CS155: Computer Security Spring 2002

Project #3

Due: Wednesday, June 5th, 2002.

In this project, you will perform a security audit of another group’s Josh. You will produce a short
audit document analyzing the other group’s decisions, algorithms, and code in implementing Josh.

Additionally, if you find exploitable vulnerabilities of any sort within the Josh code you are auditing,
you are encouraged to implement exploits for these vulnerabilities and include them with your audit.

The Audit

In a file called AUDIT, you are to produce a security audit document. You should comment on the
organization of the Josh you are auditing.

For each of the tasks involved in Josh, you should document and analyze the choices which the
group made in writing Josh, both the algorithms and implementation used.

As a reminder, the Josh tasks are josh_exec, josh_access, the editor, journaling, and the extra credit;
refer to the Project Two handout.

Wherever you see a potential security vulnerability, you should be sure to comment on it and its
implications.

You need not write too much; 1500 words should be sufficient.

Exploit Code

If you can find a security vulnerability in the Josh you are auditing, and are able to exploit it, you
should write up an automated exploit for the vulnerability and include it with your submission.

We have reproduced the section “What Constitutes a Security Vulnerability” from Project Two at
the bottom of this document.

As an attacker, you have a great deal of latitude in attacking Josh. You may, for example, set
/etc/josh_access and /etc/josh_exec to any reasonable contents; you may create users and set their
~/.josh_x files; you may install files where you wish. (The Makefile is the right place for this.)

To script interaction with Josh, you may find expect handy. Refer to its manpage for more
information.

Deliverables

As in the first programming assignment, you will use the online Leland submit script,
Jusr/class/cs155/bin/submit. This is bfp2.

The directory which you submit must contain the audit document, with filename AUDIT, and all
exploit code. If you include executable code, you should also provide a Makefile for compiling it.

Along with your audit and exploits, you must include file called ID which contains, on a single line
for each person in your team, the following: your SUID number; your Leland username; and your



name, in the format last name, comma, first name. An example:

$ cat ./ID
3133757 binky Clown, Binky The
$

If you work alone, ID should have exactly one line. If you work with a partner, ID should have
exactly two lines.

Do not include any identifying information in any file except ID.

You will also want to include a README file with details of your design, comments about your
experiences, or suggestions for improving the assignment.

How You Will Be Graded

As always, all testing will take place in a closedbox environment, with Josh installed setuid root as
Jusr /local /sbin/josh .

You will be graded on the completeness and insightfulness of your security audit document.

In addition, any exploits you find and automate will raise your grade. Your comments will be
provided to the group whose code you audit. (This, again, is why it is important that you not
identify yourselves in any file other than ID.)

What Constitutes a Security Vulnerability

(This section duplicated from Project Two.)

In an application like Josh, a security vulnerability is anything that allows a player in the system to
obtain additional privileges. We list some possibilities below; this is not meant to be an exhaustive
list.

Obviously, if a buffer overflow in Josh allows untrusted user Alice to obtain a root shell, that’s a
vulnerability.

If Alice can obtain read or write access to a file, or execute access to a program beyond what is
granted to her by root, that’s a vulnerability.

If Alice can obtain access to more of Bob’s files than she should, that’s a vulnerability.

If Bob can configure his files so that, as Alice runs Josh, she is tricked into giving Bob some subset
of her privileges, that’s a vulnerability.

If the system administrator, in going over the Josh journal files, is misled about the activities that
took place on the system, or is tricked into giving up more privileges, that’s a vulnerability.

Denial-of-service attacks may rise to the level of security vulnerabilities if they are serious: for
example, if Bob can use Josh to disable Alice’s login. (Attacks prevented by effective use of ulimits
obviously don’t count.)

In demonstrating an exploit, you may assume any reasonable configuration for the various files
Josh uses to determine access; but, obviously, an exploit that derives from misconfiguration is not
an exploit against Josh.



