Network Protocols and Vulnerabilities

John Mitchell

Outline

- Basic Networking (FMU)
- Network attacks
 - Attack host networking protocols
 - SYN flooding, TCP Spoofing
 - Attack network infrastructure
 - Routing
 - Domain Name System

This lecture is about the way things work now and how they are not perfect. Next lecture - some security improvements (still not perfect).

Internet Infrastructure

- Local and interdomain routing
 - TCP/IP for routing, connections
 - BGP for routing announcements
- Domain Name System
 - Find IP address

TCP Protocol Stack

IP Internet Protocol

- Connectionless
 - Unreliable
 - Best effort
- Transfer datagram
 - Header
 - Data
Internet routing uses numeric IP address
• Typical route uses several hops

IP Protocol Functions (Summary)
• Routing
 • IP host knows location of router (gateway)
 • IP gateway must know route to other networks
• Error reporting
 • IP reports discards to source
• Fragmentation and reassembly
 • If packets smaller than the user data

User Datagram Protocol
• IP provides routing
 • IP address gets datagram to a specific machine
• UDP separates traffic by port
 • Destination port number gets UDP datagram to particular application process, e.g., 128.3.23.3, 53
 • Source port number provides return address
• Minimal guarantees (… mice and elephants)
 • No acknowledgment
 • No flow control
 • No message continuation

Transmission Control Protocol
• Connection-oriented, preserves order
 • Sender
 - Break data into packets
 - Attach packet numbers
 • Receiver
 - Acknowledge receipt; lost packets are resent
 - Reassemble packets in correct order

Internet Control Message Protocol
• Provides feedback about network operation
 • Error reporting
 • Reachability testing
 • Congestion Control
• Example message types
 • Destination unreachable
 • Time exceeded
 • Parameter problem
 • Redirect to better gateway
 • Echo/echo reply - reachability test
 • Timestamp request/reply - measure transit delay

Basic Security Problems
• Network packets pass by untrusted hosts
 • Eavesdropping, packet sniffing
• IP addresses are public
 • Smurf
• TCP connection requires state
 • SYN flooding attack
• TCP state easy to guess
 • TCP spoofing attack
Packet Sniffing

- Promiscuous NIC reads all packets
 - Read all unencrypted data
 - ftp, telnet send passwords in clear!

Sweet Hall attack installed sniffer on local machine
Prevention: Encryption, improved routing (Next lecture: IPSEC)

Smurf Attack

- Choose victim
 - Idea: Flood victim with packets from many sources
- Generate ping stream (ICMP Echo Req)
 - Network broadcast address with spoofed source IP set to victim
- Wait for responses
 - Every host on target network will generate a ping reply (ICMP Echo Reply) to victim
 - Ping reply stream can overload victim

Prevention: Turn off ping? Authenticated IP addresses?

TCP Handshake

C
SYN
SYN, ACK
ACK
Listening
Store data
Wait
Connected

SYN Flooding

- Attacker sends many connection requests
 - Spoofed source addresses
- Victim allocates resources for each request
 - Connection requests exist until timeout
 - Fixed bound on half-open connections
- Resources exhausted → requests rejected

SYN Flooding

C
SYN
SYN, ACK
ACK
Listening
Store data
Wait
Connected

Protection against SYN Attacks

- Client sends SYN
- Server responds to Client with SYN-ACK cookie
 - sqn = f(src addr, src port, dest addr, dest port, rand)
 - Server does not save state
- Honest client responds with ACK(sqn)
- Server checks response
 - If matches SYN-ACK, establishes connection

See http://cr.yp.to/syncookies.html
Random Deletion

- Half-open sessions
 - 171.64.82.03
 - 232.61.28.05
 - 168.44.14.21
 - 121.49.16.22
 - 132.24.14.28

- If queue is full, delete random entry
 - Legitimate connections have chance to complete
 - Fake addresses eventually deleted

Easy to implement, some improvement

TCP Connection Spoofing

- Each TCP connection has an associated state
 - Sequence number, port number

- Problem
 - Easy to guess state
 - Port numbers are standard
 - Sequence numbers often chosen in predictable way

IP Spoofing Attack

- A trusted connection
- Send packets with predictable seq numbers
- E impersonates B to A
 - Opens connection to A to get initial seq number
 - SYN-floods B’s queue
 - Sends packets to A that resemble B’s transmission
 - E cannot receive, but may execute commands on A

Attack can be blocked if E is outside firewall

TCP Sequence Numbers

- Need high degree of unpredictability
 - If attacker knows initial seq # and amount of traffic sent, can estimate likely current values
 - Send a flood of packets with likely seq numbers
 - larger bandwidth => larger flood possible

- Reported to be safe from practical attacks
 - Cisco IOS, OpenBSD 2.8-current, FreeBSD 4.3-RELEASE, AIX, HP/UX 11i, Linux Kernels after 1996
 - Solaris 2.6 if strong seq numbers turned on:
 - Set TCP_STRONG_ISS to 2 in /etc/default/inetinit.
 - HP/UX, IRIX 6.5.3, ... if so configured

Cryptographic protection

- Solutions above the transport layer
 - Examples: SSL and SSH
 - Protect against session hijacking and injected data
 - Do not protect against denial-of-service attacks caused by spoofed packets

- Solutions at network layer
 - IPSec
 - Can protect against
 - session hijacking and injection of data
 - denial-of-service attacks using session resets

TCP Congestion Control

- If packets are lost, assume congestion
 - Reduce transmission rate by half, repeat
 - If loss stops, increase rate very slowly

Design assumes routers blindly obey this policy
Competition

- Amiable Alice yields to boisterous Bob
 - Alice and Bob both experience packet loss
 - Alice backs off
 - Bob disobeys protocol, gets better results

TCP Attack on Congestion Control

- Misbehaving receiver can trick sender into ignoring congestion control
 - Receiver: duplicate ACK indicates gap
 - Packets within seq number range assumed lost
 - Sender executes fast retransmit algorithm
 - Malicious receiver can
 - Send duplicate ACK
 - ACK before data is received
 - needs some application level retransmission - e.g. HTTP 1.1 range requests ... See RFC 2581
 - Solutions
 - Add nonces - ACKs return nonce to prove reception

See: Savage et al., TCP Congestion Control with a Misbehaving Receiver

Routing Vulnerabilities

- Source routing attack
 - Can direct response through compromised host
- Routing Information Protocol (RIP)
 - Direct client traffic through compromised host
- Exterior gateway protocols
 - Advertise false routes
 - Send traffic through compromised hosts

Source Routing Attacks

- Attack
 - Destination host may use reverse of source route provided in TCP open request to return traffic
 - Modify the source address of a packet
 - Route traffic through machine controlled by attacker
- Defenses
 - Gateway rejects external packets claiming to be local
 - Reject pre-authorized connections if source routing info present
 - Only accept source route if trusted gateways listed in source routing info

Routing Table Update Protocols

- Interior Gateway Protocols: IGPs
 - distance vector type - each gateway keeps track of its distance to all destinations
 - Gateway-to-Gateway: GGP
 - Routing Information Protocol: RIP
- Exterior Gateway Protocol: EGP
 - used for communication between different autonomous systems

Interdomain Routing

- connected group of one or more Internet Protocol prefixes under a single routing policy (aka domain)
BGP overview

- Iterative path announcement
 - Path announcements grow from destination to source
 - Subject to policy (transit, peering)
 - Packets flow in reverse direction
- Protocol specification
 - Announcements can be shortest path
 - Nodes allowed to use other policies
 - E.g., “cold-potato routing” by smaller peer
 - Not obligated to use path you announce

BGP example

- Transit: 2 provides transit for 7
 - 7 reaches and is reached via 2
- Peering: 4 and 5 peer
 - Exchange customer traffic

Issues

- BGP convergence problems
 - Protocol allows policy flexibility
 - Some legal policies prevent convergence
 - Even shortest-path policy converges slowly
- Incentive for dishonesty
 - ISP pays for some routes, others free
- Security problems
 - Potential for disruptive attacks

DNS

Domain Name System

- Hierarchical Name Space
 - root
 - org
 - net
 - edu
 - com
 - uk
 - ca
 - wisc
 - ucb
 - stanford
 - cmu
 - mit
 - www

DNS Root Name Servers

- Root name servers
- Local name servers contact root servers when they cannot resolve a name
DNS Lookup Example

Client
Local DNS server

stanford.edu DNS server

cs.stanford.edu DNS server

dns.lookup.example.com

root & edu DNS server

DNS Implementation Vulnerabilities

- Reverse query buffer overrun in BIND Releases 4.9 (4.9.7 prior) and Releases 8 (8.1.2 prior)
 - gain root access
 - abort DNS service

- MS DNS for NT 4.0 (service pack 3 and prior)
 - crashes on chargen stream
 - telnet ntbox 19 | telnet ntbox 53

Caching

- DNS responses are cached
 - Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - NS records for domains

- DNS negative queries are cached
 - Don’t have to repeat past mistakes
 - E.g. misspellings, search strings in resolv.conf

- Cached data periodically times out
 - Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record

Subsequent Lookup Example

Client
Local DNS server

stanford.edu DNS server

cs.stanford.edu DNS server

ftp.cs.stanford.edu

DNS Implementation Vulnerabilities

- Reverse query buffer overrun in BIND
 - Releases 4.9 (4.9.7 prior) and Releases 8 (8.1.2 prior)
 - gain root access
 - abort DNS service

- MS DNS for NT 4.0 (service pack 3 and prior)
 - crashes on chargen stream
 - telnet ntbox 19 | telnet ntbox 53

DNS Implementation Vulnerabilities

- Reverse query buffer overrun in BIND
 - Releases 4.9 (4.9.7 prior) and Releases 8 (8.1.2 prior)
 - gain root access
 - abort DNS service

- MS DNS for NT 4.0 (service pack 3 and prior)
 - crashes on chargen stream
 - telnet ntbox 19 | telnet ntbox 53

Inherent DNS Vulnerabilities

- Users/hosts typically trust the host-address mapping provided by DNS

- Problems
 - Zone transfers can provide useful list of target hosts
 - Interception of requests or compromise of DNS servers can result in bogus responses
 - Solution – authenticated requests/responses

Bellovin/Mockapetris Attack

- Trust relationships use symbolic addresses
 - /etc/hosts.equiv contains friend.stanford.edu

- Requests come with numeric source address
 - Use reverse DNS to find symbolic name
 - Decide access based on /etc/hosts.equiv, ...

- Attack
 - Spoof reverse DNS to make host trust attacker
Reverse DNS

- Given numeric IP address, find symbolic addr
- To find 222.33.44.3,
 - Query 44.33.222.in-addr.arpa
 - Get list of symbolic addresses, e.g.,
 1 IN PTR server.small.com
 2 IN PTR boss.small.com
 3 IN PTR ws1.small.com
 4 IN PTR ws2.small.com

Attack

- Gain control of DNS service for domain
- Select target machine in domain
- Find trust relationships
 - SNMP, finger can help find active sessions, etc.
 - Example: target trusts host1
- Connect
 - Attempt rlogin from compromised machine
 - Target contacts reverse DNS server with IP addr
 - Use modified reverse DNS to say addr is host1
 - Target allows rlogin

Defense against this attack

- Double-check reverse DNS
 - Modify rlogin, rshd to query DNS server
 - See if symbolic addr maps to numeric addr
- Use another service besides DNS
 - Network Information Service (NIS, or YP)
 - Only works if attacker cannot control NIS ...
- Authenticate entries in DNS tables
 - Relies on some form of PKI?
 - Next lecture ...

Summary (I)

- Eavesdropping
 - Encryption, improved routing (Next lecture: IPSEC)
- Smurf
 - Turn off ping? Authenticated IP addresses?
- SYN Flooding
 - Cookies
 - Random deletion
- IP spoofing
 - Use less predictable sequence numbers

Summary (II)

- Source routing attacks
 - Additional info in packets, tighter control over routing
- Interdomain routing
 - Authenticated routing announcements
 - Other issues
- DNS attack
 - Double-check reverse DNS
 - Use another service besides DNS
 - Authenticate entries in DNS tables