
1

Network Worms: 
Attacks and Defenses 

John Mitchell

with slides borrowed from various (noted) sources

CS 155 Spring 2006

2

Outline

Worm propagation
Worm examples
Propagation models

Detection methods
Traffic patterns: EarlyBird
Watch attack: TaintCheck and Sting
Look at vulnerabilities: Generic Exploit Blocking

Disable
Generate worm signatures and use in network or 
host-based filters

3

Worm

A worm is self-replicating software designed to 
spread through the network

Typically exploit security flaws in widely used services
Can cause enormous damage 

Launch DDOS attacks, install bot networks 
Access sensitive information
Cause confusion by corrupting the sensitive information

Worm vs Virus vs Trojan horse
A virus is code embedded in a file or program
Viruses and Trojan horses rely on human intervention 
Worms are self-contained and may spread autonomously

4

Cost of worm attacks

Morris worm,  1988
Infected approximately 6,000 machines

10% of computers connected to the Internet 

cost ~ $10 million in downtime and cleanup

Code Red worm, July 16 2001
Direct descendant of Morris’ worm
Infected more than 500,000 servers

Programmed to go into infinite sleep mode July 28 

Caused ~ $2.6 Billion in damages,

Love Bug worm: $8.75 billion

Statistics: Computer Economics Inc., Carlsbad, California

5

Aggregate statistics

6

Internet Worm (First major attack)

Released November 1988
Program spread through Digital, Sun workstations 
Exploited Unix security vulnerabilities

VAX computers and SUN-3 workstations running versions 
4.2 and 4.3 Berkeley UNIX code

Consequences
No immediate damage from program itself 
Replication and threat of damage 

Load on network, systems used in attack
Many systems shut down to prevent further attack



2

7

Internet Worm Description

Two parts
Program to spread worm

look for other machines that could be infected
try to find ways of infiltrating these machines

Vector program (99 lines of C) 
compiled and run on the infected machines 
transferred main program to continue attack

Security vulnerabilities
fingerd – Unix finger daemon
sendmail - mail distribution program
Trusted logins (.rhosts)
Weak passwords

8

Three ways the worm spread

Sendmail
Exploit debug option in sendmail to allow shell 
access 

Fingerd
Exploit a buffer overflow in the fgets function
Apparently, this was the most successful attack

Rsh
Exploit trusted hosts
Password cracking

9

sendmail

Worm used debug feature
Opens TCP connection to machine's SMTP port
Invokes debug mode
Sends a RCPT TO that pipes data through shell
Shell script retrieves worm main program

places 40-line C program in temporary file called x$$,l1.c 
where $$ is current process ID
Compiles and executes this program
Opens socket to machine that sent script
Retrieves worm main program, compiles it and runs

10

fingerd

Written in C and runs continuously
Array bounds attack 

Fingerd expects an input string 
Worm writes long string to internal 512-byte 
buffer 

Attack string 
Includes machine instructions
Overwrites return address
Invokes a remote shell 
Executes privileged commands

11

Remote shell

Unix trust information
/etc/host.equiv – system wide trusted hosts file
/.rhosts and ~/.rhosts – users’ trusted hosts file

Worm exploited trust information
Examining files that listed trusted machines
Assume reciprocal trust

If X trusts Y, then maybe Y trusts X

Password cracking
Worm was running as daemon (not root) so needed to break 
into accounts to use .rhosts feature
Dictionary attack
Read /etc/passwd, used ~400 common password strings

12

The worm itself

Program is called 'sh' 
Clobbers argv array so a 'ps' will not show its name
Opens its files, then unlinks (deletes) them so can't be found 

Since files are open, worm can still access their contents

Tries to infect as many other hosts as possible
When worm successfully connects, forks a child to continue 
the infection while the parent keeps trying new hosts

Worm did not:
Delete system's files, modify existing files, install trojan
horses, record or transmit decrypted passwords, capture 
superuser privileges, propagate over UUCP, X.25, DECNET, 
or  BITNET



3

13

Detecting Morris Internet Worm

Files
Strange files appeared in infected systems
Strange log messages for certain programs

System load
Infection generates a number of processes
Systems were reinfected => number of processes 
grew and systems became overloaded

Apparently not intended by worm’s creator

Thousands of systems were shut down

14

Stopping the worm

System admins busy for several days 
Devised, distributed, installed modifications 

Perpetrator
Student at Cornell; discovered quickly and charged
Sentence: community service and $10,000 fine

Program did not cause deliberate damage 
Tried (failed) to control # of processes on host machines

Lessons? 
Security vulnerabilities come from system flaws 
Diversity is useful for resisting attack
“Experiments” can be dangerous

15

Sources for more information

Eugene H. Spafford, The Internet Worm: Crisis and 
Aftermath, CACM 32(6) 678-687, June 1989
Page, Bob, "A Report on the Internet Worm", 
http://www.ee.ryerson.ca:8080/~elf/hack/iworm.html

16

Some historical worms of note

Used a single UDP packet for explosive growth1/03Slammer

11 days after announcement of vulnerability; peer-to-
peer network of compromised systems

6/02Scalper

Windows worm: client-to-server, c-to-c, s-to-s, …9/01Nimda

Recompiled source code locally8/01Walk

First sig Windows worm; Completely memory resident7/01Code Red

Vigilante worm that secured vulnerable systems6/01Cheese

Stealthy, rootkit worm3/01Lion

Exploited three vulnerabilities1/01Ramen

Random scanning of IP address space5/98ADM

Used multiple vulnerabilities, propagate to “nearby” sys11/88Morris

DistinctionDateWorm

Kienzle and Elder

17

Increasing propagation speed

Code Red, July 2001
Affects Microsoft Index Server 2.0, 

Windows 2000 Indexing service on Windows NT 4.0.
Windows 2000 that run IIS 4.0 and 5.0 Web servers

Exploits known buffer overflow in Idq.dll
Vulnerable population (360,000 servers) infected in 14 hours

SQL Slammer, January 2003
Affects in Microsoft SQL 2000
Exploits known buffer overflow vulnerability

Server Resolution service vulnerability reported June 2002 
Patched released in July 2002 Bulletin MS02-39

Vulnerable population infected in less than 10 minutes

18

Code Red

Initial version released July 13, 2001
Sends its code as an HTTP request
HTTP request exploits buffer overflow 
Malicious code is not stored in a file

Placed in memory and then run

When executed,
Worm checks for the file C:\Notworm

If file exists, the worm thread goes into infinite sleep state

Creates new threads
If the date is before the 20th of the month, the next 99 
threads attempt to exploit more computers by targeting 
random IP addresses



4

19

Code Red of July 13 and July 19
Initial release of July 13

1st through 20th month: Spread 
via random scan of 32-bit IP addr space

20th through end of each month: attack.
Flooding attack against 198.137.240.91  (www.whitehouse.gov)

Failure to seed random number generator ⇒ linear growth

Revision released July 19, 2001.
White House responds to threat of flooding attack by 
changing the address of www.whitehouse.gov
Causes Code Red to die for date ≥ 20th of the month.
But: this time random number generator correctly seeded

Slides: Vern Paxson
20

Slide: Vern Paxson

21

Measuring activity: network telescope

Monitor cross-section of Internet address space, measure traffic 
“Backscatter” from DOS floods
Attackers probing blindly
Random scanning from worms

LBNL’s cross-section: 1/32,768 of Internet
UCSD, UWisc’s cross-section: 1/256.

22

Spread of Code Red

Network telescopes estimate of # infected hosts: 
360K.  (Beware DHCP & NAT)
Course of infection fits classic logistic.
Note: larger the vulnerable population, faster the 
worm spreads.

That night (⇒ 20th), worm dies …
… except for hosts with inaccurate clocks!
It just takes one of these to restart the worm on 
August 1st …

Slides: Vern Paxson

23
Slides: Vern Paxson

24

Code Red 2

Released August 4, 2001.
Comment in code: “Code Red 2.”

But in fact completely different code base.
Payload: a root backdoor, resilient to reboots.
Bug: crashes NT, only works on Windows 2000.
Localized scanning: prefers nearby addresses.

Kills Code Red 1.
Safety valve: programmed to die Oct 1, 2001.

Slides: Vern Paxson



5

25

Striving for Greater Virulence: Nimda

Released September 18, 2001.
Multi-mode spreading:

attack IIS servers via infected clients 
email itself to address book as a virus 
copy itself across open network shares 
modifying Web pages on infected servers w/ client exploit  
scanning for Code Red II backdoors (!)

⇒ worms form an ecosystem!
Leaped across firewalls.

Slides: Vern Paxson
26

Code Red 2 kills 
off Code Red 1

Code Red 2 settles 
into weekly pattern

Nimda enters the 
ecosystem

Code Red 2 dies off 
as programmed

CR 1 
returns 
thanks
to bad 
clocks

Slides: Vern Paxson

27

Workshop on Rapid Malcode

WORM '05
Proc 2005 ACM workshop on Rapid malcode

WORM '04 
Proc 2004 ACM workshop on Rapid malcode

WORM '03 
Proc 2003 ACM workshop on Rapid malcode

28

How do worms propagate?

Scanning worms
Worm chooses “random” address

Coordinated scanning
Different worm instances scan different addresses

Flash worms
Assemble tree of vulnerable hosts in advance, propagate along tree

Not observed in the wild, yet
Potential for 106 hosts in < 2 sec !  [Staniford]

Meta-server worm 
Ask server for hosts to infect (e.g., Google for “powered by phpbb”)

Topological worm:
Use information from infected hosts (web server logs, email address 
books, config files, SSH “known hosts”)

Contagion worm 
Propagate parasitically along with normally initiated communication

29

How fast are scanning worms?

Model propagation as infectious epidemic 
Simplest version: Homogeneous random contacts

N
IS

dt
dS

N
IS

dt
dI

β

β

−=

=
)1( ii

dt
di

−= β
)(

)(

1
)( Tt

Tt

e
eti −

−

+
= β

β

courtesy Paxson, 
Staniford, Weaver

N: population size
S(t): susceptible hosts at time t
I(t): infected hosts at time t
ß: contact rate
i(t): I(t)/N, s(t): S(t)/N

30

Shortcomings of simplified model

Prediction is faster than observed propagation
Possible reasons

Model ignores infection time, network delays
Ignores reduction in vulnerable hosts by patching

Model supports unrealistic conclusions
Example: When the Top-100 ISP’s deploy 
containment strategies, they still can not prevent 
a worm spreading at 100 probes/sec from 
affecting 18% of the internet, no matter what the 
reaction time of the system towards containment



6

31

Analytical Active Worm Propagation Model

More detailed discrete time model
Assume infection propagates in one time step
Notation

N – number of vulnerable machines
h – “hitlist: number of infected hosts at start
s – scanning rate: # of machines scanned per infection
d – death rate: infections detected and eliminated
p – patching rate: vulnerable machines become invulnerable
At time i, ni are infected and mi are vulnerable

Discrete time difference equation
Guess random IP addr, so infection probability (mi-ni)/232

Number infected reduced by pni + dni

[Chen et al., Infocom 2003]

32

Effect of parameters on propagation

(Plots are for 1M vulnerable machines, 100 scans/sec, death rate 0.001/second

Other models: 
Wang et al, Modeling Timing Parameters … , WORM ’04 (includes delay)
Ganesh et al, The Effect of Network Topology …, Infocom 2005 (topology)

2. Patching Rate1. HitList Size 3.Time to Complete Infection

33

Worm Detection and Defense
Detect via honeyfarms: collections of 
“honeypots” fed by a network telescope.

Any outbound connection from honeyfarm = worm.
(at least, that’s the theory)

Distill signature from inbound/outbound traffic.
If telescope covers N addresses, expect detection 
when worm has infected 1/N of population.

Thwart via scan suppressors: network 
elements that block traffic from hosts that 
make failed connection attempts to too many 
other hosts

5 minutes to several weeks to write a signature
34

DeepSight Notification

IP Addresses Infected With The Blaster Worm

8/7 TMS 
alerts 
stating 
activity is 
being seen 
in the wild. 

8/5 -
DeepSight 
TMS  
Weekly 
Summary, 
warns of 
impending 
worm.

7/16 - DeepSight Alerts  
& TMS initial alerts on 
the RPC DCOM attack

7/25 - DeepSight TMS & 
Alerts update with a 
confirmation of exploit 
code in the wild. Clear 
text IDS signatures 
released.

7/23 - DeepSight TMS 
warns of suspected 
exploit code in the 
wild. Advises to 
expedite patching.

8/11 - Blaster 
worm breaks out. 
ThreatCon is 
raised to level 3

Early Warning : Blaster Worm

Slide: Carey Nachenberg, Symantec

35

months

days

hrs

mins

secs

Program
Viruses Macro

Viruses E-mail
Worms Network

Worms

Flash
Worms

Pre-
automation

Post-
automation

C
on

ta
gi

on
 P

er
io

d

Si
gn

at
ur

e
R

es
po

ns
e 

Pe
rio

d

Need for automation
Current threats can spread faster than defenses can reaction
Manual capture/analyze/signature/rollout model too slow

1990 Time 2005 

Contagion Period
Signature Response Period

Slide: Carey Nachenberg, Symantec
36

Signature inference

Challenge
need to automatically learn a content “signature” for each 
new worm – potentially in less than a second!

Some proposed solutions
Singh et al, Automated Worm Fingerprinting, OSDI ’04
Kim et al, Autograph: Toward Automated, Distributed Worm 
Signature Detection, USENIX Sec ‘04



7

37

Signature inference

Monitor network and look for strings common 
to traffic with worm-like behavior

Signatures can then be used for content filtering

Slide: S Savage 38

Content sifting

Assume there exists some (relatively) unique 
invariant bitstring W across all instances of a 
particular worm (true today, not tomorrow...)
Two consequences

Content Prevalence: W will be more common in traffic 
than other bitstrings of the same length
Address Dispersion: the set of packets containing W will 
address a disproportionate number of distinct sources and 
destinations

Content sifting: find W’s with high content prevalence 
and high address dispersion and drop that traffic

Slide: S Savage

39

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1  10  100  1000  10000  100000

Only 0.6% of the 40 byte 
substrings  repeat more 
than 3 times in a minute

Number of repeats

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 s

ig
na

tu
re

s

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *) 40

Address Dispersion Table
Sources       DestinationsPrevalence Table

The basic algorithm
Detector in 

network
A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

41

1 (B)1 (A)

Address Dispersion Table
Sources       Destinations

1

Prevalence Table

The basic algorithm
Detector in 

network
A B

cnn.com

C

DE

(Stefan Savage, UCSD *) 42
1 (A)1 (C)
1 (B)1 (A)

Address Dispersion Table
Sources       Destinations

1
1

Prevalence Table

The basic algorithm
Detector in 

network
A B

cnn.com

C

DE

(Stefan Savage, UCSD *)



8

43
1 (A)1 (C)

2 (B,D)2 (A,B)

Address Dispersion Table
Sources       Destinations

1
2

Prevalence Table

The basic algorithm
Detector in 

network
A B

cnn.com

C

DE

(Stefan Savage, UCSD *) 44
1 (A)1 (C)

3 (B,D,E)3 (A,B,D)

Address Dispersion Table
Sources       Destinations

1
3

Prevalence Table

The basic algorithm
Detector in 

network
A B

cnn.com

C

DE

(Stefan Savage, UCSD *)

45

Challenges

Computation
To support a 1Gbps line rate we have 12us to process each 
packet, at 10Gbps 1.2us, at 40Gbps…

Dominated by memory references; state expensive

Content sifting requires looking at every byte in a packet

State
On a fully-loaded 1Gbps link a naïve implementation can 
easily consume 100MB/sec for table
Computation/memory duality: on high-speed (ASIC) 
implementation, latency requirements may limit state to 
on-chip SRAM

(Stefan Savage, UCSD *) 46

Which substrings to index? 

Approach 1: Index all substrings
Way too many substrings too much computation too much 
state

Approach 2: Index whole packet
Very fast but trivially evadable (e.g., Witty, Email Viruses)

Approach 3: Index all contiguous substrings of a fixed 
length ‘S’

Can capture all signatures of length ‘S’ and larger

A B C D E F G H I J K

(Stefan Savage, UCSD *)

47

How to represent substrings?

Store hash instead of literal to reduce state
Incremental hash to reduce computation
Rabin fingerprint is one such efficient incremental 
hash function [Rabin81,Manber94] 

One multiplication, addition and mask per byte

R A N D A B C D O M

R A B C D A N D O M

P1

P2

Fingerprint = 11000000

Fingerprint = 11000000

(Stefan Savage, UCSD *) 48

How to subsample?

Approach 1: sample packets
If we chose 1 in N, detection will be slowed by N

Approach 2: sample at particular byte 
offsets

Susceptible to simple evasion attacks
No guarantee that we will sample same sub-string 
in every packet

Approach 3: sample based on the hash 
of the substring

(Stefan Savage, UCSD *)



9

49

Field
Extraction

Comparator

Comparator

Comparator

Counters
Hash 1

Hash 2

Hash 3

Stage 1

Stage 2

Stage 3

ALERT !
If

all counters
above 

threshold

Finding “heavy hitters” via Multistage Filters

Increment

(Stefan Savage, UCSD *) 50

Multistage filters in action

Grey = other hahes
Yellow = rare hash

Green = common hash

Stage 1

Stage 3

Stage 2

Counters
Threshold

. . . 

(Stefan Savage, UCSD *)

51

Naïve implementation might maintain a list of sources 
(or destinations) for each string hash

But dispersion only matters if its over threshold
Approximate counting may suffice
Trades accuracy for state in data structure

Scalable Bitmap Counters
Similar to multi-resolution bitmaps [Estan03]
Reduce memory by 5x for modest accuracy error

Observation:
High address dispersion is rare too 

(Stefan Savage, UCSD *) 52

Scalable Bitmap Counters

Hash : based on Source (or Destination)
Sample : keep only a sample of the bitmap
Estimate : scale up sampled count
Adapt : periodically increase scaling factor

With 3, 32-bit bitmaps, error factor = 28.5%

1 1

Hash(Source)

Error Factor = 2/(2numBitmaps-1)

(Stefan Savage, UCSD *)

53

Content sifting summary

Index fixed-length substrings using 
incremental hashes
Subsample hashes as function of hash value
Multi-stage filters to filter out uncommon 
strings
Scalable bitmaps to tell if number of distinct 
addresses per hash crosses threshold

This is fast enough to implement

(Stefan Savage, UCSD *) 54

Software prototype: Earlybird

AMD Opteron 242 (1.6Ghz)

Linux 2.6

Libpcap

EB Sensor code (using C)

EarlyBird Sensor

TAP
Summary

data

Reporting 
& Control

EarlyBird Aggregator

EB Aggregator (using C)

Mysql + rrdtools

Apache + PHP

Linux 2.6

Setup 1: Large fraction of the UCSD campus traffic, 
Traffic mix: approximately 5000 end-hosts, dedicated 
servers for campus wide services (DNS, Email, NFS etc.)
Line-rate of traffic varies between 100 & 500Mbps. 

Setup 2: Fraction of local ISP Traffic, 
Traffic mix: dialup customers, leased-line customers 
Line-rate of traffic is roughly 100Mbps. 

To other sensors and 
blocking devices

(Stefan Savage, UCSD *)



10

55

Content Sifting in Earlybird

Repeats DestinationsSourcesKEY

Found
ADTEntry?

Key = RabinHash(“IAMA”) (0.349, 0.037)

IAMAWORM

ADTEntry=Find(Key) (0.021)

Address Dispersion Table

Prevalence Table

YES

is
prevalence >

thold

YES

value
sample

key

NO

Update 
Multistage Filter

(0.146)

Update Entry (0.027)
Create & Insert Entry (0.37)

2MB 
Multi-stage Filter

Scalable bitmaps with 
three, 32-bit stages

Each entry is 
28bytes.

(Stefan Savage, UCSD *) 56

Content sifting overhead

Mean per-byte processing cost 
0.409 microseconds, without value sampling
0.042 microseconds, with 1/64 value sampling
(~60 microseconds for a 1500 byte packet, 
can keep up with 200Mbps)

Additional overhead in per-byte processing 
cost for flow-state maintenance (if enabled):

0.042 microseconds

(Stefan Savage, UCSD *)

57

Experience

Quite good.
Detected and automatically generated signatures for every 
known worm outbreak over eight months
Can produce a precise signature for a new worm in a 
fraction of a second
Software implementation keeps up with 200Mbps

Known worms detected:
Code Red, Nimda, WebDav, Slammer, Opaserv, …

Unknown worms (with no public signatures) 
detected:

MsBlaster, Bagle, Sasser, Kibvu, …

(Stefan Savage, UCSD *) 58

Sasser

(Stefan Savage, UCSD *)

59

False Negatives

Easy to prove presence, impossible to prove absence

Live evaluation: over 8 months detected every 
worm outbreak reported on popular security mailing 
lists

Offline evaluation: several traffic traces run 
against both Earlybird and Snort IDS (w/all worm-
related signatures)

Worms not detected by Snort, but detected by Earlybird
The converse never true

(Stefan Savage, UCSD *) 60

False Positives

Common protocol 
headers

Mainly HTTP and SMTP 
headers
Distributed (P2P) system 
protocol headers
Procedural whitelist

Small number of popular 
protocols

Non-worm 
epidemic Activity

SPAM
BitTorrent

GNUTELLA.CONNECT
/0.6..X-Max-TTL:
.3..X-Dynamic-Qu
erying:.0.1..X-V
ersion:.4.0.4..X
-Query-Routing:.
0.1..User-Agent:
.LimeWire/4.0.6.
.Vendor-Message:
.0.1..X-Ultrapee
r-Query-Routing:

(Stefan Savage, UCSD *)



11

61

TaintCheck Worm Detection

Previous work look for “worm-like” behavior
Port-scanning [Autograph], 
contacting honey pots [Honeycomb],
traffic patterns [Earlybird]
False negatives: Non-scanning worms
False positives: Easy for attackers to raise false alarms

TaintCheck approach: cause-based detection
Use distributed TaintCheck-protected servers
Watch behavior of host after worm arrives
Can be effective for nonscanning or polymorphic worms
Difficult for attackers to raise false alarms

Song et al.

62

Fast, Low-Cost Distributed Detection

Low load servers & Honeypots:
Monitor all incoming requests
Monitor port scanning traffic

High load servers: 
Randomly select requests to monitor
Select suspicious requests to monitor

When server is abnormal
E.g., server becomes client, server starts strange network/OS activity

Anomalous requests

Incoming traffic

Trace logger

TaintCheck

Port scanning traffic

Flow
Selector

Randomly selected flows

Suspicious flows

63

TaintCheck Approach

Observation:
certain parts in packets need to stay invariant even for 
polymorphic worms

Automatically identify invariants in packets for 
signatures

More sophisticated signature types
Semantic-based signature generation 

Advantages
Fast
Accurate
Effective against polymorphic worms

64

Worm Request

Semantic-based Signature 
Generation (I)

!!!Overwritten
Return Address

•Identifying invariants using semantic-based 
analysis
•Example invariants (I): 

•Identify overwrite value
•Trace back to value in original request

•Experiment: ATPHttpd exploit
•Identified overwrite return address
•Used top 3 bytes as signature
•Signature had 1 false positive
out of 59,280 HTTP requests

!!!

!!!

65

Sting Architecture

Incoming traffic Exploit
Detector

Malicious flows Signature
Generator

Generated
Signatures

Signature
Dissemination

System

Disseminating
Signatures

Innocuous 
Flows

66

Sting Evaluation

Slammer worm attack:
100,000 vulnerable hosts
4000 scans per second
Effective contact rate r: 0.1 per second

Sting evaluation I:
10% deployment, 10% sample rate
Dissemination rate: 2*r = 0.2 per second
Fraction of protected vulnerable host: 70%

Sting evaluation II:
1% deployment, 10% sample rate
10% vulnerable host protected for dissemination rate 0.2 per 
second
98% vulnerable host protected for dissemination rate 1 per 
second



12

67

Generic Exploit Blocking

Idea
Write a network IPS signature to generically detect and 
block all future attacks on a vulnerability
Different from writing a signature for a specific exploit!

Step #1: Characterize the vulnerability “shape”
Identify fields, services or protocol states that must be 
present in attack traffic to exploit the vulnerability
Identify data footprint size required to exploit the 
vulnerability
Identify locality of data footprint; will it be localized or 
spread across the flow?

Step #2: Write a generic signature that can detect 
data that “mates” with the vulnerability shape
Similar to Shield research from Microsoft

Slide: Carey Nachenberg, Symantec 68

Generic Exploit Blocking Example #1

Consider MS02-039 Vulnerability (SQL Buffer Overflow):

Field/service/protocol
UDP port 1434
Packet type: 4

Minimum data footprint
Packet size > 60 bytes

Data Localization
Limited to a single packet

Pseudo-signature:

if (packet.port() == 1434 &&
packet[0] == 4 &&
packet.size() > 60)

{
report_exploit(MS02-039);

}

BEGIN
DESCRIPTION: MS02-039
NAME: MS SQL Vuln
TRANSIT-TYPE: UDP
TRIGGER: ANY:ANY->ANY:1434
OFFSET: 0, PACKET
SIG-BEGIN

"\x04<getpacketsize(r0)> 
<inrange(r0,61,1000000)>
<reportid()>"

SIG-END
END

Slide: Carey Nachenberg, Symantec

69

Consider MS03-026  Vulnerability (RPC Buffer Overflow):

Field/service/protocol
RPC request on TCP/UDP 135
szName field in
CoGetInstanceFromFile func.

Minimum data footprint
Arguments > 62 bytes

Data Localization
Limited to 256 bytes from 
start of RPC bind command

Sample signature:

if (port == 135 &&
type == request &&
func == CoGetInstanceFromFile &&
parameters.length() > 62)

{
report_exploit(MS03-026);

}

Generic Exploit Blocking Example #2

BEGIN
DESCRIPTION: MS03-026
NAME: RPC Vulnerability
TRANSIT-TYPE: TCP, UDP
TRIGGER: ANY:ANY->ANY:135
SIG-BEGIN

"\x05\x00\x0B\x03\x10\x00\x00
(about 50 more bytes...)    
\x00\x00.*\x05\x00
<forward(5)><getbeword(r0)>
<inrange(r0,63,20000)>    
<reportid()>"

SIG-END
END

Slide: Carey Nachenberg, Symantec 70

Conclusions

Worm attacks
Many ways for worms to propagate
Propagation time is increasing
Polymorphic worms, other barriers to detection

Detect
Traffic patterns: EarlyBird
Watch attack: TaintCheck and Sting
Look at vulnerabilities: Generic Exploit Blocking

Disable
Generate worm signatures and use in network or 
host-based filters


