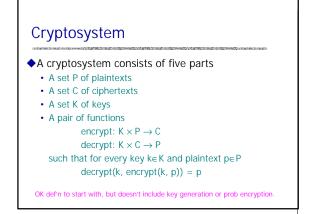


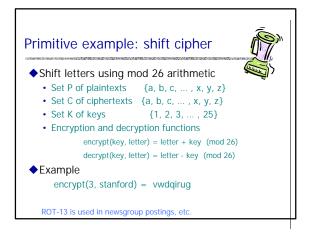
Cryptography

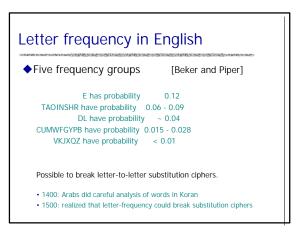
♦ls

- A tremendous tool
- The basis for many security mechanisms
- ♦Is not
 - The solution to all security problems
 - Reliable unless implemented properly
 - Reliable unless used improperly

Basic Concepts in Cryptography


- ◆Encryption scheme:
 - functions to encrypt, decrypt data
 - key generation algorithm
- Secret vs. public key
 - Public key: publishing key does not reveal key⁻¹
 Secret key: more efficient; can have key = key⁻¹
- ◆Hash function
 - Map input to short hash; ideally, no collisions
- Signature scheme
 - Functions to sign data, verify signature


Five-Minute University



Everything you could remember, five years after taking CS255 ... ?

One-time pad

- Secret-key encryption scheme (symmetric)
- Encrypt plaintext by xor with sequence of bitsDecrypt ciphertext by xor with same bit sequence
- Scheme for pad of length n
 - Set P of plaintexts: all n-bit sequences
 - Set C of ciphertexts: all n-bit sequences
 - Set K of keys: all n-bit sequences
 - Encryption and decryption functions
 - encrypt(key, text) = key \oplus text (bit-by-bit) decrypt(key, text) = key \oplus text (bit-by-bit)

Evaluation of one-time pad

Advantages

- Easy to compute encrypt, decrypt from key, text
- As hard to break as possible
 - This is an information-theoretically secure cipher
 - Given ciphertext, all possible plaintexts are equally likely, assuming that key is chosen randomly
- Disadvantage
 - Key is as long as the plaintext
 - How does sender get key to receiver securely?

Idea for stream cipher: use pseudo-random generators for key...

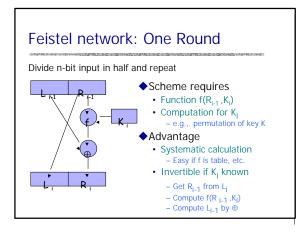
What is a "secure" cryptosystem?

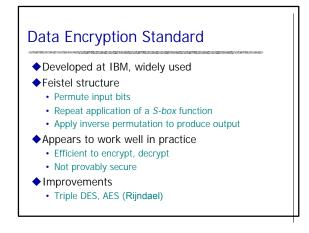
♦ Idea

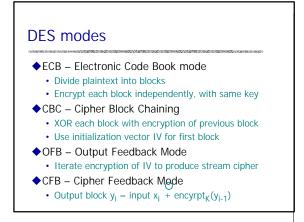
- If enemy intercepts ciphertext, cannot recover plaintext
- Issues in making this precise
 - What else might your enemy know?
 - The kind of encryption function you are using
 - Some plaintext-ciphertext pairs from last year
 - Some information about how you choose keys
 - What do we mean by "cannot recover plaintext" ?
 - Ciphertext contains no information about plaintext
 - No efficient computation could make a reasonable guess

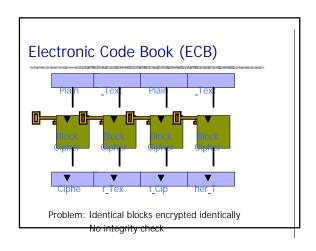
In practice Information-theoretic security is possible Shift cipher, one-time pad are info-secure for short message

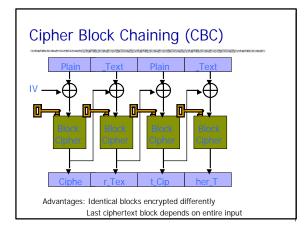
- But not practical
 - Long keys needed for good security
 - No public-key system
- Therefore
 - Cryptosystems in use are either
 - Just found to be hard to crack, or
 - Based on computational notion of security

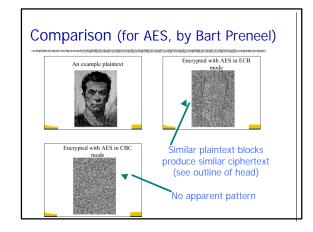

Example cryptosystems

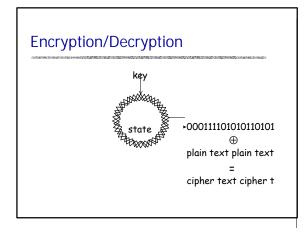

- Feistel constructions
 - Iterate a "scrambling function"
 - Example: DES, ...
 - AES (Rijndael) is also block cipher, but different
- Complexity-based cryptography
 - Multiplication, exponentiation are "one-way" fctns
 - Examples: RSA, El Gamal, elliptic curve systems,

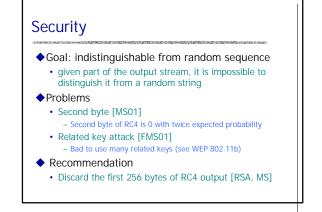

Feistel networks

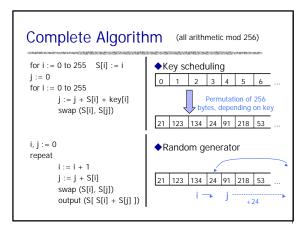

- Many block algorithms are Feistel networks
 - Examples

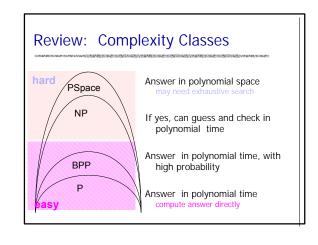

 DES, Lucifer, FREAL, Khufu, Khafre, LOKI, GOST, CAST, Blowfish, ...
 - Feistel network is a standard form for
 Iterating a function f on parts of a message
 Producing invertible transformation
- ◆AES (Rijndael) is related
- also a block cipher with repeated rounds
- not a Feistel network











One-way functions

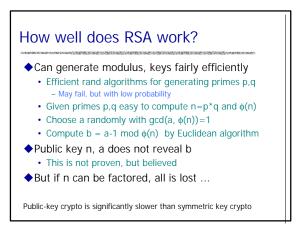
- ◆A function f is one-way if it is
 - Easy to compute f(x), given x
 - Hard to compute x, given f(x), for most x
- Examples (we believe they are one way)
 - f(x) = divide bits x = y@z and multiply f(x)=y*z
 - $f(x) = 3^x \mod p$, where p is prime
 - $f(x) = x^3 \mod pq$, where p,q are primes with |p| = |q|

One-way trapdoor

- ◆A function f is *one-way trapdoor* if
 - Easy to compute f(x), given x
 - Hard to compute x, given f(x), for most x
 - Extra "trapdoor" information makes it easy to compute x from f(x)

Example (we believe)

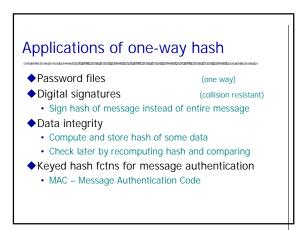
- $f(x) = x^3 \mod pq$, where p,q are primes with |p| = |q|
- Compute cube root using (p-1)*(q-1)

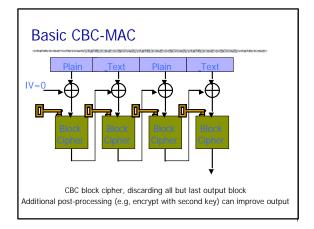

Public-key Cryptosystem Trapdoor function to encrypt and decrypt encrypt(key, message) decrypt(key ⁻¹, encrypt(key, message)) = message Resists attack Cannot compute m from encrypt(key, m) and key, unless you have key⁻¹

Arithmetic modulo pq Generate secret primes p, q Generate secret numbers a, b with x^{ab} ≡ x mod pq Public encryption key ⟨n, a⟩ Encrypt(⟨n, a⟩, x⟩ = x^a mod n Private decryption key ⟨n, b⟩ Decrypt(⟨n, b⟩, y⟩ = y^b mod n Main properties This works Cannot compute b from n,a – Apparently, need to factor n = pg

- ◆Let p, q be two distinct primes and let n=p*q
 - Encryption, decryption based on group Z_n*
 For n=p*q, order φ(n) = (p-1)*(q-1) - Proof: (p-1)*(q-1) = p*q - p - q + 1
- Key pair: $\langle a, b \rangle$ with $ab \equiv 1 \mod \phi(n)$
 - Encrypt(x) = x^a mod n
 - Decrypt(y) = y^b mod n
 - Since ab = 1 mod φ(n), have x^{ab} = x mod n

 Proof: if gcd(x,n) = 1, then by general group theory, otherwise use "Chinese remainder theorem".


Message integrity


- ◆For RSA as stated, integrity is a weak point
 - encrypt(k*m) = (k*m)^e = k^e * m^e
 - encrypt(k)*encrypt(m)This leads to "chosen ciphertext" form of attack
 - If someone will decrypt *new* messages, then can trick them into decrypting m by asking for decrypt(k^e *m)
- Implementations reflect this problem
 "The PKCS#1 ... RSA encryption is intended primarily to provide confidentiality. ... It is not intended to provide integrity." RSA Lab. Bulletin
- Additional mechanisms provide integrity

One-way hash functions

- Length-reducing function h
 - Map arbitrary strings to strings of fixed length
- One way
 - Given y, hard to find x with h(x)=y
 - Given m, hard to find m' with h(m) = h(m')
- Collision resistant
 - Hard to find any distinct m, m' with h(m)=h(m')

Resists forgery

- Cannot compute Sign(Key⁻¹, m) from m and Key
- Resists existential forgery: given Key, cannot produce Sign(Key⁻¹, m) for any random or otherwise arbitrary m

RSA Signature Scheme

Publish decryption instead of encryption key

- Alice publishes decryption key
- Anyone can decrypt a message encrypted by Alice
- Only Alice can send encrypt messages
- In more detail,
 - Alice generates primes p, q and key pair (a, b)
 - Sign(x) = $x^a \mod n$
 - Verify(y) = y^b mod n
- Since $ab \equiv 1 \mod \phi(n)$, have $x^{ab} \equiv x \mod n$

Public-Key Infrastructure (PKI)

- Anyone can send Bob a secret message Provided they know Bob's public key
- How do we know a key belongs to Bob?
- If imposter substitutes another key, read Bob's mail One solution: PKI
- Trusted root authority (VeriSign, IBM, United Nations) - Everyone must know the verification key of root authority
- Root authority can sign certificates
- · Certificates identify others, including other authorities
- · Leads to certificate chains

Crypto Summary

Encryption scheme:

- decrypt(key⁻¹,ciphertext) encrypt(key, plaintext)
- Secret vs. public key
 - Public key: publishing key does not reveal key⁻¹
 - Secret key: more efficient; can have key = key⁻¹
- Hash function
 - Map long text to short hash; ideally, no collisions
 - Keyed hash (MAC) for message authentication
- Signature scheme
 - Private key⁻¹ and public key provide authentication

Limitations of cryptography

Most security problems are not crypto problems

- This is good
 - Cryptography works!
- This is bad
- People make other mistakes; crypto doesn't solve them

Examples

- Deployment and management problems [Anderson]
- Ineffective use of cryptography
 - Example 802.11b WEP protocol

Why cryptosystems fail [Anderson] Security failures not publicized Government: top secret Military: top secret Private companies Embarrassment Stock price Liability Paper reports problems in banking industry Anderson hired as consultant representing

unhappy customers, 1992 class action suit

Anderson study of bank ATMs

- US Federal Reserve regulations
- Customer not liable unless bank proves fraud
- UK regulations significantly weaker
- Banker denial and negligence
 - Teenage girl in Ashton under Lyme
 Convicted of stealing from her father, forced to plead
 guilty, later determined to be bank error
 - Sheffield police sergeant

 Charged with theft and suspended from job; bank error
- 1992 class action suit

Sources of ATM Fraud

Internal Fraud

- PINs issued through branches, not post

 Bank employees know customer's PIN numbers
- One maintenance engineer modified an ATM – Recorded bank account numbers and PINs
- One bank issues "master" cards to employees
- Can debit cash from customer accountsBank with good security removed control to cut cost
- No prior study of cost/benefit; no actual cost reduction
- Increase in internal fraud at significant cost
 Employees did not report losses to management out of fear

Sources of ATM Fraud

External Fraud

- Full account numbers on ATM receipts
 - Create counterfeit cards
 - Attackers observe customers, record PIN
 - Get account number from discarded receipt
 - One sys: Telephone card treated as previous bank card
 Apparently programming bug
 - Attackers observe customer, use telephone card
- Attackers produce fake ATMs that record PIN
- Postal interception accounts for 30% if UK fraud
 Nonetheless, banks have poor postal control procedures
- Many other problems

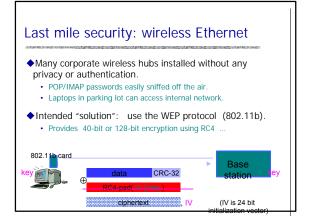
Sources of ATM Fraud

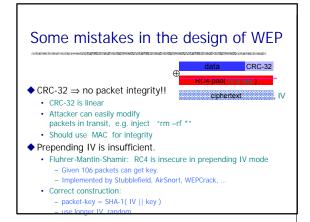
PIN number attacks on lost, stolen cards

- Bank suggestion of how to write down PIN
- Use weak code; easy to breakProgrammer error all customers issued same PIN
- Banks store encrypted PIN on file
- Programmer can find own encrypted PIN, look for other accounts with same encrypted PIN
- One large bank stores encrypted PIN on mag strip
 Possible to change account number on strip, leave
 encrypted PIN, withdraw money from other account

Additional problems

- Some problems with encryption products
 - Special hardware expensive; software insecure
 - Banks buy bad solutions when good ones exist
 Not knowledgeable enough to tell the difference
 - Poor installation and operating procedures
 - Cryptanalysis possible for homegrown crypto


More sophisticated attacks described in paper


Wider Implications

- Equipment designers and evaluators focus on technical weaknesses
 - Banking systems have some loopholes, but these do not contributed significantly to fraud
- Attacks were made possible because
 - · Banks did not use products properly
 - Basic errors in
 - System design
 - Application programming
 - Administration

Summary

- Cryptographic systems suffer from lack of failure information
 - Understand all possible failure modes of system
 - Plan strategy to prevent each failure
 - · Careful implementation of each strategy
- Most security failures due to implementation and management error
 - Program must carried out by personnel available



Summary

- Main functions from cryptography
 - Public-key encryption, decryption, key generation
 Construction
 - Symmetric encryption
 Block ciphers, CBC Mode
 - Stream cipher
 - Hash functions
 - Cryptographic hash
 - Keyed hash for Message Authentication Code (MAC)
 - Digital signatures
- Be careful
 - Many non-intuitive properties; prefer public review
 - Need to implement, use carefully

