
Recall from crypto lecture

• We basically assume bad guys control the network

• Now we will make this more precise
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The medium-term plan

• Today: How Internet works & how to attack it

- How attackers can realize picture on previous slide

• Thursday: Defense mechanisms

• Next Tuesday: Denial of service

• Next Thursday: Automated attacks & defenses

• Following Tuesday: Privacy & anonymity
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Internet protocol (IP)

IP

cell phone

DSL

Ethernet

TCP,UDP

HTTP

XML-RPC
web services

chat

email

802.11b

FDDI

Cable

VOIP

• Many different physical networks

• Many different network applications

• Idea: Inter-operate through narrow IP protocol

- Often referred to as “hourglass model”
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IP packet format

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

hdr lenvers TOS Total Length

Identification Fragment offsetDM

TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

F0 F

Data
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IP header details

• Routing is based on destination address

• TTL (time to live) decremented at each hop (avoids
loops)

- TTL mostly saves from routing loops

- But other cool uses. . .

• Fragmentation possible for large packets

- Fragmented in network if crosses link w. small frame size

- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

• Following IP header is “payload” data

- Typically beginning with TCP or UDP header
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Simple protocol: ICMP

• Internet Control Message Protocol (ICMP)

- Echo (ping)

- Redirect (from router to source host)

- Destination unreachable (protocol, port, or host)

- TTL exceeded (so datagrams don’t cycle forever)

- Checksum failed

- Reassembly failed

- Cannot fragment

- Many ICMP messages include part of packet that triggered

them

• Example use: Traceroute
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IP vs. lower-level net addresses

• Must map IP addresses into physical addresses

- E.g., Ethernet address of destination host or next hop router

- Often called Medium Access Control (MAC) address (not

message authentication code or mandatory access control)

• Could encode MAC address in IP address [IPv6]

• Usually use ARP – address resolution protocol

- Table of IP to physical address bindings

- Broadcast request if IP address not in table

- Everybody learns physical address of requesting node

(broadcast)

- Target machine responds with its physical address

- Table entries are discarded if not refreshed
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ARP Ethernet packet format

TargetHardwareAddr (bytes 2–5)

TargetProtocolAddr (bytes 0–3)

SourceProtocolAddr (bytes 2–3)

Hardware type = 1 ProtocolType = 0x0800

SourceHardwareAddr (bytes 4–5)

TargetHardwareAddr (bytes 0–1)

SourceProtocolAddr (bytes 0–1)

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0–3)

0 8 16 31

[figures from Peterson & Davie]
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LAN Eavesdropping

• Most network cards support “promiscuous mode”

- Return all packets, not just those address to your MAC addr.

- Useful for network debugging, software Ethernet switches

- Also useful for eavesdropping

• It used to be all Ethernets were broadcast networks

- All hosts tapped into same coaxial cable

- Any host could see all other hosts’ packets

• Today still the case with 802.11b

- What web pages do people surf during lecture?

[wireshark demo]

• But switched Ethernet solves the problem
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Wrong: Eavesdropping w. switches

• Old switches “fail open” on MAC table overflow

- Attacker just generates packets from tons of MAC addresses

- Ethernet switch then reverts to broadcast-style network

• ARP spoofing

- Broadcast an ARP request “from” target’s IP address

- Insert your MAC address for target IP in everyone’s ARP table

- (Note: May generate log messages)

• ICMP redirect abuse

• RIP routing protocol abuse

• BGP routing protocol abuse

• DHCP abuse (give bogus default router)
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UDP – user datagram protocol

SrcPort DstPort

ChecksumLength

Data

0 16 31

• Unreliable and unordered datagram service

• Adds multiplexing, checksum on whole packet

• No flow control, reliability, or order guarantees

• Endpoints identified by ports

- servers have well-known ports (e.g., 53 for DNS)

• Checksum includes “pseudo-header” w. IP addresses
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TCP – Transmission Control Protocol

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

• Full duplex, connection-oriented byte stream

• Flow control

- If one end stops reading, writes at other eventuall block/fail

• Congestion control

- Keeps sender from overrunning network
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TCP segment

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

source port destination port

sequence number

acknowledgment number

reserved
U
R

data

G

A P R S F
C
K

S
H

S
T

Y
N

I
N

Windowdata
offset

checksum urgent pointer

options padding
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TCP fields

• Ports

• Seq no. – segment position in byte stream

• Ack no. – seq no. sender expects to receive next

• Data offset – # of 4-byte header & option words

• Window – willing to receive (flow control)

• Checksum

• Urgent pointer
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TCP Flags

• URG – urgent data present

• ACK – ack no. valid (all but first segment)

• PSH – push data up to application immediately

• RST – reset connection

• SYN – “synchronize” establishes connection

• FIN – close connection
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A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384

essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376

orchard.48150 > essex.discard: . ack 1 win 17376

orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376

essex.discard > orchard.48150: . ack 2 win 17376

essex.discard > orchard.48150: F 1:1(0) ack 2 win 17376

orchard.48150 > essex.discard: . ack 2 win 17375
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Connection establishment
Active participant

(client)
Passive participant

(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

• Need SYN packet in each direction

- Typically second SYN also acknowledges first

- Supports “simultaneous open,” seldom used in practice

• If no program listening: server sends RST

• If server backlog exceeded: ignore SYN

• If no SYN-ACK received: retry, timeout
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Connection termination

• FIN bit says no more data to send

- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

• Typical close:

- A → B: FIN, seq SA, ack SB

- B → A: ack SA + 1

- B → A: FIN, seq SB, ack SA + 1

- A → B: ack SB + 1

• Can also have simultaneous close

• After last message, can A and B forget about closed

socket?
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TIME_WAIT

• Problems with closed socket

- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new

connection? (Old packets might still be floating around.)

• Solution: “active” closer goes into TIME_WAIT

- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL

(twice the “maximum segment lifetime”)

• Can pose problems with servers

- OS has too many sockets in TIME_WAIT, slows things down

- Hack: Can send RST and delete socket, set SO_LINGER socket

option to time 0 (useful for benchmark programs)
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State summary. . .
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKA
C
K
 + FIN

/A
C
K

Timeout after two 

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN
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Sending data

• Data sent in MSS-sized segments

- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)

- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

• Sender’s OS can delay sends to get full segments

- Nagle algorithm: Only one unacknowledged short segment

- TCP_NODELAY option avoids this behavior

• Segments may arrive out of order

- Sequence number used to reassemble in order

• Window achieves flow control

- If window 0 and sender’s buffer full, write will block or return

EAGAIN

– p. 21/53



Sliding window

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

• Used to guarantee reliable & in-order delivery

• Also used for flow control

- Instead of fixed window size, receiver sends AdvertisedWindow

– p. 22/53



A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384

essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376

orchard.38497 > essex.echo: . ack 1 win 17376

orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376

essex.echo > orchard.38497: . ack 4 win 17376

essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376

orchard.38497 > essex.echo: . ack 4 win 17376

orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376

essex.echo > orchard.38497: . ack 5 win 17376

essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376

orchard.38497 > essex.echo: . ack 5 win 17375
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Retransmission

• TCP dynamically estimates round trip time

• If segment goes unacknowledged, must retransmit

• Use exponential backoff (in case loss from

congestion)

• After ∼10 minutes, give up and reset connection

• Many optimizations in TCP

- E.g., Don’t necessarily halt everything for one lost packet

- Just reduce window by half, then slowly augment
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Congestion avoidance

• Transmit at just the right rate to avoid congestion

- Slowly increase transmission rate to find maximum

- One lost packet means too fast, cut rate

- Use additive increase, multiplicative decrease

• Sender-maintained congestion window limits rate

- Maximum amount of outstanding data:

min(congestion-window, flow-control-window)

• Cut rate in half after 3 duplicate ACKs

- Fewer duplicates may just have resulted from reordering

- Fast retransmit: resend only lost packet

• If timeout, cut cong. window back to 1 segment

- Slow start – exponentially increase to ss thresh
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Access control

• Many services base access control on IP addresses

- E.g., mail servers allow relaying

- NFS servers allow you to mount file systems

- X-windows can rely on IP address

- Old BSD “rlogin/rsh” services

- Many clients assume they are talking to right server based in

part on IP address (e.g., DNS, NTP, rsync, etc)̇

• Very poor assumption to make
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Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?
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Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?

- In many OSes, very ISNs very predictable

- Base guess on previous probe from real IP addr

• Problem: Real client may RST unexpected SYN-ACK
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Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?

- In many OSes, very ISNs very predictable

- Base guess on previous probe from real IP addr

• Problem: Real client may RST unexpected SYN-ACK

- Spoof target may be running a server on some TCP port

- Overwhelm that port with SYN packets until it ignores them

- Will likewise ignore the victim server’s SYN-ACK packet
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Spoofing TCP [Joncheray]

• Say you can eavesdrop, want to tamper w. connection

- E.g., system uses challenge-response authentication

- Want to hijack already authenticated TCP connection

• Recall each end of TCP has flow-control window

• Idea: Desynchronize the TCP connection

- E.g., usually CACK ≤ SSEQ ≤ CACK + CWIN and

SACK ≤ CSEQ ≤ SACK + SWIN

- If no data to send and sequence numbers outside of range, TCP

connection is desynchronized

• Q: How to desynchronize a TCP connection?
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Desynchronizing TCP

• Early desynchronization

- Client connects to server

- Attacker sents RST, then forged SYN to server

- Server has connection w. same ports, different SACK

• Null data desynchronization

- Attacker generates a lot of data that will be ignored by app.

- Sends NULL data to both client and server

- Drives up CACK and SACK so out of range

• How to exploit this for hijacking?
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Exploiting desynchronized TCP
• Packets with SeqNo outside of window are ignored

- After all, old, retransmitted packets might still be bouncing

around the network

- Can’t just RST a connection because you see an old packet

• As long as desynchronized, just inject data

- Data sent by real nodes will be ignored

- Injected data will cause ACKs that get ignored

- So attacker determines what each side receives

• ACK Storms

- Out of window packet does cause an ACK to be generated

- ACK itself out of window, causes other side to generate ACK

- Ping-pong continues until a packet is lost

- Bad for network, but not so bad for attacker
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Domain Name System (DNS)

Name
server

Mail
program

User

TCP

IP

2
cs.princeton.edu

192.12.69.5
3

user @ cs.princeton.edu

1

192.12.69.5 4

192.12.69.5 5

• Users can’t remember IP addresses

- Need to map symbolic names (www.stanford.edu)→IP addr

• Implemented by library functions & servers

- gethostbyname() talks to name server over UDP
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Goals of DNS

• Scalability

- Must handle huge number of records

- Potentially exponential in name size—because custom software

may synthesize names on-the-fly

• Distributed control

- Let people control their own names

• Fault-tolerance

- Old software assumed all addresses in hosts.txt file

- Bad potential failure modes when name lookups fail

- Minimize lookup failures in the face of other network problems

• Security? Not so much
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The good news

• Properties that make DNS goals easier to achieve:

1. Read-only or read-mostly database
- People typically look up hostnames much more often than

they are updated

2. Loose consistency
- When adding a machine, may be okay if info takes minutes

or hours to propagate

• These suggest approach w. aggressive caching

- Once you have looked up hostname, remember result

- Don’t need to look it up again in near future
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DNS Names

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

• Use hierarchical naming scheme

. edu. stanford.edu. 
s.stanford.edu.
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DNS Names

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

• Break namespace into a bunch of zones

- root (.), edu., stanford.edu., 
s.stanford.edu., . . .

- Zones separately administered =⇒ delegation

- Parent zones tell you how to find servers for dubdomains.

• Each zone served from several replicated servers
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DNS software architecture
Root
name
server

Princeton
name
server

CS
name
server

Local
name
server

1
cicada.cs.princeton.edu

192.12.69.60
8

cic
ada.cs

.prin
cet

on.ed
u

prin
cet

on.ed
u, 1

28.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

Client

• Apps make recursive queries to local DNS server

• Local server queries remote servers non-recursively

- Aggressively caches result

- E.g., only contact root on first query ending .stanford.edu
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DNS protocol

• TCP/UDP port 53

• Most traffic uses UDP

- Lightweight protocol has 512 byte UDP message limit

- retry w. TCP if UDP fails (e.g., reply truncated)

• TCP requires message boundaries

- Prefix all messages w. 16-bit length

• Bit in query determines if query is recursive
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Resource records

• All DNS info represented as resource records (RR):
name [TTL] [class] type rdata

- name – domain name (e.g., www.nyu.edu)

- TTL – time to live in seconds

- class – for extensibility, usually IN (1) “Internet”

- type – type of the record

- rdata – resource data dependent on the type

• Some important DNS RR types:

- A – Internet address (IPv4)

- NS – name server

- MX – mail exchanger
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Resource record examples

• Example resource records

stanford.edu. 2603 IN A 171.67.20.37

stanford.edu. 152554 IN NS Avallone.stanford.edu.

stanford.edu. 172800 IN NS AUTHDNS4.NETCOM.DUKE.edu.

stanford.edu. 3595 IN MX 20 mx1.stanford.edu.

• [Demo of dig program]
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Mapping addresses to names

• Sometimes want to find DNS name given address

• PTR records specify names
name [TTL] [IN] PTR “ptrdname”

- name – somehow encode address. . . how?

- ptrdname – domain name for this address

• IPv4 addrs stored under in-addr.arpa domain

- Reverse name, append in-addr.arpa
- To look up 216.165.108.10 → 10.108.165.216.in-addr.arpa.

- Why reversed? Delegation!

• IPv6 under ip6.arpa
- Historical note: ARPA funded original Internet
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Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

3.66.171.in-addr.arpa.11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.

www.berkeley.edu. 600 IN A 169.229.131.92
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Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

• No: PTR records controlled by network owner

- E.g., My machine serves 3.66.171.in-addr.arpa.

- I can serve 11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.
- Don’t believe I own Berkeley’s web server!

• How to solve problem?

www.berkeley.edu. 600 IN A 169.229.131.92
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Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

• No: PTR records controlled by network owner

- E.g., My machine serves 3.66.171.in-addr.arpa.

- I can serve 11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.
- Don’t believe I own Berkeley’s web server!

• How to solve problem?

- Always do forward lookup on PTRs you get back

- www.berkeley.edu. 600 IN A 169.229.131.92

- Doesn’t match my IP (171.66.3.11), so reject
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Some implementation details

• How does local name server know root servers?

- Need to configure name server with root cache file

- Contains root name servers and their addresses

. 3600000 NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

. 3600000 NS B.ROOT-SERVERS.NET.

B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

...
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Some implementation details

• How do you get addresses of other name servers?

- To lookup names ending .stanford.edu., askAvallone.stanford.edu.
- But how to get Avallone.stanford.edu.’s address?

• Solution: glue records – A records in parent zone

- Name servers for edu. have A record ofAvallone.stanford.edu.
- [Check using dig +nore
]
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Structure of a DNS message
+---------------------+

| Header |

+---------------------+

| Question | the question for the name server

+---------------------+

| Answer | RRs answering the question

+---------------------+

| Authority | RRs pointing toward an authority

+---------------------+

| Additional | RRs holding additional information

+---------------------+

• Same message format for queries and replies

- Query has zero RRs in Answer/Authority/Additional sections

- Reply includes question, plus has RRs

• Authority allows for delegation

• Additional for glue + other RRs client might need
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Header format
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

• QR – 0=query, 1=response

• RCODE – error code

• AA=authoritative answer, TC=truncated,

RD=recursion desired, RA=recursion available
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Encoding of RRs
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ /

/ NAME /

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
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Using DNS for load-balancing

• Can have multiple RR of most types for one name

- Required for NS records (for availability)

- Useful for A records

- (Not legal for CNAME records)

• Servers rotate order in which records returned

- Most apps just use first address returned

(“#define h_addr h_addr_list[0℄”)

- Even if your name server caches results, clients will be spread

amonst servers

• Example: dig 
nn.
om multiple times
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Secondary servers

• Availability requires geographically disperate
replicas

- E.g., Stanford asks Duke to serve stanford.edu
• Typical setup: One master many slave servers

• How often to sync up servers? Trade-off

- All the time =⇒ high overhead

- Rarely =⇒ stale data

• Put trade-off under domain owner’s control

- Fields in SOA record control secondary’s behavior

- Primary can change SOA without asking human operator of

secondary
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The SOA record

• Every delegated zone has one SOA record

name [TTL] [IN] SOA mname rname
serial refresh retry expire minimum

- name – Name of zone (e.g., nyu.edu
- mname – DNS name of main name server

- rname – E-mail address of contact (�→.)

- serial – Increases each time zone changes

- refresh – How often secondary servers should sync

- retry – How soon to re-try sync after a failure

- expire – When to discard data after repeated failures

- minimum – How long to cache negative results
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Cache issues

• How do you know you can trust glue records?

11.3.66.171.in-addr.arpa. IN NS www.berkeley.edu.www.berkeley.edu. 600 IN A 171.66.3.11www.berkeley.edu.
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Cache poisoning

• How do you know you can trust glue records?

- You can’t really

• I lied when saying forward lookups can check PTRs

• Consider the following attack:

- I connect to your server from 171.66.3.11, and serve you:11.3.66.171.in-addr.arpa. IN NS www.berkeley.edu.www.berkeley.edu. 600 IN A 171.66.3.11

- Looks like www.berkeley.edu. is name server for PTR

- Therefore, you must use glue record I supply you with

• For a long time BIND wouldn’t fix problem

- Probably worried about decreased cache efficiency
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DNS poisoning in the wild

• January 2005, the domain name for a large New York

ISP, Panix, was hijacked to a site in Australia.

• In November 2004, Google and Amazon users were

sent to Med Network Inc., an online pharmacy

• In March 2003, a group dubbed the "Freedom Cyber

Force Militia" hijacked visitors to the Al-Jazeera Web

site and presented them with the message "God Bless

Our Troops"
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TXT records

• Can place arbitrary text in DNS
name [TTL] [IN] TXT “text” . . .

- text – whatever you want it to mean

• Great for prototyping new services

- Don’t need to change DNS infrastructure

• Example: dig aol.
om txt
- What’s this? SPF = “sender permitted from”

- SPF specifies IP addresses allowed to send mail from �aol.
om

- Allows for low-security whitelisting

- Nice for whitelisting because attacks like DNS poisoning and

Joncheray may be too hard for spammers to do at high rates

- But doesn’t directly address spam problem
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Same Origin Principle revisited

• Recall Same Origin Principle for Java/Javascript

- Can only connect to server

• “Origin” defined in terms of server name in URL

• Can you see a problem?
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Exploiting DNS to violate S.O.
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