throughout the year. For example,
in the U.S. the percentage of births in September is higher than in any other month. We show next
that this non-uniformity only increases the probability of collision.

We present a stronger version of the birthday paradox that applies to independent random
variables that are not necessarily uniform in M. We do, however, require that all random variables
are identically distributed. Such random variables are called i.i.d (independent and identically
distributed). This version of the birthday paradox is due to Blom [Blom, D. (1973), ”A birthday
problem”, American Mathematical Monthly, vol. 80, pp. 1141-1142].

Corollary B.2. Let M be a set of size n and let X1, . . . , Xk be k i.i.d random variables over M
where k � 2. Let C be the event that for some distinct i, j 2 {1, . . . , k} we have that Xi = Xj.
Then

Pr[C] � 1� e�k(k�1)/2n � min
nk(k � 1)

4n
, 0.63

o

.
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The graph shows that collision probability for n = 106 elements and k ranging from one sample to
5000 samples. It illustrates the threshold phenomenon around the square root. At the square root,p

n = 1000, the collision probability is about 0.4. Already at 4
p

n = 4000 the collision probability
is almost 1. At 0.5

p
n = 500 the collision probability is small.

Figure B.1: Birthday Paradox

Proof. Let X be a random variable distributed as X1. Let M = {a1, . . . , an} and let pi = Pr[X =
ai]. Let I be the set of all k-tuples over M containing distinct elements. Then I contains

�n
k

�

k!
tuples. Since the variables are independent we have that:

Pr[¬C] =
X

(b1,...,bk)2I
Pr[X1 = b1 ^ . . . ^Xk = bk] =

X

(b1,...,bk)2I

k
Y

j=1

pbj (B.1)

We show that this sum is maximized when p1 = p2 = . . . = pn = 1/n. This will mean that the
probability of collision is minimized when all the variables are uniform. The Corollary will then
follow from Theorem B.1.

Suppose some pi is not 1/n, say pi < 1/n. Since
Pn

j=1 pi = 1 there must be another pj such
that pj > 1/n. Let ✏ = min((1/n) � pi, pj � 1/n) and note that pj � pi > ✏. We show that
replacing pi by pi + ✏ and pj by pj � ✏ increases the value of the sum in (B.1). Clearly, the resulting
p1, . . . , pn still sum to 1. Hence, the resulting p1, . . . , pn form a distribution over M in which there
is one less value that is not 1/n. Furthermore, the probability of no collision in this distribution is
greater than in the unmodified distribution. Repeating this replacement process at most n times
will show that the sum is maximized when all the pi’s are equal to 1/n. Again, this means that the
probability of not getting a collision is maximized when the variables are uniform.

Now, consider the sum in (B.1). There are four types of terms. First, there are terms that
do not contain either pi or pj . These terms are una↵ected by the change to pi and pj . Second,
there are terms that contain exactly one of pi or pj . These terms pair up. For every k-tuple that
contains i but not j there is a corresponding tuple that contains j but not i. Then the sum of the
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corresponding two terms in (B.1) looks like A(pi + ✏) + A(pj � ✏) for some A 2 [0, 1]. Since this
equals Api + Apj the sum of these two terms is not a↵ected by the change to pi and pj . Finally,
there are terms in (B.1) that contain both pi and pj . These terms change by

B(pi + ✏)(pj � ✏)�Bpipj = B[✏(pj � pi)� ✏2]

for some B 2 [0, 1]. By definition of ✏ we know that pj � pi > ✏ and therefore ✏(pj � pi) � ✏2 > 0.
Hence, the sum with modified pi and pj is larger than the sum with the unmodified values.

Overall, we proved that the modification to pi and pj increases the value of the sum in (B.1),
as required. This completes the proof of the Corollary. 2

B.1.1 More collision bounds

Consider the sequence xi  f(xi�1) for a random function f : X ! X . Analyze the cycle time of
this walk (needed for Pollard). Now, consider the same sequence for a permutation ⇡ : X ! X .
Analyze the cycle time (needed for analysis of SecurID identification).

B.1.2 A simple distinguisher

We describe a simple algorithm that distinguishes two distributions on strings in {0, 1}n. Let
X1, . . . , Xn and Y1, . . . , Yn be independent random variables taking values in {0, 1}. Then

X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn)

are elements of {0, 1}n. Suppose, that for i = 1, . . . , n we have

Pr[Xi = 1] = p and Pr[Yi = 1] = (1 + 2✏) · p

for some p 2 [0, 1] and some small ✏ > 0 so that (1+2✏) · p  1. Then X and Y induce two distinct
distributions on {0, 1}n.

We are given an n-bit string T and are told that it is either sampled according to the distribu-
tion X or the distribution Y , so that both p and ✏ are known to us. Our goal is to decide which
distribution T was sampled from. Consider the following simple algorithm A:

input: T = (t1, . . . , tn) 2 {0, 1}n
output: 1 if T is sampled from X and 0 otherwise

s (1/n) ·Pn
i=1 ti

if s > p · (1 + ✏) output 0 else output 1

We are primarily interested in the quantity

� :=
�

�Pr[A(Tx) = 1]� Pr[A(Ty) = 1]
�

� 2 [0, 1]

where Tx  R X and Ty  R Y . This quantity captures how well A distinguishes the distributions X
and Y . For a good distinguisher � will be close to 1. For a weak distinguisher � will be close to 0.
The following theorem shows that when n is about 1/(p✏2) then � is about 1/2.

Theorem B.3. For all p 2 [0, 1] and ✏ < 0.3, if n = 4d1/(p✏2)e then � > 0.5
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Proof. The proof follows directly from the Cherno↵ bound. When T is sampled from X the Cherno↵
bound implies that

Pr[A(Tx) = 1] = Pr[s > p(1 + ✏)]  e�n·(p✏2/2)  e�2  0.135

When T is sampled from Y then the Cherno↵ bound implies that

Pr[A(Ty) = 0] = Pr[s < p(1 + ✏)]  e�n·(p✏2/4)  e�1  0.368

Hence, � > |(1� 0.368)� 0.135| = 0.503 and the bound follows. 2
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Appendix C

Basic complexity theory

To be written.
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Appendix D

Probabilistic algorithms

To be written.
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