
Recall from crypto lecture

• We basically assume bad guys control the network

• Now we will make this more precise

– p. 1/53

The medium-term plan

• Today: How Internet works & how to attack it

- How attackers can realize picture on previous slide

• Thursday: Defense mechanisms

• Next Tuesday: Denial of service

• Next Thursday: Automated attacks & defenses

• Following Tuesday: Privacy & anonymity

– p. 2/53

Internet protocol (IP)

IP

cell phone

DSL

Ethernet

TCP,UDP

HTTP

XML-RPC
web services

chat

email

802.11b

FDDI

Cable

VOIP

• Many different physical networks

• Many different network applications

• Idea: Inter-operate through narrow IP protocol

- Often referred to as “hourglass model”

– p. 3/53

IP packet format

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

hdr lenvers TOS Total Length

Identification Fragment offsetDM

TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

F0 F

Data

– p. 4/53

IP header details

• Routing is based on destination address

• TTL (time to live) decremented at each hop (avoids
loops)

- TTL mostly saves from routing loops

- But other cool uses. . .

• Fragmentation possible for large packets

- Fragmented in network if crosses link w. small frame size

- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

• Following IP header is “payload” data

- Typically beginning with TCP or UDP header

– p. 5/53

Simple protocol: ICMP

• Internet Control Message Protocol (ICMP)

- Echo (ping)

- Redirect (from router to source host)

- Destination unreachable (protocol, port, or host)

- TTL exceeded (so datagrams don’t cycle forever)

- Checksum failed

- Reassembly failed

- Cannot fragment

- Many ICMP messages include part of packet that triggered

them

• Example use: Traceroute

– p. 6/53

IP vs. lower-level net addresses

• Must map IP addresses into physical addresses

- E.g., Ethernet address of destination host or next hop router

- Often called Medium Access Control (MAC) address (not

message authentication code or mandatory access control)

• Could encode MAC address in IP address [IPv6]

• Usually use ARP – address resolution protocol

- Table of IP to physical address bindings

- Broadcast request if IP address not in table

- Everybody learns physical address of requesting node

(broadcast)

- Target machine responds with its physical address

- Table entries are discarded if not refreshed

– p. 7/53

ARP Ethernet packet format

TargetHardwareAddr (bytes 2–5)

TargetProtocolAddr (bytes 0–3)

SourceProtocolAddr (bytes 2–3)

Hardware type = 1 ProtocolType = 0x0800

SourceHardwareAddr (bytes 4–5)

TargetHardwareAddr (bytes 0–1)

SourceProtocolAddr (bytes 0–1)

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0–3)

0 8 16 31

[figures from Peterson & Davie]

– p. 8/53

LAN Eavesdropping

• Most network cards support “promiscuous mode”

- Return all packets, not just those address to your MAC addr.

- Useful for network debugging, software Ethernet switches

- Also useful for eavesdropping

• It used to be all Ethernets were broadcast networks

- All hosts tapped into same coaxial cable

- Any host could see all other hosts’ packets

• Today still the case with 802.11b

- What web pages do people surf during lecture?

[wireshark demo]

• But switched Ethernet solves the problem

– p. 9/53

Wrong: Eavesdropping w. switches

• Old switches “fail open” on MAC table overflow

- Attacker just generates packets from tons of MAC addresses

- Ethernet switch then reverts to broadcast-style network

• ARP spoofing

- Broadcast an ARP request “from” target’s IP address

- Insert your MAC address for target IP in everyone’s ARP table

- (Note: May generate log messages)

• ICMP redirect abuse

• RIP routing protocol abuse

• BGP routing protocol abuse

• DHCP abuse (give bogus default router)

– p. 10/53

UDP – user datagram protocol

SrcPort DstPort

ChecksumLength

Data

0 16 31

• Unreliable and unordered datagram service

• Adds multiplexing, checksum on whole packet

• No flow control, reliability, or order guarantees

• Endpoints identified by ports

- servers have well-known ports (e.g., 53 for DNS)

• Checksum includes “pseudo-header” w. IP addresses

– p. 11/53

TCP – Transmission Control Protocol

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

• Full duplex, connection-oriented byte stream

• Flow control

- If one end stops reading, writes at other eventuall block/fail

• Congestion control

- Keeps sender from overrunning network

– p. 12/53

TCP segment

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

source port destination port

sequence number

acknowledgment number

reserved
U
R

data

G

A P R S F
C
K

S
H

S
T

Y
N

I
N

Windowdata
offset

checksum urgent pointer

options padding

– p. 13/53

TCP fields

• Ports

• Seq no. – segment position in byte stream

• Ack no. – seq no. sender expects to receive next

• Data offset – # of 4-byte header & option words

• Window – willing to receive (flow control)

• Checksum

• Urgent pointer

– p. 14/53

TCP Flags

• URG – urgent data present

• ACK – ack no. valid (all but first segment)

• PSH – push data up to application immediately

• RST – reset connection

• SYN – “synchronize” establishes connection

• FIN – close connection

– p. 15/53

A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384

essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376

orchard.48150 > essex.discard: . ack 1 win 17376

orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376

essex.discard > orchard.48150: . ack 2 win 17376

essex.discard > orchard.48150: F 1:1(0) ack 2 win 17376

orchard.48150 > essex.discard: . ack 2 win 17375

– p. 16/53

Connection establishment
Active participant

(client)
Passive participant

(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

• Need SYN packet in each direction

- Typically second SYN also acknowledges first

- Supports “simultaneous open,” seldom used in practice

• If no program listening: server sends RST

• If server backlog exceeded: ignore SYN

• If no SYN-ACK received: retry, timeout

– p. 17/53

Connection termination

• FIN bit says no more data to send

- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

• Typical close:

- A → B: FIN, seq SA, ack SB

- B → A: ack SA + 1

- B → A: FIN, seq SB, ack SA + 1

- A → B: ack SB + 1

• Can also have simultaneous close

• After last message, can A and B forget about closed

socket?

– p. 18/53

TIME_WAIT

• Problems with closed socket

- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new

connection? (Old packets might still be floating around.)

• Solution: “active” closer goes into TIME_WAIT

- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL

(twice the “maximum segment lifetime”)

• Can pose problems with servers

- OS has too many sockets in TIME_WAIT, slows things down

- Hack: Can send RST and delete socket, set SO_LINGER socket

option to time 0 (useful for benchmark programs)

– p. 19/53

State summary. . .
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKA
C
K
 + FIN

/A
C
K

Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

– p. 20/53

Sending data

• Data sent in MSS-sized segments

- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)

- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

• Sender’s OS can delay sends to get full segments

- Nagle algorithm: Only one unacknowledged short segment

- TCP_NODELAY option avoids this behavior

• Segments may arrive out of order

- Sequence number used to reassemble in order

• Window achieves flow control

- If window 0 and sender’s buffer full, write will block or return

EAGAIN

– p. 21/53

Sliding window

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

• Used to guarantee reliable & in-order delivery

• Also used for flow control

- Instead of fixed window size, receiver sends AdvertisedWindow

– p. 22/53

A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384

essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376

orchard.38497 > essex.echo: . ack 1 win 17376

orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376

essex.echo > orchard.38497: . ack 4 win 17376

essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376

orchard.38497 > essex.echo: . ack 4 win 17376

orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376

essex.echo > orchard.38497: . ack 5 win 17376

essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376

orchard.38497 > essex.echo: . ack 5 win 17375

– p. 23/53

Retransmission

• TCP dynamically estimates round trip time

• If segment goes unacknowledged, must retransmit

• Use exponential backoff (in case loss from

congestion)

• After ∼10 minutes, give up and reset connection

• Many optimizations in TCP

- E.g., Don’t necessarily halt everything for one lost packet

- Just reduce window by half, then slowly augment

– p. 24/53

Congestion avoidance

• Transmit at just the right rate to avoid congestion

- Slowly increase transmission rate to find maximum

- One lost packet means too fast, cut rate

- Use additive increase, multiplicative decrease

• Sender-maintained congestion window limits rate

- Maximum amount of outstanding data:

min(congestion-window, flow-control-window)

• Cut rate in half after 3 duplicate ACKs

- Fewer duplicates may just have resulted from reordering

- Fast retransmit: resend only lost packet

• If timeout, cut cong. window back to 1 segment

- Slow start – exponentially increase to ss thresh

– p. 25/53

Access control

• Many services base access control on IP addresses

- E.g., mail servers allow relaying

- NFS servers allow you to mount file systems

- X-windows can rely on IP address

- Old BSD “rlogin/rsh” services

- Many clients assume they are talking to right server based in

part on IP address (e.g., DNS, NTP, rsync, etc)̇

• Very poor assumption to make

– p. 26/53

Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?

– p. 27/53

Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?

- In many OSes, very ISNs very predictable

- Base guess on previous probe from real IP addr

• Problem: Real client may RST unexpected SYN-ACK

– p. 27/53

Spoofing TCP source [Morris]

• Suppose can’t eavesdrop but can forge packets

• Can send forged SYN, not get SYN-ACK, but then
send data anyway

- E.g., data might be “t
pserver 0.0.0.0 2323 /bin/sh -i”

- Allows attacker to get shell on machine

• Problem: What server Initial SeqNo to ACK?

- In many OSes, very ISNs very predictable

- Base guess on previous probe from real IP addr

• Problem: Real client may RST unexpected SYN-ACK

- Spoof target may be running a server on some TCP port

- Overwhelm that port with SYN packets until it ignores them

- Will likewise ignore the victim server’s SYN-ACK packet

– p. 27/53

Spoofing TCP [Joncheray]

• Say you can eavesdrop, want to tamper w. connection

- E.g., system uses challenge-response authentication

- Want to hijack already authenticated TCP connection

• Recall each end of TCP has flow-control window

• Idea: Desynchronize the TCP connection

- E.g., usually CACK ≤ SSEQ ≤ CACK + CWIN and

SACK ≤ CSEQ ≤ SACK + SWIN

- If no data to send and sequence numbers outside of range, TCP

connection is desynchronized

• Q: How to desynchronize a TCP connection?

– p. 28/53

Desynchronizing TCP

• Early desynchronization

- Client connects to server

- Attacker sents RST, then forged SYN to server

- Server has connection w. same ports, different SACK

• Null data desynchronization

- Attacker generates a lot of data that will be ignored by app.

- Sends NULL data to both client and server

- Drives up CACK and SACK so out of range

• How to exploit this for hijacking?

– p. 29/53

Exploiting desynchronized TCP
• Packets with SeqNo outside of window are ignored

- After all, old, retransmitted packets might still be bouncing

around the network

- Can’t just RST a connection because you see an old packet

• As long as desynchronized, just inject data

- Data sent by real nodes will be ignored

- Injected data will cause ACKs that get ignored

- So attacker determines what each side receives

• ACK Storms

- Out of window packet does cause an ACK to be generated

- ACK itself out of window, causes other side to generate ACK

- Ping-pong continues until a packet is lost

- Bad for network, but not so bad for attacker

– p. 30/53

Domain Name System (DNS)

Name
server

Mail
program

User

TCP

IP

2
cs.princeton.edu

192.12.69.5
3

user @ cs.princeton.edu

1

192.12.69.5 4

192.12.69.5 5

• Users can’t remember IP addresses

- Need to map symbolic names (www.stanford.edu)→IP addr

• Implemented by library functions & servers

- gethostbyname() talks to name server over UDP

– p. 31/53

Goals of DNS

• Scalability

- Must handle huge number of records

- Potentially exponential in name size—because custom software

may synthesize names on-the-fly

• Distributed control

- Let people control their own names

• Fault-tolerance

- Old software assumed all addresses in hosts.txt file

- Bad potential failure modes when name lookups fail

- Minimize lookup failures in the face of other network problems

• Security? Not so much

– p. 32/53

The good news

• Properties that make DNS goals easier to achieve:

1. Read-only or read-mostly database
- People typically look up hostnames much more often than

they are updated

2. Loose consistency
- When adding a machine, may be okay if info takes minutes

or hours to propagate

• These suggest approach w. aggressive caching

- Once you have looked up hostname, remember result

- Don’t need to look it up again in near future

– p. 33/53

DNS Names

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

• Use hierarchical naming scheme

. edu. stanford.edu.
s.stanford.edu.

– p. 34/53

DNS Names

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

• Break namespace into a bunch of zones

- root (.), edu., stanford.edu.,
s.stanford.edu., . . .

- Zones separately administered =⇒ delegation

- Parent zones tell you how to find servers for dubdomains.

• Each zone served from several replicated servers

– p. 34/53

DNS software architecture
Root
name
server

Princeton
name
server

CS
name
server

Local
name
server

1
cicada.cs.princeton.edu

192.12.69.60
8

cic
ada.cs

.prin
cet

on.ed
u

prin
cet

on.ed
u, 1

28.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

Client

• Apps make recursive queries to local DNS server

• Local server queries remote servers non-recursively

- Aggressively caches result

- E.g., only contact root on first query ending .stanford.edu

– p. 35/53

DNS protocol

• TCP/UDP port 53

• Most traffic uses UDP

- Lightweight protocol has 512 byte UDP message limit

- retry w. TCP if UDP fails (e.g., reply truncated)

• TCP requires message boundaries

- Prefix all messages w. 16-bit length

• Bit in query determines if query is recursive

– p. 36/53

Resource records

• All DNS info represented as resource records (RR):
name [TTL] [class] type rdata

- name – domain name (e.g., www.nyu.edu)

- TTL – time to live in seconds

- class – for extensibility, usually IN (1) “Internet”

- type – type of the record

- rdata – resource data dependent on the type

• Some important DNS RR types:

- A – Internet address (IPv4)

- NS – name server

- MX – mail exchanger

– p. 37/53

Resource record examples

• Example resource records

stanford.edu. 2603 IN A 171.67.20.37

stanford.edu. 152554 IN NS Avallone.stanford.edu.

stanford.edu. 172800 IN NS AUTHDNS4.NETCOM.DUKE.edu.

stanford.edu. 3595 IN MX 20 mx1.stanford.edu.

• [Demo of dig program]

– p. 38/53

Mapping addresses to names

• Sometimes want to find DNS name given address

• PTR records specify names
name [TTL] [IN] PTR “ptrdname”

- name – somehow encode address. . . how?

- ptrdname – domain name for this address

• IPv4 addrs stored under in-addr.arpa domain

- Reverse name, append in-addr.arpa
- To look up 216.165.108.10 → 10.108.165.216.in-addr.arpa.

- Why reversed? Delegation!

• IPv6 under ip6.arpa
- Historical note: ARPA funded original Internet

– p. 39/53

Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

3.66.171.in-addr.arpa.11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.

www.berkeley.edu. 600 IN A 169.229.131.92

– p. 40/53

Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

• No: PTR records controlled by network owner

- E.g., My machine serves 3.66.171.in-addr.arpa.

- I can serve 11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.
- Don’t believe I own Berkeley’s web server!

• How to solve problem?

www.berkeley.edu. 600 IN A 169.229.131.92

– p. 40/53

Access control based on hostnames

• Weak access control frequently based on hostname

- E.g., allow clients matching *.stanford.edu to see web page

• Is it safe to trust the PTR records you get back?

• No: PTR records controlled by network owner

- E.g., My machine serves 3.66.171.in-addr.arpa.

- I can serve 11.3.66.171.in-addr.arpa. IN PTRwww.berkeley.edu.
- Don’t believe I own Berkeley’s web server!

• How to solve problem?

- Always do forward lookup on PTRs you get back

- www.berkeley.edu. 600 IN A 169.229.131.92

- Doesn’t match my IP (171.66.3.11), so reject

– p. 40/53

Some implementation details

• How does local name server know root servers?

- Need to configure name server with root cache file

- Contains root name servers and their addresses

. 3600000 NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

. 3600000 NS B.ROOT-SERVERS.NET.

B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

...

– p. 41/53

Some implementation details

• How do you get addresses of other name servers?

- To lookup names ending .stanford.edu., askAvallone.stanford.edu.
- But how to get Avallone.stanford.edu.’s address?

• Solution: glue records – A records in parent zone

- Name servers for edu. have A record ofAvallone.stanford.edu.
- [Check using dig +nore
]

– p. 42/53

Structure of a DNS message
+---------------------+

| Header |

+---------------------+

| Question | the question for the name server

+---------------------+

| Answer | RRs answering the question

+---------------------+

| Authority | RRs pointing toward an authority

+---------------------+

| Additional | RRs holding additional information

+---------------------+

• Same message format for queries and replies

- Query has zero RRs in Answer/Authority/Additional sections

- Reply includes question, plus has RRs

• Authority allows for delegation

• Additional for glue + other RRs client might need

– p. 43/53

Header format
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

• QR – 0=query, 1=response

• RCODE – error code

• AA=authoritative answer, TC=truncated,

RD=recursion desired, RA=recursion available
– p. 44/53

Encoding of RRs
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ /

/ NAME /

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

– p. 45/53

Using DNS for load-balancing

• Can have multiple RR of most types for one name

- Required for NS records (for availability)

- Useful for A records

- (Not legal for CNAME records)

• Servers rotate order in which records returned

- Most apps just use first address returned

(“#define h_addr h_addr_list[0℄”)

- Even if your name server caches results, clients will be spread

amonst servers

• Example: dig
nn.
om multiple times

– p. 46/53

Secondary servers

• Availability requires geographically disperate
replicas

- E.g., Stanford asks Duke to serve stanford.edu
• Typical setup: One master many slave servers

• How often to sync up servers? Trade-off

- All the time =⇒ high overhead

- Rarely =⇒ stale data

• Put trade-off under domain owner’s control

- Fields in SOA record control secondary’s behavior

- Primary can change SOA without asking human operator of

secondary

– p. 47/53

The SOA record

• Every delegated zone has one SOA record

name [TTL] [IN] SOA mname rname
serial refresh retry expire minimum

- name – Name of zone (e.g., nyu.edu
- mname – DNS name of main name server

- rname – E-mail address of contact (�→.)

- serial – Increases each time zone changes

- refresh – How often secondary servers should sync

- retry – How soon to re-try sync after a failure

- expire – When to discard data after repeated failures

- minimum – How long to cache negative results

– p. 48/53

Cache issues

• How do you know you can trust glue records?

11.3.66.171.in-addr.arpa. IN NS www.berkeley.edu.www.berkeley.edu. 600 IN A 171.66.3.11www.berkeley.edu.

– p. 49/53

Cache poisoning

• How do you know you can trust glue records?

- You can’t really

• I lied when saying forward lookups can check PTRs

• Consider the following attack:

- I connect to your server from 171.66.3.11, and serve you:11.3.66.171.in-addr.arpa. IN NS www.berkeley.edu.www.berkeley.edu. 600 IN A 171.66.3.11

- Looks like www.berkeley.edu. is name server for PTR

- Therefore, you must use glue record I supply you with

• For a long time BIND wouldn’t fix problem

- Probably worried about decreased cache efficiency

– p. 49/53

DNS poisoning in the wild

• January 2005, the domain name for a large New York

ISP, Panix, was hijacked to a site in Australia.

• In November 2004, Google and Amazon users were

sent to Med Network Inc., an online pharmacy

• In March 2003, a group dubbed the "Freedom Cyber

Force Militia" hijacked visitors to the Al-Jazeera Web

site and presented them with the message "God Bless

Our Troops"

– p. 50/53

TXT records

• Can place arbitrary text in DNS
name [TTL] [IN] TXT “text” . . .

- text – whatever you want it to mean

• Great for prototyping new services

- Don’t need to change DNS infrastructure

• Example: dig aol.
om txt
- What’s this? SPF = “sender permitted from”

- SPF specifies IP addresses allowed to send mail from �aol.
om

- Allows for low-security whitelisting

- Nice for whitelisting because attacks like DNS poisoning and

Joncheray may be too hard for spammers to do at high rates

- But doesn’t directly address spam problem

– p. 51/53

Same Origin Principle revisited

• Recall Same Origin Principle for Java/Javascript

- Can only connect to server

• “Origin” defined in terms of server name in URL

• Can you see a problem?

– p. 52/53

Exploiting DNS to violate S.O.

– p. 53/53

	Recall from crypto lecture
	The medium-term plan
	Internet protocol (IP)
	IP packet format
	IP header details
	Simple protocol: ICMP
	IP vs. lower-level net addresses
	ARP Ethernet packet format
	LAN Eavesdropping
	Red {Wrong: Eavesdropping w. switches}
	UDP -- emph {user datagram protocol}
	TCP -- emph {Transmission Control Protocol}
	TCP segment
	TCP fields
	TCP Flags
	A TCP Connection (no data)
	Connection establishment
	Connection termination
	TIME_WAIT
	State summaryldots
	Sending data
	Sliding window
	A TCP connection (3 byte echo)
	Retransmission
	Congestion avoidance
	Access control
	Spoofing TCP source [Morris]
	Spoofing TCP source [Morris]
	Spoofing TCP source [Morris]

	Spoofing TCP [Joncheray]
	Desynchronizing TCP
	Exploiting desynchronized TCP
	Domain Name System (DNS)
	Goals of DNS
	The good news
	DNS Names
	DNS Names

	DNS software architecture
	DNS protocol
	Resource records
	Resource record examples
	Mapping addresses to names
	Access control based on hostnames
	Access control based on hostnames
	Access control based on hostnames

	Some implementation details
	Some implementation details
	Structure of a DNS message
	Header format
	Encoding of RRs
	Using DNS for load-balancing
	Secondary servers
	The SOA record
	onlySlide *{1}{Cache issues}onlySlide *{2}{Cache poisoning}
	onlySlide *{1}{Cache issues}onlySlide *{2}{Cache poisoning}

	DNS poisoning in the wild
	TXT records
	Same Origin Principle revisited
	Exploiting DNS to violate S.O.

