Privacy Models in the Payments Industry*

Terence Spies
Voltage Security

* plus some editorializing
Why “Real-World Crypto”?

If we define the “Real World” as enterprises....

<table>
<thead>
<tr>
<th></th>
<th>Academic Crypto</th>
<th>Enterprise Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Methodology</td>
<td>Define a model, show security in that model.</td>
<td>Does this reduce risk, regulatory or audit cost?</td>
</tr>
<tr>
<td>Credibility</td>
<td>Peer-reviewed publication</td>
<td>Standards (ie. NIST) acceptance</td>
</tr>
<tr>
<td>Success Criteria</td>
<td>Novelty, Publication</td>
<td>Cost-effective implementation</td>
</tr>
</tbody>
</table>

Real-world security models typically involve cost, legacy, and business process concerns that can be more complex than the underlying crypto model.
Why the disparity?

• Three factors:
 1. Parsing crypto papers is extremely difficult
 2. Crypto demos neglect the salient property
 3. Cryptographers keep changing their minds

A distributed system is a system where I can’t get my work done because a computer has failed that I’ve never even heard of.

Leslie Lamport

A real-world cryptographic system is a system where I can’t secure my data because a computer has succeeded that I’ve never even heard of.

Every security customer ever
A Real-World Example: Payments

What happens when a credit card is swiped at a retail terminal....surely that’s encrypted, right?

• How payment systems work
• Cryptographic solutions in payments
• Future problems / models
Definitions

- **PIN** – Personal Identification Number, used to authenticate ATM and Debit transactions
- **PAN** – Primary Account Number. The number printed on the front of a credit or debit card.
- **Track Data** – Data read from the two magnetic stripes on the back of a credit card.
- **POS** – Point-of-Sale. The terminal reading a payment card.
PIN Security

• PIN Entry Devices (PEDs) are provisioned with individual keys.
 – Session or transaction keys are created (X9.24)

• The PIN is encrypted with the session key and PAN as randomizer
 – Multiple standards for DES and 3DES pinblock creation- (ISO 9564)

• Key management standards require PINs do not appear outside HSMs.
Payment Standards

• Payment standards evolve very slowly
 – 3DES is the default standard
 – Some PIN blocks are still DES encrypted
 – US and ISO AES pinblock standards in progress

• Why?
 – Cost of physical upgrade
 – No single party in charge
 • Millions of retailers
 • Hundreds of intermediaries
 – Extremely complex business processes
 • Recurrence, chargeback, preauth
Solving the PAN problem

• Payment systems were built with the assumption that PINs are private.
• But no assumption of PAN privacy
 – Receipt printing uses last 4 PAN digits
 – Card routing uses first 2-6 digits
 – Fuel cards use arbitrary digits
• PANs have value to attackers
 – Web transactions
 – Printing fraudulent cards
• Merchant PAN databases == breach risk
 – Storage at processors, lodging, etc.
Attempt #1: SET / STT

• The STT and SET protocols attempted to solve PAN privacy via public key encryption & signature.

• SET was cryptographically feature rich

• It was also extremely complex
 – Protocol Specification: 250+ pages
Why SET Failed the Real-World Test

- SET had lots of interesting features (dual signature, etc.), but.....

<table>
<thead>
<tr>
<th></th>
<th>Academic Crypto</th>
<th>Enterprise Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Methodology</td>
<td>Define a model, show security in that model.</td>
<td>Does this reduce risk, regulatory or audit cost? ?</td>
</tr>
<tr>
<td>Credibility</td>
<td>Peer-reviewed publication ✓</td>
<td>Standards (ie. NIST) acceptance</td>
</tr>
<tr>
<td>Success Criteria</td>
<td>Novelty, Publication ✓</td>
<td>Cost-effective implementation ✗</td>
</tr>
</tbody>
</table>
PCI

- In 2004, the major card brands join to form the Payment Card Industry Data Security Standard (PCIDSS)
- Imposes a set of requirements, and sets up a Qualified Security Assessor (QSA) audit framework.
 - Requirement 3: Protect stored cardholder data
 - Requirement 4: Encrypt transmission of cardholder data
PAN Encryption

• Goal: Encrypt at POS
• Does TLS or other protocols solve this problem? No.
 – Existing payment system intermediaries
 – Security for stored PANs
The Simple Case: Small Merchant

Card swipe

Processor / acquirer

Card Brand

Issuer

Visa, MC, etc.

Bank, Inc.
PIN Privacy Model

PIN is private from entry until it is checked at the issuer.

HSM based reencryption is done at the processor.
Simple PAN Privacy Model

In this case, link encryption actually would seem to do the job.
More Complex Case

Card swipe

POS terminal

Controller

Switch / Gateway

Processor / acquirer

Card Brand

Issuer

(C) Voltage Security, Inc. All Rights Reserved
Deployable PAN Encryption

• A realistic solution must:
 – Be secure
 – Not break every existing payment protocol

• Why not create a new protocol?
 – Every processor has it’s own message standard
 – ISO 8583 defines a framework, but all processors modify it

• Only baseline is the PAN and track data itself
Format Preserving Encryption

• Build a cipher so ciphertext looks like plain
 – Maintain length and alphabet
• Use a tweakable cipher to allow plain digits

```
4321 0001 0002 1234
```

```
Tweak 4321 00 1234
```

```
FPE Cipher
```

```
K
```

```
4321 0098 3409 1234
```
History of FPE

• The first DES FIPS document (FIPS 74, in 1981) contains a section on character set preservation!

• An example of a user asking the crypto community for a primitive.
 – Smith and Brightwell, “Using datatype-preserving encryption to enhance data warehouse security”, 1997 NIST conference
 – Defined the practical need and use, but proposed no secure solution

• Best alternative was storing plaintext in a database, returning a random index in the right format.
Format Preserving Encryption

Cryptographic challenge is to build a small domain cipher. Rogaway and Black in 2002 show the first provably secure techniques, using a PRP model.

Work by Bellare, Ristenpart, Rogaway, Stegers shows improved results for constructing FPE ciphers using Feistel networks.
What about the intermediates?

Card swipe

POS terminal

Controller

Switch / Gateway

Processor / acquirer

Card Brand

Issuer

TBTF Bank, Inc.

Now just have random PAN encryptions
Tokenization

• Generically, the replacement of a PAN with a random substitute.
• Tokenization creates a 1:1 replacement, enabling protection of permanently stored PAN data.
• Enables limited computation (identity)
Tokenized PAN Privacy

- **Card swipe**
- **POS terminal**
- **Controller**
- **Switch / Gateway**
- **Processor / acquirer**
- **Card Brand**
- **Issuer**

Pass encrypted PAN.
Use returned token equivalence and plain digits for computation
Future Work

• Multiple standardization efforts (PCI and X9) are now working on security definitions for tokenization and encryption of card data.
• Database vs encryption vs hashing
 – Are there real differences?
 – How do we explain and build requirements?
• Next generation PIN block and key management standards
 – AES pinblock
 – AES DUKPT