
CS155: Computer Security Spring 2002

Project #1
Due: Thursday, April 25th, 2002.

Goal

The goal of this assignment is to gain hands-on experience with the effect of buffer overflow bugs and
format string bugs. All work in this project must be done on a system called boxes (implemented
using User-Mode Linux) available on the course web site.

You are given the source code for five exploitable programs (/tmp/target1, ... , /tmp/target5).
These programs are all installed as setuid root in the boxes system. Your goal is to write five exploit
programs (exploit1, ..., exploit5). Program exploit[i] will execute program /tmp/target[i]

giving it certain input that should result in a root shell on the boxes system.

The skeletons for exploit1, ..., exploit5 are provided in the exploit/ directory. Note that
the exploit programs are very short, so there is no need to write a lot of code here.

The Environment

You will test your exploit programs within a system called Boxes. Boxes, based on User-Mode
Linux, allows you to boot a fully-functional Linux system as a userland process on another Linux
machine. Boxes is available from the course website. It should run on x86 GNU/Linux machines
running a recent 2.4-series kernel. Boxes is also installed in /opt/boxes on two machines in Sweet
Hall, plebe7 and plebe8 (aka courses2 and courses3). Please refer to the README file in the Boxes
distribution.

It is recommended that you test your exploits in a virtual machine booted with a “closedbox”
kernel, so that you cannot accidentally damage your host account.

You can use the ssh daemons running in the image to transfer files from openboxes (with hostfs
access) to closedboxes. It is recommended that you develop your code on the host machine, or at
least keep frequent backups. The User-Mode Linux kernel is mostly stable, but can occasionally
crash.

The Targets

The targets/ directory in the assignment tarball contains the source code for the targets, along
with a Makefile specifying how they are to be built.

Your exploits should assume that the compiled target programs are installed setuid-root in the
/tmp directory. The targets are called /tmp/target1, /tmp/target2, etc.

1



The Exploits

The exploits/ directory in the assignment tarball contains skeleton source for the exploits which
you are to write, along with a Makefile for building them. Also included is shellcode.h, which
gives Aleph One’s shellcode.

The Assignment

You are to write exploits, one per target. Each exploit, when run in the Boxes environment with
its target installed setuid-root in /tmp, should yield a root shell (/bin/sh).

Hints

Read Aleph One’s “Smashing the Stack for Fun and Profit.” Carefully. Read scut’s “Exploiting
Format String Vulnerabilities.” (Both are linked from the course website.)

To understand what’s going on, it is helpful to run code through gdb. In particular, notice
the “disassemble” and “stepi” commands. You can instrument your code with arbitrary assembly
using the asm () pseudofunction.

make sure that your exploits work within the Boxes environment.

Deliverables

You are to provide a tarball (i.e., a .tar.gz or .tar.bz2 file) containing the source files and Makefile
for building your exploits. All the exploits should build if the “make” command is issued. There

should be no directory structure: all files in the tarball should be in its root directory.

Along with your exploits, you must include file called ID which contains, on a single line, the
following: your SUID number; your Leland username; and your name, in the format last name,
comma, first name. An example:

$ cat ./ID

3133757 binky Clown, Binky The

$

You may want to include a README file with comments about your experiences or suggestions
for improving the assignment. Again, make sure that you test your exploits within the Boxes
environment.

Submission. Instructions for submitting the tarball will be posted on the course website.

2


