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 Watch attack: TaintCheck and Sting
 Look at vulnerabilities: Generic Exploit Blocking



Worm

A worm is self-replicating software designed to spread 
through the network
 Typically exploit security flaws in widely used services
 Often conscripts machine into bot network
 May cause enormous collateral damage 

 Access sensitive information
 Corrupt files
 Cause malfunction, overload, etc.

Worm vs Virus vs Trojan horse
 A virus is code embedded in a file or program
 Viruses and Trojan horses rely on human intervention 
 Worms are self-contained and may spread autonomously



Cost of worm attacks

Morris worm,  1988
 Infected approximately 6,000 machines

 10% of computers connected to the Internet 
 cost ~ $10 million in downtime and cleanup

Code Red worm, July 16 2001
 Direct descendant of Morris’ worm
 Infected more than 500,000 servers

 Programmed to go into infinite sleep mode July 28 
 Caused ~ $2.6 Billion in damages,

Love Bug worm: $8.75 billion

Statistics: Computer Economics Inc., Carlsbad, California



Internet Worm (First major attack)

Released November 1988
 Program spread through Digital, Sun workstations 
 Exploited Unix security vulnerabilities

 VAX computers and SUN-3 workstations running 
versions 4.2 and 4.3 Berkeley UNIX code

Consequences
 No immediate damage from program itself 
 Replication and threat of damage 

 Load on network, systems used in attack
 Many systems shut down to prevent further attack



Internet Worm Description

Two parts
 Program to spread worm

 look for other machines that could be infected
 try to find ways of infiltrating these machines

 Vector program (99 lines of C) 
 compiled and run on the infected machines 
 transferred main program to continue attack

Security vulnerabilities
 fingerd – Unix finger daemon
 sendmail - mail distribution program
 Trusted logins (.rhosts)
 Weak passwords



Three ways the worm spread

Sendmail
 Exploit debug option in sendmail to allow shell 

access 

Fingerd
 Exploit a buffer overflow in the fgets function
 Apparently, this was the most successful attack

Rsh
 Exploit trusted hosts
 Password cracking



sendmail

Worm used debug feature
 Opens TCP connection to machine's SMTP port
 Invokes debug mode
 Sends a RCPT TO that pipes data through shell
 Shell script retrieves worm main program

 places 40-line C program in temporary file called x$$,l1.c 
where $$ is current process ID

 Compiles and executes this program
 Opens socket to machine that sent script
 Retrieves worm main program, compiles it and runs



fingerd

Written in C and runs continuously
Array bounds attack 
 Fingerd expects an input string 
 Worm writes long string to internal 512-byte buffer 

Attack string 
 Includes machine instructions
 Overwrites return address
 Invokes a remote shell 
 Executes privileged commands



Remote shell

Unix trust information
 /etc/host.equiv – system wide trusted hosts file
 /.rhosts and ~/.rhosts – users’ trusted hosts file

Worm exploited trust information 
 Examining files that listed trusted machines
 Assume reciprocal trust

 If X trusts Y, then maybe Y trusts X

Password cracking
 Worm was running as daemon (not root) so needed to break 

into accounts to use .rhosts feature
 Dictionary attack
 Read /etc/passwd, used ~400 common password strings



The worm itself

Program is called 'sh' 
 Clobbers argv array so a 'ps' will not show its name
 Opens its files, then unlinks (deletes) them so can't be found 

 Since files are open, worm can still access their contents

Tries to infect as many other hosts as possible
 When worm successfully connects, forks a child to continue 

the infection while the parent keeps trying new hosts

Worm did not:
 Delete system's files, modify existing files, install trojan 

horses, record or transmit decrypted passwords, capture 
superuser privileges, propagate over UUCP, X.25, DECNET, 
or  BITNET



Detecting Morris Internet Worm

Files
 Strange files appeared in infected systems
 Strange log messages for certain programs

System load
 Infection generates a number of processes
 Systems were reinfected => number of processes 

grew and systems became overloaded
 Apparently not intended by worm’s creator

    Thousands of systems were shut down



Stopping the worm

System admins busy for several days 
 Devised, distributed, installed modifications 

Perpetrator
 Student at Cornell; turned himself in
 Sentence: community service and $10,000 fine

 Program did not cause deliberate damage 
 Tried (failed) to control # of processes on host machines

Lessons? 
 Security vulnerabilities come from system flaws 
 Diversity is useful for resisting attack
 “Experiments” can be dangerous



Sources for more information

Eugene H. Spafford, The Internet Worm: Crisis and 
Aftermath, CACM 32(6) 678-687, June 1989
Page, Bob, "A Report on the Internet Worm", 
http://www.ee.ryerson.ca:8080/~elf/hack/iworm.html



Some historical worms of note

Used a single UDP packet for explosive growth1/03Slammer

11 days after announcement of vulnerability; peer-to-
peer network of compromised systems

6/02Scalper

Windows worm: client-to-server, c-to-c, s-to-s, …9/01Nimda

Recompiled source code locally8/01Walk

First sig Windows worm; Completely memory resident7/01Code Red

Vigilante worm that secured vulnerable systems6/01Cheese

Stealthy, rootkit worm3/01Lion

Exploited three vulnerabilities1/01Ramen

Random scanning of IP address space5/98ADM

Used multiple vulnerabilities, propagate to “nearby” sys11/88Morris

DistinctionDateWorm

Kienzle and Elder



Increasing propagation speed
Code Red, July 2001
 Affects Microsoft Index Server 2.0, 

 Windows 2000 Indexing service on Windows NT 4.0.
 Windows 2000 that run IIS 4.0 and 5.0 Web servers

 Exploits known buffer overflow in Idq.dll
 Vulnerable population (360,000 servers) infected in 14 hours

SQL Slammer, January 2003
 Affects in Microsoft SQL 2000
 Exploits known buffer overflow vulnerability

 Server Resolution service vulnerability reported June 2002 
 Patched released in July 2002 Bulletin MS02-39

 Vulnerable population infected in less than 10 minutes



Code Red
Code Red I released July 12, 2001
 If before 20th of month, scans IP addresses in fixed, 

pseudo-random order to find other targets
 After 20th of month, mount DDOS attack
 Send code as an HTTP request exploiting overflow
 Just memory resident (rebooting clears infection)

When executed,
 Just sleep if C:\Notworm exists
 Creates new threads to propagate infection

file:///C:/Notworm


Code Red of July 12 and July 19

Code Red I
 1st through 20th month: Spread 

 via pseudo-random scan of 32-bit IP addr space
 20th through end of each month: attack.

 Flooding attack against 198.137.240.91  (www.whitehouse.gov)

 Failure to seed random number generator ⇒ linear growth

July 19th: Code Red I v2
 White House responds to threat of flooding attack by changing 

the address of www.whitehouse.gov
 Causes Code Red to die for date ≥ 20th of the month.
 But: this time random number generator correctly seeded

Slides: Vern Paxson



Slide: Vern Paxson



Measuring activity: network telescope

Monitor cross-section of Internet address space, measure traffic 
 “Backscatter” from DOS floods
 Attackers probing blindly
 Random scanning from worms

LBNL’s cross-section: 1/32,768 of Internet
UCSD, UWisc’s cross-section: 1/256.



Spread of Code Red

Network telescopes estimate of # infected hosts: 
360K.  (Beware DHCP & NAT)
Course of infection fits classic logistic.
Note: larger the vulnerable population, faster the worm 
spreads.

That night (⇒ 20th), worm dies …
    … except for hosts with inaccurate clocks!

It just takes one of these to restart the worm on August 
1st …

Slides: Vern Paxson



Slides: Vern Paxson



Code Red 2

Released August 4, 2001.
Comment in code: “Code Red 2.”
 But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.
Bug: crashes NT, only works on Windows 2000.
Kills Code Red 1.
Safety valve: programmed to die Oct 1, 2001.

Slides: Vern Paxson



Code Red 2 (continued)

Slept for 24 hours after infection
 Couldn't correlate outgoing flows w. new infection
 Then reboots machine and starts spreading

Localized scanning: prefers nearby addresses.
 w. prob. 1/2 try machines in same /8 network
 w. prob. 3/8 try machines in same /16 network
 w. prob. 1/8 try random non-class-D non-loopback

Sets up back door w. administrative access to 
machine
Not just memory resident--Resilient to reboot



Striving for Greater Virulence: Nimda

Released September 18, 2001.
Multi-mode spreading:
 attack IIS servers via infected clients 
 email itself to address book as a virus 
 copy itself across open network shares 
 modifying Web pages on infected servers w/ client 

exploit  
 scanning for Code Red II backdoors (!)

Worms form an ecosystem!
Leaped across firewalls.

Slides: Vern Paxson



Code Red 2 kills 
off Code Red 1

Code Red 2 settles 
into weekly pattern

Nimda enters the 
ecosystem

Code Red 2 dies off 
as programmed

CR 1 
returns 
thanks
to bad 
clocks

Slides: Vern Paxson



How do worms propagate?

Scanning worms (This is currently the most common)
 Worm chooses “random” address

Coordinated scanning
 Different worm instances scan different addresses

Flash worms
 Assemble tree of vulnerable hosts in advance, propagate along tree

 Not observed in the wild, yet
 Potential for 106 hosts in < 2 sec !  [Staniford]

Meta-server worm 
 Ask server for hosts to infect (e.g., Google for “powered by phpbb”)

Topological worm:
 Use information from infected hosts (web server logs, email address 

books, config files, .rhosts, SSH “known hosts”)
Contagion worm 
 Propagate parasitically along with normally initiated communication
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Internet Worm Quarantine
Internet Worm Quarantine Techniques
 Destination port blocking
 Infected source host IP blocking
 Content-based blocking  [Moore et al.]

Worm Signature
05:45:31.912454 90.196.22.196.1716 > 209.78.235.128.80: . 0:1460(1460) ack 1 
win 8760 (DF)
0x0000  4500 05dc 84af 4000 6f06 5315 5ac4 16c4 E.....@.o.S.Z...
0x0010  d14e eb80 06b4 0050 5e86 fe57 440b 7c3b .N.....P^..WD.|;
0x0020  5010 2238 6c8f 0000 4745 5420 2f64 6566 P."8l...GET./def
0x0030  6175 6c74 2e69 6461 3f58 5858 5858 5858 ault.ida?XXXXXXX
0x0040  5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
              . . . . .
0x00e0  5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x00f0  5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x0100  5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x0110  5858 5858 5858 5858 5825 7539 3039 3025 XXXXXXXXX%u9090%
0x01a0  303d 6120 4854 5450 2f31 2e30 0d0a 436f 0=a.HTTP/1.0..Co .

Signature for CodeRed II

Signature: A Payload Content String Specific To A Worm 

Next slides: Brad Karp
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Content-based Blocking

Our network
X

Traffic 
Filtering

Internet

Signature for CodeRed II

 Can be used by Bro, Snort, Cisco’s NBAR, ...

http://images.google.com/imgres?imgurl=www.eirefirst.com/clipart/gifs/St%2520Patrick%2520Worm.gif&imgrefurl=http://www.eirefirst.com/clipart.htm&h=398&w=490&sz=8&tbnid=DaavbgCpeSEJ:&tbnh=103&tbnw=126&start=144&prev=/images%3Fq%3Dworm%26start%3D140%26hl%3Dko%26lr%3D%26ie%3DUTF-8%26sa%3DN
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Signature derivation is too slow

Current Signature Derivation Process
 New worm outbreak
 Report of anomalies from people via 

phone/email/newsgroup
 Worm trace is captured
 Manual analysis by security experts
 Signature generation

⇒ Labor-intensive, Human-mediated
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Autograph [Kim & Karp]

    
    Goal: Automatically generate signatures of 

previously unknown Internet worms 

 as accurately as possible

 as quickly as possible
⇒ Content-Based Analysis

⇒ Automation, Distributed Monitoring
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Autograph: Assumptions

Propagation is via scanning
Source address can't be asily spoofed
Can easily monitor/decode communications
Worm’s payloads share a common substring
 Definitely holds for non-polymorphic worms
 May hold anyway because vulnerability exploit part is 

not easily mutable
 In 2004, Singh et al. claim all common worms have had 

at least 400 bytes of constant payload
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l

Automated Signature Generation

Step 1: Select suspicious flows using heuristics
Step 2: Generate signature using content-
prevalence analysis

Our network

Traffic 
Filtering

Internet Autograph 
Monitor

Signature

X

SignatureSignature
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Heuristic: Flows from scanners are suspicious
 Focus on the successful flows from IPs who made unsuccessful 

connections to more than s destinations for last 24 hours

⇒ Suitable heuristic for TCP worm that scans network

Suspicious Flow Pool
 Holds reassembled, suspicious flows captured during the last time 

period t 
 Triggers signature generation if there are more than θ  flows  

Suspicious Flow Selection

Reduce the work by filtering out 
vast amount of innocuous flows 

Autograph (s = 2)

Non-existent

Non-existent
This flow will be 

selected
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Suspicious Flow Selection

Heuristic: Flows from scanners are suspicious
 Focus on the successful flows from IPs who made unsuccessful 

connections to more than s destinations for last 24 hours

⇒ Suitable heuristic for TCP worm that scans network

Suspicious Flow Pool
 Holds reassembled, suspicious flows seen in last t time
 Triggers signature generation if there are more than θ  flows  

Note suspicion heuristic far from perfect
 Must assume classifier will have false positives & 

negatives

Reduce the work by filtering out 
vast amount of innocuous flows 
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Signature Generation

    All instances of a worm have a common byte 
pattern specific to the worm 

Rationale
 Worms propagate by duplicating themselves
 Worms propagate using vulnerability of a service

Use the most frequent byte sequences across 
suspicious flows as signatures

How to find the most frequent byte sequences?



 36

Worm-specific Pattern Detection
Use the entire payload
 Brittle to byte insertion, deletion, reordering

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX
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Worm-specific Pattern Detection

Partition flows into non-overlapping small blocks and 
count the number of occurrences

Fixed-length Partition
 Still brittle to byte insertion, deletion, reordering

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX
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Worm-specific Pattern Detection
Content-based Payload Partitioning (COPP)
 Partition if Rabin fingerprint of a sliding window matches 

Breakmark
 Configurable parameters: content block size (minimum, 

average, maximum), breakmark, sliding window

Breakmark = last 8 bits of fingerprint (ABCD)

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX
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Why Prevalence?

Worm flows dominate in the suspicious flow pool
Content-blocks from worms are highly ranked

Nimda

CodeRed2

Nimda (16 different payloads)

WebDAV exploit

Innocuous, 
misclassified

 Prevalence Distribution in Suspicious Flow Pool 
- From 24-hr http traffic trace
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Select Most Frequent Content Block
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Select Most Frequent Content Block
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Select Most Frequent Content Block

f0   C F
f1   C D G
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f8   G I J
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Select Most Frequent Content Block
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Signature:                         

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected
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Signature:                         A

Select Most Frequent Content Block
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W: target coverage in suspicious flow pool
P: minimum occurrence to be selected
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Select Most Frequent Content Block
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Signature:                         A
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f8   G I J

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected



 46

Select Most Frequent Content Block
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Signature:                         A
f0   C F
f1   C D G
f2   A B D
f3   A C E

f4   A B E
f5   A B D
f6   H I J
f7   I H J
f8   G I J

I

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected
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Select Most Frequent Content Block

F
C
C DG

P≥3

Signature:                         A
f0   C F
f1   C D G
f2   A B D
f3   A C E

f4   A B E
f5   A B D
f6   H I J
f7   I H J
f8   G I J

ISignature:                         

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected
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Signature Quality

Larger block sizes generate more specific signatures

A range of w (90-95%, workload dependent) produces a good 
signature
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Signature Generation Speed
Bounded by worm payload accumulation speed
 Aggressiveness of scanner detection heuristic

s: # of failed connection peers to detect a scanner
 # of payloads enough for content analysis

θ: suspicious flow pool size to trigger signature generation

Single Autograph
 Worm payload accumulation is slow

Internet

A

AA

A

A A

A

tattler

 Distributed Autograph
 Share scanner IP list
 Tattler: limit bandwidth 

consumption within a 
predefined cap



Another approach:  Earlybird [Singh]

Use overlapping fixed-size blocks (40 bytes), not COPP 
[next few slides]
Inspect packets, not flows
Assume some (relatively) unique invariant bitstring W 
across all instances of a particular worm
Two consequences
 Content Prevalence: W will be more common in traffic than 

other bitstrings of the same length
 Address Dispersion: the set of packets containing W will 

address a disproportionate number of distinct sources and 
destinations

Content sifting: find W’s with high content prevalence and 
high address dispersion and drop that traffic

Slide: S Savage
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Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)



Which substrings to index? 

Approach 1: Index all substrings
 Way too many substrings  too much computation  too much 

state

Approach 2: Index whole packet
 Very fast but trivially evadable (e.g., Witty, Email Viruses)

Approach 3: Index all contiguous substrings of a fixed length 
‘S’
 Can capture all signatures of length ‘S’ and larger

A B C D E F G H I J K

(Stefan Savage, UCSD *)



How to subsample?
Approach 1: sample packets
 If we chose 1 in N, detection will be slowed by N

Approach 2: sample at particular byte offsets 
 Susceptible to simple evasion attacks
 No guarantee that we will sample same sub-string in 

every packet

Approach 3: sample based on the hash of the 
substring
 Like COPP, but chose strings to remember, not 

partition points this way

(Stefan Savage, UCSD *)



Earlybird contributions

Fast ways to track blocks with minimal state
Multistate filters
 Hash blocks into multiple tables of counters
 Increment low counter
 Consider block high-prevelance if all counters high

Scalable bitmap counters for detecting dispersion
 5x memory usage reduction, modest error
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What about polymorphic worms?

• Polymorphic worms 
minimize invariant 
content
 Encrypted payload
 Obfuscated decryption 

routine

Polymorphic tools 
already available
 Clet, ADMmutate

Slides: Brad Karp
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Good News: Still some invariant content

GET Host:
Payload
Part 2

HTTP/1.1URL Host:
Payload
Part 1

Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload

\xff\xbfNOP
slide

• Protocol framing
• Needed to make server go down vulnerable code path

• Overwritten Return Address
• Needed to redirect execution to worm code

• Decryption routine
• Needed to decrypt main payload
• BUT, code obfuscation can eliminate patterns here
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Bad News: Previous Approaches Insufficient

Previous approaches use a common substring
Longest substring
 “HTTP/1.1”
 93% false positive rate

Most specific substring
 “\xff\xbf”
 .008% false positive rate (10 / 125,301)

GET Host: Payload
Part 2

HTTP/1.1URL Host: Payload
Part 1

Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbf

NOP
slide
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Polygraph signatures [Newsome]

Borrow ideas from Biology
 Motif finding is common task when analyzing DNS
 Can use same algorithms for worm analysis

Types of signature:
Conjunction: Flow matches signature if it contains 
all tokens in signature
 E.g., “GET” and “HTTP/1.1” and “\r\nHost:” and 

“\r\nHost:” and “\xff\xbf”

Token subsequence:  match if all tokens in order
 E.g., GET.*HTTP/1.1.*\r\nHost:.*\r\nHost:.*\xff\xbf
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Limitations of previous techniques

False positives
 E.g., Earlybird triggers on  some P2P traffic
 Requires manual whitelist generation

False negatives
 If you tune for low false positives, could miss ones
 Or take so long that it is too late

Problem would be simpler if we could classify 
flows without error



How to recognize malicious flows?

Autograph, Earlybird use very crude metrics
 Create hitlist worm to avoid port scanning
 Earlybird 40-byte strings might have false positives
 Attackers might intentionally poison detecter [Paragraph]

Wouldn't it be great if we could test payloads?
 Feed packet to application
 Detect if it exploits a buffer overrun, etc.

TaintCheck [Newsome]
 Run application in environment where can detect this
 Goal:  Avoid false alarms



Fast, Low-Cost Distributed Detection

Low load servers & Honeypots:
 Monitor all incoming requests
 Monitor port scanning traffic

High load servers: 
 Randomly select requests to monitor
 Select suspicious requests to monitor

 When server is abnormal
 E.g., server becomes client, server starts strange 

network/OS activity

 Anomalous requests

Incoming traffic

Trace logger

TaintCheck

Port scanning traffic

Flow
Selector

Randomly selected flows

Suspicious flows



How TaintCheck works

Run application under valgrind x86 emulator
Keep 4-byte pointer to taint struct for each byte
 TaintSeed – mark bytes read from network
 TaintTracker – propagate taint where data flows [no 

condition codes, so not completely airtight]
 TaintAssert – check data not misused (e.g., jump target 

should not be data from network)

Things that can be checked
 Untrusted format string, buffer overflow, double free, 

heap smash



Worm Request

Semantic-based Signature 
Generation (I)

!!!Overwritten
Return Address

•Identifying invariants using semantic-based 
analysis
•Example invariants (I): 

•Identify overwrite value
•Trace back to value in original request

•Experiment: ATPHttpd exploit
•Identified overwrite return address
•Used top 3 bytes as signature
•Signature had 1 false positive
  out of 59,280 HTTP requests

!!!

!!!



Sting Architecture

Incoming traffic Exploit
Detector

Malicious flows Signature
Generator

Generated
Signatures

Signature
Dissemination

System

Disseminating
Signatures

Innocuous 
Flows



Sting Evaluation

Slammer worm attack:
 100,000 vulnerable hosts
 4000 scans per second
 Effective contact rate r: 0.1 per second

Sting evaluation I:
 10% deployment, 10% sample rate
 Dissemination rate: 2*r = 0.2 per second
 Fraction of protected vulnerable host: 70%

Sting evaluation II:
 1% deployment, 10% sample rate
 10% vulnerable host protected for dissemination rate 0.2 per 

second
 98% vulnerable host protected for dissemination rate 1 per 

second



Generic Exploit Blocking
Idea
 Write signature to block all future attacks on a vulnerability
 Different from writing a signature for a specific exploit!

Step #1: Characterize the vulnerability “shape”
 Identify fields, services or protocol states that must be 

present in attack traffic to exploit the vulnerability
 Identify data footprint size required to exploit the 

vulnerability
 Identify locality of data footprint; will it be localized or spread 

across the flow?

Step #2: Write a generic signature that can detect 
data that “mates” with the vulnerability shape
Similar to Shield research from Microsoft
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Generic Exploit Blocking Example #1

Consider MS02-039 Vulnerability (SQL Buffer Overflow):

Field/service/protocol
UDP port 1434
Packet type: 4

Minimum data footprint
Packet size > 60 bytes

Data Localization
Limited to a single packet

Pseudo-signature:

if (packet.port() == 1434 &&
    packet[0] == 4 &&
    packet.size() > 60)
{
   report_exploit(MS02-039);
}

BEGIN
 DESCRIPTION: MS02-039
 NAME: MS SQL Vuln
 TRANSIT-TYPE: UDP
 TRIGGER: ANY:ANY->ANY:1434
 OFFSET: 0, PACKET
 SIG-BEGIN
   "\x04<getpacketsize(r0)> 
   <inrange(r0,61,1000000)>
   <reportid()>"
 SIG-END
END
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Consider MS03-026  Vulnerability (RPC Buffer Overflow):

Field/service/protocol
RPC request on TCP/UDP 135
szName field in 
CoGetInstanceFromFile func.

Minimum data footprint
Arguments > 62 bytes

Data Localization
Limited to 256 bytes from 
start of RPC bind command

Sample signature:

if (port == 135 &&
    type == request &&
    func == CoGetInstanceFromFile &&
    parameters.length() > 62)
{
   report_exploit(MS03-026);
}

Generic Exploit Blocking Example #2

BEGIN
 DESCRIPTION: MS03-026
 NAME: RPC Vulnerability
 TRANSIT-TYPE: TCP, UDP
 TRIGGER: ANY:ANY->ANY:135
 SIG-BEGIN
   "\x05\x00\x0B\x03\x10\x00\x00
    (about 50 more bytes...)    
    \x00\x00.*\x05\x00
    <forward(5)><getbeword(r0)>
    <inrange(r0,63,20000)>    
    <reportid()>"
 SIG-END
END
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