Identity Mixer:
From papers to pilots – and beyond

Gregory Neven, IBM Research – Zurich
Motivation

Online security & trust today:

- SSL/TLS for encryption and server authentication
- Username/password for client authentication
- Mostly self-claimed attributes (except email, credit card)
Motivation

Trusted attribute transfer solutions exist
 e.g., SAML, WS-Federation, OpenID, Facebook Connect, X.509 v3

but have privacy issues

- Online identity provider as “Big Brother”
- Linkability through unique identifiers or public keys
Privacy-preserving Attribute-Based Credentials (Privacy-ABCs)

generalization of
 – pseudonym systems [Chaum 81]
 – group signatures [Chaum-van Heyst 91]
 – anonymous credentials [Camenisch-Lysyanskaya 01]
 – identity escrow [Kilian-Petrank 98]
 – minimal-disclosure tokens [Brands 99]
 – direct anonymous attestation [Brickel-Camenisch-Chen 04]
Overview of this talk

- Features of Privacy-ABCs
- Cryptographic realization
- Non-cryptographic hurdles to deployment
- Current status of Identity Mixer
- Future of Identity Mixer
Overview of this talk

- Features of Privacy-ABCs
 - Cryptographic realization
 - Non-cryptographic hurdles to deployment
 - Current status of Identity Mixer
 - Future of Identity Mixer
Credential issuance

Credential

- list of attribute-value pairs
- certified by issuer
- (optionally) *bound* to user’s secret key
 - non-frameability
 - prevent credential pooling
 - secret key on trusted device → device binding

Advanced issuance:
- carry over attributes or key from existing credentials
- issuer-blind attributes
- jointly random attributes
Presentation

Presentation policy (token) requests (reveals)

- attribute values from credential(s)
- predicates over attributes
 \[\text{attribute}_1 =,>,< \text{attribute}_2 \text{ or constant} \]
- pseudonyms
 \(\approx \) unlinkable public key for secret key
 - intentionally create limited linkability (e.g., account creation)
 - re-authenticate later with secret key (no credentials)
 - scope-exclusive pseudonym:
 unique pseudonym for specific scope string
Inspection

aka opening, tracing, anonymity revocation,…

Verifiably encrypt attribute value(s) to inspector

- De-anonymization in case of abuse
- Reveal attributes to 3rd party
e.g., credit card details to bank

Many inspectors, chosen at presentation
Token bound to inspection grounds
Revocation

Render certain credentials unusable for presentation

Revocation authority publishes
 – revocation parameters (public, static)
 – revocation information (public, dynamic)

- Issuer-driven (global) revocation:
 – issuer assigns revocation authority
 – e.g., credential compromise, changed attributes

- Verifier-driven (local) revocation:
 – verifier assigns revocation authority
 – e.g., exclude from service after abuse
Overview of this talk

- Features of Privacy-ABCs
- Cryptographic realization
- Non-cryptographic hurdles to deployment
- Current status of Identity Mixer
- Future of Identity Mixer
Cryptographic realization

- Verifiable Encryption
 - [Cramer-Shoup 98]
 - [Camenisch-Damgard 00]
 - [Camenisch-Shoup 03]

- Set Membership
 - [Camenisch-Lysyanskaya 02]
 - [Nguyen 05]
 - [Camenisch-Kohlweiss-Soriente 09]

- Zero-knowledge Proofs
 - [Fiat-Shamir 87]
 - [Groth-Sahai 08]

- Signatures
 - [Brands 99]
 - [Camenisch-Lysyanskaya 02]
 - [Camenisch-Lysyanskaya 04]
 - [Au-Susilo-Mu 06]

- Commitments
 - [Pedersen 91]
 - [Damgard-Fujisaki 02]

- Range Proofs
 - [Boudot 00]
 - [Groth 05]

- \(\Sigma \) protocols
 - [Camenisch-Shoup 03]
 - [Camenisch-Lysyanskaya 02]
Two approaches

- Multi-use
 - Damgard, Camenisch-Lysyanskaya
 - Strong RSA, pairings (LMRS, q-SDH)

- One-time use (multi through batching)
 - Chaum, Brands
 - Related to discrete logs, RSA,…
Overview of this talk

- Features of Privacy-ABCs
- Cryptographic realization
- Non-cryptographic hurdles to deployment
- Current status of Identity Mixer
- Future of Identity Mixer
Privacy-ABCs: the full picture

Issuer

user

credential issuance

credential revocation

Revocation Authority

Verifier

credential revocation, revocation info

presentation

token inspection

Inspector

User

non-revocation evidence
Deploying Privacy-ABCs

- Credential & pseudonym management
- User interfaces
- Privacy preferences
- Attribute-based access control & authorization
- Data-minimizing business processes

Issuer

User

Anonymous communication

Verifier
Technical hurdles

- Policy languages
 - which (combinations of) attributes/predicates from which credentials
 - issuance, presentation, revocation, inspection,…
 - hide cryptographic details from application developers

```xml
<PresentationPolicyAlternatives>
  <PresentationPolicy PolicyUID="revealCivicNr">
    <Message>
      <Nonce>bKQydHQWDR4TUZzbXJKYUp hdVM=</Nonce>
    </Message>
    <Credential Alias="schoolcred">
      <CredentialSpecAlternatives>
      </CredentialSpecAlternatives>
    </Credential>
  </PresentationPolicy>
</PresentationPolicyAlternatives>
```
Technical hurdles

- APIs and data formats
 multiple entities and methods
- Public-key infrastructure for issuer parameters
- Ontologies
 \[\text{urn:mynamespace:firstname} = \text{urn:yournamespace:givenname} \]
- Credential backup & revocation
- Securing layers below
 - cookies, browser history
 - IP addresses, traffic analysis
 - device fingerprinting
- Integration into access control frameworks
- Standardization
Technical hurdles to deployment

- User interfaces

Source: Paul Trevithick (http://www.incontextblog.com)
Non-technical hurdles to deployment

- Business case: who pays for privacy?
 - companies have inverse incentive (data mining)
 - government/legal incentives: regulation, fines, class-action lawsuits
 - German eID has privacy features
 - no issuers because no verifiers – and vice versa
 - cfr. SSL: market enabler

- Education
 - end users (create demand)
 - developers, industry leaders,…
 - paradoxical features challenge intuition
 - confusing crypto terminology (e.g., zero knowledge, witness,…)

- Legal issues
 - crypto is highly patented
 - software licenses
Overview of this talk

- Features of Privacy-ABCs
- Cryptographic realization
- Non-cryptographic hurdles to deployment
- Current status of Identity Mixer
- Future of Identity Mixer
Current status

- More research papers than can fit on this slide 😊

- EU projects
 - Open-source code
 - Core crypto library: https://prime.inf.tu-dresden.de/idemix/
 - Credential-based policy engine: http://primelife.ercim.eu/results/opensource/140-abcauth
 - ABC4Trust reference implementation: https://abc4trust.eu (soon)

- ABC4Trust pilots
 - Patras University: student course evaluation
 - Soderhamn high school: pupil interaction & counselling
Overview of this talk

- Features of Privacy-ABCs
- Cryptographic realization
- Non-cryptographic hurdles to deployment
- Current status of Identity Mixer
- Future of Identity Mixer
What the future may bring

- Standards: policy languages, cryptographic formats
 - ISO: SC17/18013 and SC27
 - OASIS: SAML Attribute predicate profile

- Better user interfaces

- Deploy Identity Mixer for eID, toll roads, public transportation

- Quantum-resistant Privacy-ABCs