Protecting Browser State from Web Privacy Attacks

Collin Jackson
Stanford University
collinj@cs.stanford.edu

Dan Boneh
Stanford University
dabo@cs.stanford.edu

ABSTRACT

Through a variety of means, including a range of browser
cache methods and inspecting the color of a visited hyper-
link, client-side browser state can be exploited to track users
against their wishes. This tracking is possible because per-
sistent, client-side browser state is not properly partitioned
on per-site basis in current browsers. We address this prob-
lem by refining the general notion of a “same-origin” policy
and implementing two browser extensions that enforce this
policy on the browser cache and visited links.

We also analyze various degrees of cooperation between
sites to track users, and show that even if long-term browser
state is properly partitioned, it is still possible for sites to
use modern web features to bounce users between sites and
invisibly engage in cross-domain tracking of their visitors.
Cooperative privacy attacks are an unavoidable consequence
of all persistent browser state that affects the behavior of
the browser, and disabling or frequently expiring this state
is the only way to achieve true privacy against colluding
parties.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection— Unauthorized access;
K.4.4 [Computers and Society]: Electronic Commerce—
Security

General Terms

Design, Security, Human Factors

Keywords

web browser design, privacy, web spoofing, phishing

1. INTRODUCTION

The web is a never-ending source of security and privacy
problems. It is an inherently untrustworthy place, and yet
users not only expect to be able to browse it free from harm,
they expect it to be fast, good-looking, and interactive —
driving content producers to demand feature after feature,
and often requiring that new long-term state be stored inside
the browser client. Hiding state information from curious or

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2006, May 23-26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

Andrew Bortz
Stanford University
abortz@cs.stanford.edu

John C Mitchell
Stanford University
jcm@cs.stanford.edu

malicious attackers is critical for privacy and security, yet
this task often falls by the wayside in the push for function-
ality.

An important browser design decision dating back to Net-
scape Navigator 2.0 [10] is the “same-origin” principle, which
prohibits web sites from different domains from interacting
with another except in very limited ways. This principle
enables cookies and JavaScript from sites of varying trust-
worthiness to silently coexist on the user’s browser without
interfering with each other. It is the failure to apply an ap-
propriate adaptation of the same-origin principle to all per-
sistent browser state that is the source of the most alarming
web privacy leaks. We discuss variations on this principle
and outline the privacy guarantees that a same-origin policy
can offer.

Caching of web content is a performance-enhancing fea-
ture that improves browsing speed and reduces network traf-
fic. However, because caching stores persistent information
from one site on the local machine without hiding its exis-
tence from other sites, it is a tempting target for web privacy
attacks. We describe how a site can use this caching behav-
ior to snoop on a visitor’s activities at other sites, in viola-
tion of the same-origin principle, and we show how it can
be used to share persistent identifiers across domain bound-
aries. We provide a Firefox browser extension that prevents
these attacks by enforcing a same-origin policy for caching.

Another web feature, visited link differentiation, presents
a similar risk to web privacy, and is even harder to fix with-
out changing the user experience. By observing the way
browser renders links, a site can query the browser’s history
database, and by instructing the browser to visit pages, it
can insert new information into this database. We present
another Firefox extension that prevents the abuse of this
feature by enforcing a same-origin policy, at a minor func-
tionality cost to the user.

There are undoubtedly other web features in need of a
similar same-origin policy. But assuming that we found
all these features and constructed an ideal browser orga-
nized around the same-origin principle, what kind of pri-
vacy would our users be able to expect? Surprisingly, very
little privacy against cooperating sites. A variety of sim-
ple techniques ranging from redirection to simple cross-site
links can be used to transmit same-origin state between par-
ticipating sites, allowing them to uniquely identify visitors
and construct a comprehensive cross-domain profile of their
activities.

Many web browsers, such as Internet Explorer and Mozilla
Firefox, provide “third-party cookie blocking” capabilities,

NORMAL TRACKER

r———n1 r——=—9

| NormAL | | NormAL |

L — — L

No tracking ~ Noncooperative
NORMAL TRACKER

r———n1 r———n1

| TRACKER | | TRACKER |

L — —J L — —

Semicooperative Cooperative

Figure 1: Basic cross-site embedded content scenar-
ios. The outer rectangle represents the site that is
hosting the page with embedded content. The inner
rectangle represents the site where the embedded
content is hosted.

which place restrictions on tracking that uses cross-site em-
bedded content. Although these two browsers differ in their
blocking policy, neither blocks third-party cookies completely;
we propose a new third-party cookie blocking mechanism
that combines the strengths of both browsers.

However, even if a complete same-origin policy and third-
party blocking policy were correctly enforced on cookies
and all other web features, these policies would do nothing
to stop the methods that sites can use to share informa-
tion with each other. Unless the user is willing to disable
all browser features that maintain long-term state, or fre-
quently reset this state, no modern browser can offer mean-
ingful privacy guarantees against cooperative attackers.

2. SAME-ORIGIN BROWSING

A folklore “same-origin” principle has developed as a com-
mon way of treating JavaScript and cookies in browser de-
sign. However, this principle has not been stated generally
or applied uniformly to the many ways that a web site can
store or retrieve information from a user’s machine. We pro-
pose a general same-origin principle and suggest that this
should be used as a uniform basis for additional privacy
mechanisms that give users control over the ways that they
are tracked.

2.1 Tracking types

Whenever a web feature leaks some of its long-term browser
state to outside parties, there is a potential for the user to be
tracked. Each user may have their own standards regarding
the types of tracking that are acceptable to them. These
standards often rest on the user’s understanding of a site as
a distinct location. For the purposes of our discussion, a site
is defined as a fully qualified domain name and all the pages
hosted on it. It is also possible to define a site more specifi-
cally, as a path on a particular domain, or more generally, as
a partially qualified domain name; the corresponding track-
ing techniques would differ only in implementation details.

User web activity may be tracked from many vantage
points, ranging from single-session tracking at a single site,
to multi-session tracking across sites that do not cooperate
with each other:

e Single-session tracking is an unavoidable consequence
of the way the web works. For example, sites can em-
bed query parameters in URLs to identify users as they
click around the site, and track them as they follow
links to other cooperating sites.

e Multiple-session tracking allows a single site to
identify a visitor over the course of multiple visits.
This is probably the extent of the tracking that most
users are comfortable with. Unfortunately, as we argue
in Section 5, it is not possible for a browser to allow
this kind of tracking without also allowing cooperative
site tracking.

e Cooperative tracking allows multiple cooperating
sites to build a history of a visitor’s activities at all of
those sites, even if the user visits each site separately.
It allows the user’s personal information at one site
to be linked together with activities at a different site
that appears to be unrelated. Contrary to popular
belief, third-party cookie blocking does not defeat this
kind of tracking.

e Semi-cooperative, single-site tracking allows an
attacker’s site to determine information about a vis-
itor’s activities at another “target” site, by convinc-
ing the target site to embed content that points to
the attacker’s site. For example, a forum may allow
visitors to post remotely hosted images in public ar-
eas, but does not want the images to uniquely identify
“anonymous” users as they browse from one page to
the next. Semi-cooperative tracking is consistent with
the same-origin principle, but may be undesirable for
the visitor or the target site. It is possible to allow
some types of cross-site embedded content without al-
lowing semi-cooperative tracking, using a third-party
blocking policy as described in Section 2.3.

e Semi-cooperative, multiple-site tracking is sim-
ilar to semi-cooperative, single-site tracking, except
that the tracking can be used to follow users across
multiple target sites and even onto the attacker’s own
site.

e Non-cooperative tracking allows one site to deter-
mine information about a visitor’s activities at another
target site without any participation from the target
site.

The main cross-site tracking scenarios are illustrated in
Figure 1. A paranoid user might want to turn off all web fea-
tures and allow only single-session tracking, but the default
configuration of modern browsers today allows all of these
tracking types, including non-cooperative tracking. An ideal
browser that enforced a same-origin policy on all web fea-
tures would not allow non-cooperative tracking.

In this paper, we address only web privacy attacks, that
is, tracking performed by a remote site based on some leaked
persistent browser state. The task of building a browser that

protects against local privacy and security attacks (originat-
ing from “spyware” or other users of a shared machine) is a
separate problem that merits its own discussion elsewhere.

We assume that sites are not able to reliably track users
using just their IP address and user-agent string. Laptop
users may frequently change IP addresses, while users be-
hind a NAT firewall may share a single IP address. Thus,
using this information alone, it is not possible to identify
the user across visits. Storing unique identifiers into browser
state and reading them back on subsequent visits is the most
common way to track users without obtaining any personal
information from them.

2.2 Same-origin policies
Our formulation of the same-origin principle can be stated
as follows:

SAME-ORIGIN PRINCIPLE
Only the site that stores some information in the browser
may later read or modify that information.

The goal of this principle is to isolate multiple sites with
respect to their ability to read and modify browser state,
thereby allowing a user to browse as if each site and ses-
sion are completely independent of each other. However, in-
terpreted broadly, this principle would dramatically change
many important features of the web, including such sim-
ple things as cross-site hyperlinks and embedded content.
Therefore, we consider in the rest of this paper same-origin
policies which apply this principle to specific aspects of the
browser while allowing exceptions for cooperation.

As an example of an exception that a same-origin policy
might allow, consider the case where multiple sites jointly
observe the event of storing information in browser state.
We believe it is reasonable for a same-origin policy to allow
both sites to later read back as much information as they
observed. Similarly, it is possible for multiple sites to jointly
observe the read event. A same-origin policy can allow that
read, so long as each reader observes no more information at
the read event than it observed at the store event. The rea-
son is that these parties had the opportunity to save the in-
formation into their private per-site state at the store event,
so at the time of the read event, each reader should already
have access to the jointly stored information. We discuss
concrete applications of this policy in Sections 3.5 and 4.3.

In this paper, we focus on access control policies for read-
ing rather than modification. The types of browser state we
use as examples (cache and visited links) cannot be easily
modified once sent. Same-origin policies should also be used
for modifiable state, and for information entered by the user
into a webpage, such as saved passwords.

2.3 Third-party blocking policies

To prevent semi-cooperative tracking, a browser may aug-
ment its same-origin policy with a third-party blocking pol-
icy. This policy restricts a site’s access to its own client-side
persistent state if the site’s content is embedded on a differ-
ent site. The browser enforces this policy by checking the
domain of the top-level browser frame, which is generally
where the user thinks they are currently “located” and can
also be identified by the URL in the address bar.

Depending on whether the site in the top-level frame matches

the site that is trying to access its state, a browser may:

Normal 1E Firefox Ideal
cookies 3rd-party 3rd-party 3rd-party
Reading v v
Writing v v

Table 1: Top-level frame checking for cookies

e Allow the site to access its state, ignoring the domain
of the top level frame. This policy allows multiple-site
semi-cooperative tracking.

e Partition the site’s state into disjoint segments, one
for each possible domain of the top level frame. This
policy allows single-site semi-cooperative tracking.

e Expire the feature’s state at the end of the browser
session, preventing it from being used for long-term
tracking.

e Block the feature from working at all.

Third-party blocking is a useful way to prevent semi-
cooperative tracking for simple types of embedded content,
such as images. However, embedded frames are designed
with too many capabilities for this policy to have meaning-
ful effect, and thus a site that embeds a frame to another site
implicitly allows cooperative tracking. We describe how a
page in a cross-site frame can easily circumvent third-party
blocking and regain access to its state in Section 5.

Many options are available to the browser designer as to
the exact implementation of a third-party blocking policy.
Instead of checking the domain of the top-level frame, it
would also be appropriate to check the domain of the im-
mediate parent frame; because cross-site frames are a form
of cooperation, these checks are equivalent. Most modern
browsers do not enable full third-party blocking by default,
and they provide Platform for Privacy Preferences (P3P)
functionality [2] that allows sites to bypass third-party re-
strictions in exchange for promises not to misuse the visitor’s
information.

Third-party blocking policies have their place, but they
are greatly surpassed in importance by same-origin poli-
cies, which defend against more powerful web privacy at-
tacks that do not require even minimal cooperation from
the target site.

2.4 Example: Cookies

Cookies are an ideal example of a feature that is governed
by a same-origin policy, because they are designed to be
sent only to the site that set them. Although it is possible
for one site to gain unauthorized access to another site’s
cookies, these privacy leaks are generally a consequence of
flaws in the web site that allow cross-site scripting, which is
an accidental form of cooperation.

The third-party cookie blocking option on modern web
browsers allows users to block cookies if the top-level frame
domain does not match the cookie origin. However, as
shown in Table 1, neither Internet Explorer 6.0 nor Mozilla
Firefox 1.0.7 checks the top-level frame domain at both the
time the cookie is set and the time it is read. Because of
this partial blocking behavior, both browsers are exposed
to semi-cooperative multiple-site tracking even while third-
party cookie blocking is enabled.

Internet Explorer checks the top-level frame domain when
the cookie is set, so a user who first visits doubleclick.net
directly can now be tracked via a unique cookie all other sites
where doubleclick.net has embedded content. By con-
trast, Mozilla Firefox will let doubleclick.net set a cookie
at each site you visit even with third party cookie blocking
enabled, but only when you visit doubleclick.net directly
can the cookie be read.

If a user wishes to prevent both types of semi-cooperative
tracking, it would be wise to adopt a third-party blocking
policy that checks the domain of the top-level frame both
when the cookie is set and when it is read. However, as we
discuss in Section 5, this setting will not prevent cooperative
tracking.

3. CACHE TRACKING

About 60% of Web accesses are requests for cacheable
files [11]. These files are stored on the client browser to
speed up further downloads. Because sites can embed cross-
domain content, without a same-origin policy to restrict the
caching behavior, this feature presents a variety of track-
ing opportunities. In this section, we summarize some pre-
viously published cache-based tracking methods based on
timing and explain additional tracking techniques that we
have developed and tested. We then discuss the principles of
same-origin caching policies and describe a web browser ex-
tension, available for free download, that implements same-
origin policy for cache tracking.

3.1 Cache timing

By measuring the time it takes to load cached files, it is
possible to determine whether an image or page from a non-
cooperative site is already in the browser’s cache [3]. Using
JavaScript or Java, a site could load a set of control files
and test files, measuring the time it takes before the load
is complete. If the control files take significantly longer to
finish loading than the test files, the test files are probably
already in the browser’s cache.

3.2 DNS cache timing

Web privacy attacks using the DNS cache measure the
time it takes to perform a DNS lookup to determine whether
a given domain has been recently accessed by the user’s
browser [3]. These attacks are less powerful and less reliable
than attacks that use the regular content cache. If it were
possible to assign an origin to requests for DNS lookups, it
might be possible to segment the DNS cache using a same-
origin policy, although in practice this might not be worth-
while.

3.3 Cache control directives

For cache-based privacy attacks on non-cooperative sites,
timing attacks may be the only available option. However,
for semi-cooperative tracking, there is no reason to resort to
statistical techniques. It is sufficient to simply hide meta-
information information in the cache and read it back later.

Entity tags (Etags) are meta-information about a page
that is used for caching. When an entity tag is provided
along with a server response, the browser client will in-
clude the tag on subsequent requests for the page. Using
this information, perhaps in conjunction with referrer meta-
information, the server can link together multiple requests
for the same content. With slightly more effort, the Last-

Modified date header and other caching directives can also
be used to store and retrieve information.

3.4 Cached content

Rather than timing the cache or hiding meta-information,
it is often simpler to put the identifying information in the
content itself. As an example, consider a small JavaScript
file generated by server-side script, as shown in Figure 2.
This file can by included into any HTML page with a simple
<script> tag, and does not need to be on the same domain
as the page that includes it.

This example adds a unique, persistent, cross-domain user
identifier to all links on the page, allowing webmasters of
cooperating sites to build a master database of user activity
across all participating sites. Of course, a unique identifier
could also be used in other ways that are more difficult to
detect.

Many other cached content types besides JavaScript al-
low this type of cooperative tracking. We have constructed
demonstrations that use cached stylesheets, images, and fra-
mes to accomplish a similar effect.

3.5 Same-origin caching policy

We believe that the browser can prevent cache tracking
by non-cooperative sites by changing the caching behavior
to enforce a same-origin policy. In our method, the browser
considers the two main observers involved in writing the
cache entry: the site embedding the content (which may be
null for top-level content), and the host of the content. Dur-
ing the write event, the site embedding the content learns
only that some content was cached, whereas the hosting site
knows the full cache directive headers.

If the same site embeds the same content, it is appropriate
to allow the existing cached content to be used. As explained
in Section 2.2, neither observer of the read event learns more
information than it learned during the write event.

However, if a different site embeds the same content, the
existing cached content may not be used; the embedding site
would observe the fact that some content was cached, which
is information that it did not observe at the store event.
Instead, a separate cache entry is created and jointly owned
by the new pair (embedding site, hosting site). Thus, some
cache “hits” are turned into “misses,” but no information is
leaked from non-cooperating sites.

If desired, the third party blocking policy may be used to
further constrain offsite cache requests on the basis of the
top level frame. This policy could prevent cache directives
like Etags for being used in semi-cooperative tracking. Co-
operative tracking is also made more difficult through this
technique; however, as we show in Section 5, it is not entirely
eliminated.

Because this approach affects only the way information is
stored in the local browser cache, it is transparent to web
caches and does not break them. However, because these
caches do not enforce the same restrictive policies that the
browser does, they may leak information. If content can
be downloaded from a web cache faster than from the real
site, an attacker can determine that the web cache is being
used. The consequences of this attack are mitigated by the
fact that a web cache may have many users, and it is not
easy to distinguish among them purely on the basis of the
cached content. We suspect that same-origin policies de-
signed specifically for web caches may be possible, but they

<?php /* ——————————————— SERVER-SIDE CACHE DIRECTIVES -- - x/
if (getallheaders() [’If-Modified-Since’]) { // Check if the browser has a cached copy.
header (’HTTP/1.1 304 Not Modified’); // 1f so, tell browser to continue using it,
exit(); // and we don’t need to send a new identifier.
} // Otherwise, send cache headers to the browser:
header (’Expires: ’ . gmdate(’D, d M Y H:i:s’, time()+365%24x60%60)); // expires one year from today
header (’Last-Modified: ’ . gmdate(’D, d M Y H:i:s’, time())); // content was modified today
$id = randQ; // Also, generate a unique identifier for this user.
> [——- - -- CLIENT-SIDE JAVASCRIPT */
var links = document.getElementsByTagName(’a’); // Get a list of <a> tags in the current document.
for(var i = 0; i < links.length; i++) // For each hyperlink found, change the href by
links.item(i) .href += ’7userid=<7php echo $id 7>’; // appending the server-generated user id to the end.

Figure 2: A PHP file that can be embedded into an HTML page using a <script> tag. Using server-side
script, it instructs the browser to use the cached copy of itself; if no cached copy exists, it sets an expiration
date far in the future and generates a new unique identifier. Using client-side script, it appends the identifier

to all links in the current page.

would add significant storage overhead and complexity while
reducing performance.

3.6 Implementation

We implemented this same-origin caching policy as a Mozilla

Firefox browser extension, available for download at www.
safecache.com. Rather than require a separate user inter-
face for cache behavior, the extension hooks in to the user’s
cookie policy to decide how to handle caching. (We envision
that an ideal browser would provide a unified privacy setting
that does not require users to tweak individual features to
obtain the desired level of privacy.)

The extension overrides the browser’s default caching ser-
vice and installs itself as an intermediary. For each site, if
cookies are disabled, caching for that site is blocked. If only
session cookies are allowed, the cache for that site is allowed
but cleared on a per-session basis. If third-party cookie
blocking is enabled, the third-party caching is blocked. If
cookies are fully enabled, third-party caching is allowed but
partitioned as described above. Finally, if the user clears
cookies for a site, the extension automatically clears the ap-
propriate cache entries.

Our extension, signed with the Stanford University code
signing certificate, was reviewed and approved by the official
Mozilla extensions website, addons.mozilla.org. Several
thousand users downloaded the software. We did not expect
nor did we receive any complaints of degradation of browser
speed due to cache partitioning.

4. VISITED LINK TRACKING

Using different colors for visited and unvisited links is a
popular feature that can be found on about 74% of web-
sites [9]. This feature can make the navigation easier, espe-
cially for users who are unfamiliar with the site. However,
because this feature maintains persistent client-side state,
this single bit of information per link can be used for track-
ing purposes. The color of the link can be read directly using
JavaScript, or subtle side effects of the link’s rendering can
be detected. On-site links can be used for multiple-session
tracking, and because the feature is not segmented according
to a same-origin policy, off-site links can be used to execute
non-cooperative web privacy attacks. In this section, we de-
scribe some attacks and present a browser extension, avail-

able for download, that implements a same-origin policy for
user history.

4.1 Chameleon sites

Even without using JavaScript, there are simple ways to
customize a site based on the visitor’s history, and eventually
obtain this information. In Figure 3, a series of hyperlinked
bank logo images are stacked on top of each other. Using
a few simple CSS rules, the site operator can cause the un-
visited links to vanish. The resulting page appears to be
customized to whichever bank site that the user has visited.

By creating the login button as another stack of hyper-
linked images, an attacker running the site could determine
which site the user thought they were logging in to. Mi-
crosoft Outlook 2002 accepts stylesheets in emails and some
versions use the Internet Explorer history database to mark
visited links, so an attacker could even use this HTML code
as the starting point for an email phishing attack.! These
types of “chameleon” pages could also easily be used for
marketing purposes, displaying discount offers only to visi-
tors who have been to competitor sites.

4.2 Link cookies

On-site links can be also used for multiple-session track-
ing. A website could load a carefully chosen subset of a col-
lection of blank pages into an iframe, generating a unique
identifier for each user. On subsequent visits, links to the
blank pages could be used to recover the user’s identifier.
Because this technique requires only on-site links, it is yet
another cookie replacement technique that can be used for
semi-cooperative and cooperative tracking. These “link cook-
ies” are perfectly acceptable from the point of the same-
origin principle.

4.3 Same-origin visited link differentiation

Applying a same origin policy described in Section 2.2
to visited hyperlinks, there are two sites that can observe
when a page is visited by the user: the host of the referrer

!The other email clients we tested, Thunderbird and Gmail,
do not accept stylesheets. An attacker could define a default
email style to be displayed in this case. Note that if the
attacker obtained the user’s email address directly from a
web interaction with the user, the user’s visited links could
also be queried at that time.

<html><head>

<style>a { position:absolute; border:0; } a:link { display:none }</style>

</head><body>

</body></html>

Figure 3: Phishing page that automatically displays the logo of the user’s bank.

page, and the host of the visited page. Of course, both hosts
may be the same. The same-origin policy allows this jointly
stored browser state to be read by either observer, so either
site should be able to distinguish links to the visited page.
No other site should be able to obtain this information, so
a hyperlink located on page A and pointing at a visited
page B would appear unvisited unless both of the following
conditions are met:

e The site of page A is permitted to maintain persistent
state.

e Page A and page B are part of the same site, or the
user has previously visited the exact URL of page B
when the referrer was a page from site A.

We note that browsers that support URL reputation ser-
vices or whitelisting of domains might allow certain trusted
sites (like major search engines) to bypass the requirements
and always show the true state of visited links. Major
browsers that include built-in URL reputation services in-
clude Netscape 8 and Internet Explorer 7.

4.4 Implementation

We implemented this same-origin policy in a Mozilla Fire-
fox browser extension, available at www.safehistory.com.
The extension modifies the browser’s history service to pre-
vent visited links from being treated differently, then selec-
tively re-enables the standard behavior for visited links for
each link that meets the same-origin requirements.

As with our other implementation described in Section 3.6,
our extension inspects the user’s cookie preferences to de-
termine the appropriate policy to enforce. Depending on
whether the user allows all cookies, first-party cookies, ses-
sion cookies, or no cookies, we ensure that offsite visited
links are marked as long as they meet the requirements
above, partitioned by top level frame origin, expire at the
end of a session, or are disallowed entirely. If the user clears
cookies for a site, the extension automatically marks the as-
sociated history entries as unusable for purposes of visited
link differentiation.

This extension is also available on the official Mozilla ex-
tensions website, addons.mozilla.org. After the initial
beta release, we received helpful feedback from users on
how to more efficiently integrate with the browser’s history
database. This process of distributing prototypes as browser
extensions allows new security and privacy features to gain
wide exposure and acceptance before being fully integrated
into the browser.

5. COOPERATIVE TRACKING

Third party cookie blocking is often described as a way to
discourage advertising networks from building up a com-
prehensive profiles of web users, including their personal
preferences and the sites they have visited, without those
users explicitly providing personal information that would
link together their activities at different domains. Although
this kind of privacy against cooperating sites would be very
beneficial for users, in practice it is not possible to attain
while allowing persistent browser state that persists over
the course of multiple browser sessions. The reason is that
a variety of web features that do not themselves maintain
any state can nonetheless be used to pass state information
between cooperating sites.

Clearly, the simplest thing that cooperative attackers can
do is to share the same domain for all of their hosted con-
tent. However, this technique would make the cooperation
obvious to the user, and site owners may not wish to entrust
their all their web hosting to a central tracking authority.

If instead, the sites use different domains, there are still a
variety of techniques that they can use to link together the
state at one site with a visitors’s activities at another. We
present a few illustrative examples.

e JavaScript Redirection. JavaScript-induced browser
navigation has become an indispensible web feature,
and it also provides a method for enabling cooperative
tracking. A site (even inside an frame) can redirect
the top level frame to a tracker page on a different do-
main by modifying the top.location property, or by
calling the submit() method of a form that targets the
top level frame. The tracker site reads the user’s per-
sistent state, then redirects back to the original page
using a similar technique. The sites may communicate
through query parameters passed in the URL, the re-
ferrer of the request, or hidden form variables. This
transition may only take a fraction of a second, is in-
visible to the user, and allows the user’s state at the
two different domains to be linked together, requiring
no further interaction between the main site and the
tracker site.

e Meta Refresh. Instead of using JavaScript to per-
form the redirection, a site may instead send a <meta
http-equiv=refresh> tag to induce the browser to
navigate to the tracker site and back to the original
page.

e Popup Windows. Another technique is for one site
to use JavaScript to open a popup window on the do-
main of another site. The popup window can be closed
using JavaScript almost immediately, as soon as the

popup site is done retrieving its per-site state. Most
popup blockers do not prevent popup windows from
being opened as long as they are opened in response
to a user click event, and popup windows opened by
Macromedia Flash are usually not affected by popup
blockers.

e Hyperlinks. A low-tech solution that may not be
noticed by some users is to simply hyperlink to the
tracking site, and at that site, induce the user to click
a hyperlink back to the main site. One site that uses
this technique frequently is ign.com, which hosts its
interstitial ads on a different domain from its content
servers.

If our goal is to prevent cooperative site tracking, then
it might make sense to try to disable features that use per-
sistent state when site transitions are induced by a website
in such a way that the user has not had an opportunity
to inspect the URL of the site where the browser is navi-
gating. This was the approach recommended in the original
RFC for cookies [7], which instructed user agents not to send
cookies when these types of cross-site “unverifiable transac-
tions” occur. Unfortunately, this goal is no longer realistic
on the modern web due to the popularity of script-driven
navigation and the high frequency of cross-site transitions.
A site may trick a user into clicking a cross-site link and then
redirect back to the origin site. By the time the redirection
occurs, the persistent state has already been accessed by the
tracker. Although it might be possible to detect an initial
cross-site transition and disable access to persistent state,
there is no obvious point at which it is safe to return the
browser back to its normal behavior.

6. RELATED WORK

Specific web privacy attacks using DNS and browser cache
timing were first introduced by Felten and Schneider in [3].
They proposed a “domain tagging” approach to segment the
cache by origin, which is an example of the same-origin poli-
cies described in this paper. If a user wishes to also enforce a
third-party blocking policy, a more restrictive caching policy
than domain tagging is necessary.

Clover disclosed the technique for reading the user’s his-
tory using visited link differentiation in [1]. As a counter-
measure, Clover proposed that only on-site links be marked
visited. Our choice of same-origin policy provides additional
functionality due to our observation that both the referrer
and the target site are jointly observing the storing of per-
sistent information into the browser client. Thus, we allow
off-site links to be marked visited as long as a referrer from
the same origin pointing to the target page appears in the
history database.

Clover observed that in the Mozilla browser, it is possible
to set a persistent user identifier by visiting a unique se-
quence of pages in a hidden iframe. Internet Explorer does
not add automatic iframe navigation to the browser history,
so it was thought to be immune to this form of tracking.
However, we observed that Internet Explorer can still be
manipulated in a similar way, using the JavaScript click()
method on a hidden hyperlink that targets a hidden iframe.

As an alternative to enforcing a same-origin policy on vis-
ited links, a 2002 patch for the Mozilla Firefox browser [8],
was proposed to prevent JavaScript from determining the re-
sults of the :1ink and :visited pseudoclass selectors and to

prevent browsers from selectively downloading images based
on these selectors. However, there are often subtle side ef-
fects of a style rule that can be detected in JavaScript, and
in any case, chameleon pages such as the example in Figure 3
do not require JavaScript at all.

Jakobsson and Stamm suggested a different solution to
non-cooperative web privacy attacks [6], using as an exam-
ple a context-aware phishing attack demonstration [4]. They
proposed changes to web servers to protect visitors of that
site, whereas we implemented client-side countermeasures
that protect users at all sites. Client-side techniques place
the burden of restricting access on the browser, while server-
side techniques require resources to be dynamically assigned
unique identifiers that will be hard for an attacker to guess.
The techniques are complementary; our extensions provide
a solution for end users while the majority of servers remain
unprotected, while their server-side techniques provide a so-
lution for webmasters while the majority of web users remain
unprotected.

Because the same-origin policy relies on a trustworthy
DNS framework, same-origin policies are vulnerable to pharm-
ing attacks, where an attacker poisons the cache in an effort
to steal the browser state belonging to another site. The
privacy implications of a pharming attack are dwarfed by
the enormous security consequences of intercepted traffic.
Luckily, pharming attacks are difficult to execute. For sites
that need to store sensitive information such as login creden-
tials, Jakobsson and Juels show how to interactively query
the persistent browser state (including the cache and his-
tory) in order to construct secure “cookies” that are resis-
tant to noninteractive theft [5]. These replacement cookies
are compatible with the present work and can be shared
among cooperating sites as described in Section 5.

7. CONCLUSION

The complexity of the modern browser and the web it
interacts with make privacy, a hard goal in principle, even
harder in practice. This paper summarizes previously known
privacy problems and presents some more powerful tracking
methods based on caching various kinds of files. In pur-
suit of meaningful privacy guarantees, we propose that a
general same-origin principle should be applied uniformly
across different types of information stored on a web user’s
machine. We also develop ways for users to limit track-
ing, in the form of browser extensions that are available for
download. While these browser extensions provide control
over cache-based tracking and visited link tracking, we show
that there are limits to user control over tracking from co-
operating web sites. In particular, although cookie policies
provided by some browsers may suggest otherwise, we argue
that it is not feasible to allow multiple-session tracking by
a single site without also allowing multiple-session tracking
by any collection of cooperating sites.

Some of the primary ways in which the web works, de-
tailed in its original specifications and further expanded by
years of use, have resulted in unfortunate, unavoidable com-
promises between functionality and privacy. However, there
is no good reason to disallow one feature on the basis of pri-
vacy, while allowing another feature that presents an equal
privacy risk. Specifically, it seems irrational for browsers
to provide selective control over treatment of cookies, with-
out providing similar control over other mechanisms that
are equally effective for storing and retrieving state on the

client. The framework presented in this paper enables users
to make informed choices and achieve the maximum func-
tionality for a desired privacy level. The incorporation of
this global privacy decision into a simple, built-in user in-
terface suggests useful functionality for web browsers in the
future.

8. ACKNOWLEDGMENTS

We thank Darin Fisher, Markus Jakobsson, Ari Juels,
Fritz Schneider, Goli Shariff, and Brett Wilson for helpful
discussions about privacy implications of persistent browser
state.

9. REFERENCES

[1] A. Clover. Css visited pages disclosure, 2002. http://
seclists.org/lists/bugtraq/2002/Feb/0271.html.

[2] W. W. W. Consortium. P3P public overview, 2005.
http://wuw.w3.org/P3P/.

[3] E. W. Felten and M. A. Schneider. Timing attacks on
web privacy. In ACM Conference on Computer and
Communications Security, pages 25-32, 2000.

[4] M. Jakobsson, T. Jagatic, and S. Stamm. Phishing for
clues: Inferring context using cascading style sheets
and browser history, 2005.
http://www.browser-recon.info/.

[5] M. Jakobsson and A. Juels. The positive face of cache
cookies, 2005.

[6] M. Jakobsson and S. Stamm. Invasive browser sniffing
and countermeasures. Manuscript, 2005.

[7] D. Kristol and L. Montulli. RFC 2109: HTTP state
management mechanism, Feb. 1997.

[8] Mozilla.org. Bugzilla bug 147777, 2002. https:
//bugzilla.mozilla.org/show bug.cgi?id=147777.

[9] J. Nielsen. Change the color of visited links, 2004.
http://www.useit.com/alertbox/20040503.html.

[10] J. Ruderman. The same origin policy, 2001.
http://www.mozilla.org/projects/security/
components/same-origin.html.

[11] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and
H. Levy. Organization-based analysis of web-object
sharing and caching. In Proceedings of Second
USENIX Symposium on Internet Technologies and
Systems, pages 25-36, 1999.

