
Outline

Worm propagation
 Worm examples
 Propagation models

Detection methods
 Traffic patterns: Autograph, EarlyBird, Polygraph
 Watch attack: TaintCheck and Sting
 Look at vulnerabilities: Generic Exploit Blocking

Worm

A worm is self-replicating software designed to spread
through the network
 Typically exploit security flaws in widely used services
 Often conscripts machine into bot network
 May cause enormous collateral damage

 Access sensitive information
 Corrupt files
 Cause malfunction, overload, etc.

Worm vs Virus vs Trojan horse
 A virus is code embedded in a file or program
 Viruses and Trojan horses rely on human intervention
 Worms are self-contained and may spread autonomously

Cost of worm attacks

Morris worm, 1988
 Infected approximately 6,000 machines

 10% of computers connected to the Internet
 cost ~ $10 million in downtime and cleanup

Code Red worm, July 16 2001
 Direct descendant of Morris’ worm
 Infected more than 500,000 servers

 Programmed to go into infinite sleep mode July 28
 Caused ~ $2.6 Billion in damages,

Love Bug worm: $8.75 billion

Statistics: Computer Economics Inc., Carlsbad, California

Internet Worm (First major attack)

Released November 1988
 Program spread through Digital, Sun workstations
 Exploited Unix security vulnerabilities

 VAX computers and SUN-3 workstations running
versions 4.2 and 4.3 Berkeley UNIX code

Consequences
 No immediate damage from program itself
 Replication and threat of damage

 Load on network, systems used in attack
 Many systems shut down to prevent further attack

Internet Worm Description

Two parts
 Program to spread worm

 look for other machines that could be infected
 try to find ways of infiltrating these machines

 Vector program (99 lines of C)
 compiled and run on the infected machines
 transferred main program to continue attack

Security vulnerabilities
 fingerd – Unix finger daemon
 sendmail - mail distribution program
 Trusted logins (.rhosts)
 Weak passwords

Three ways the worm spread

Sendmail
 Exploit debug option in sendmail to allow shell

access

Fingerd
 Exploit a buffer overflow in the fgets function
 Apparently, this was the most successful attack

Rsh
 Exploit trusted hosts
 Password cracking

sendmail

Worm used debug feature
 Opens TCP connection to machine's SMTP port
 Invokes debug mode
 Sends a RCPT TO that pipes data through shell
 Shell script retrieves worm main program

 places 40-line C program in temporary file called x$$,l1.c
where $$ is current process ID

 Compiles and executes this program
 Opens socket to machine that sent script
 Retrieves worm main program, compiles it and runs

fingerd

Written in C and runs continuously
Array bounds attack
 Fingerd expects an input string
 Worm writes long string to internal 512-byte buffer

Attack string
 Includes machine instructions
 Overwrites return address
 Invokes a remote shell
 Executes privileged commands

Remote shell

Unix trust information
 /etc/host.equiv – system wide trusted hosts file
 /.rhosts and ~/.rhosts – users’ trusted hosts file

Worm exploited trust information
 Examining files that listed trusted machines
 Assume reciprocal trust

 If X trusts Y, then maybe Y trusts X

Password cracking
 Worm was running as daemon (not root) so needed to break

into accounts to use .rhosts feature
 Dictionary attack
 Read /etc/passwd, used ~400 common password strings

The worm itself

Program is called 'sh'
 Clobbers argv array so a 'ps' will not show its name
 Opens its files, then unlinks (deletes) them so can't be found

 Since files are open, worm can still access their contents

Tries to infect as many other hosts as possible
 When worm successfully connects, forks a child to continue

the infection while the parent keeps trying new hosts

Worm did not:
 Delete system's files, modify existing files, install trojan

horses, record or transmit decrypted passwords, capture
superuser privileges, propagate over UUCP, X.25, DECNET,
or BITNET

Detecting Morris Internet Worm

Files
 Strange files appeared in infected systems
 Strange log messages for certain programs

System load
 Infection generates a number of processes
 Systems were reinfected => number of processes

grew and systems became overloaded
 Apparently not intended by worm’s creator

 Thousands of systems were shut down

Stopping the worm

System admins busy for several days
 Devised, distributed, installed modifications

Perpetrator
 Student at Cornell; turned himself in
 Sentence: community service and $10,000 fine

 Program did not cause deliberate damage
 Tried (failed) to control # of processes on host machines

Lessons?
 Security vulnerabilities come from system flaws
 Diversity is useful for resisting attack
 “Experiments” can be dangerous

Sources for more information

Eugene H. Spafford, The Internet Worm: Crisis and
Aftermath, CACM 32(6) 678-687, June 1989
Page, Bob, "A Report on the Internet Worm",
http://www.ee.ryerson.ca:8080/~elf/hack/iworm.html

Some historical worms of note

Used a single UDP packet for explosive growth1/03Slammer

11 days after announcement of vulnerability; peer-to-
peer network of compromised systems

6/02Scalper

Windows worm: client-to-server, c-to-c, s-to-s, …9/01Nimda

Recompiled source code locally8/01Walk

First sig Windows worm; Completely memory resident7/01Code Red

Vigilante worm that secured vulnerable systems6/01Cheese

Stealthy, rootkit worm3/01Lion

Exploited three vulnerabilities1/01Ramen

Random scanning of IP address space5/98ADM

Used multiple vulnerabilities, propagate to “nearby” sys11/88Morris

DistinctionDateWorm

Kienzle and Elder

Increasing propagation speed
Code Red, July 2001
 Affects Microsoft Index Server 2.0,

 Windows 2000 Indexing service on Windows NT 4.0.
 Windows 2000 that run IIS 4.0 and 5.0 Web servers

 Exploits known buffer overflow in Idq.dll
 Vulnerable population (360,000 servers) infected in 14 hours

SQL Slammer, January 2003
 Affects in Microsoft SQL 2000
 Exploits known buffer overflow vulnerability

 Server Resolution service vulnerability reported June 2002
 Patched released in July 2002 Bulletin MS02-39

 Vulnerable population infected in less than 10 minutes

Code Red
Code Red I released July 12, 2001
 If before 20th of month, scans IP addresses in fixed,

pseudo-random order to find other targets
 After 20th of month, mount DDOS attack
 Send code as an HTTP request exploiting overflow
 Just memory resident (rebooting clears infection)

When executed,
 Just sleep if C:\Notworm exists
 Creates new threads to propagate infection

file:///C:/Notworm

Code Red of July 12 and July 19

Code Red I
 1st through 20th month: Spread

 via pseudo-random scan of 32-bit IP addr space
 20th through end of each month: attack.

 Flooding attack against 198.137.240.91 (www.whitehouse.gov)

 Failure to seed random number generator ⇒ linear growth

July 19th: Code Red I v2
 White House responds to threat of flooding attack by changing

the address of www.whitehouse.gov
 Causes Code Red to die for date ≥ 20th of the month.
 But: this time random number generator correctly seeded

Slides: Vern Paxson

Slide: Vern Paxson

Measuring activity: network telescope

Monitor cross-section of Internet address space, measure traffic
 “Backscatter” from DOS floods
 Attackers probing blindly
 Random scanning from worms

LBNL’s cross-section: 1/32,768 of Internet
UCSD, UWisc’s cross-section: 1/256.

Spread of Code Red

Network telescopes estimate of # infected hosts:
360K. (Beware DHCP & NAT)
Course of infection fits classic logistic.
Note: larger the vulnerable population, faster the worm
spreads.

That night (⇒ 20th), worm dies …
 … except for hosts with inaccurate clocks!

It just takes one of these to restart the worm on August
1st …

Slides: Vern Paxson

Slides: Vern Paxson

Code Red 2

Released August 4, 2001.
Comment in code: “Code Red 2.”
 But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.
Bug: crashes NT, only works on Windows 2000.
Kills Code Red 1.
Safety valve: programmed to die Oct 1, 2001.

Slides: Vern Paxson

Code Red 2 (continued)

Slept for 24 hours after infection
 Couldn't correlate outgoing flows w. new infection
 Then reboots machine and starts spreading

Localized scanning: prefers nearby addresses.
 w. prob. 1/2 try machines in same /8 network
 w. prob. 3/8 try machines in same /16 network
 w. prob. 1/8 try random non-class-D non-loopback

Sets up back door w. administrative access to
machine
Not just memory resident--Resilient to reboot

Striving for Greater Virulence: Nimda

Released September 18, 2001.
Multi-mode spreading:
 attack IIS servers via infected clients
 email itself to address book as a virus
 copy itself across open network shares
 modifying Web pages on infected servers w/ client

exploit
 scanning for Code Red II backdoors (!)

Worms form an ecosystem!
Leaped across firewalls.

Slides: Vern Paxson

Code Red 2 kills
off Code Red 1

Code Red 2 settles
into weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off
as programmed

CR 1
returns
thanks
to bad
clocks

Slides: Vern Paxson

How do worms propagate?

Scanning worms (This is currently the most common)
 Worm chooses “random” address

Coordinated scanning
 Different worm instances scan different addresses

Flash worms
 Assemble tree of vulnerable hosts in advance, propagate along tree

 Not observed in the wild, yet
 Potential for 106 hosts in < 2 sec ! [Staniford]

Meta-server worm
 Ask server for hosts to infect (e.g., Google for “powered by phpbb”)

Topological worm:
 Use information from infected hosts (web server logs, email address

books, config files, .rhosts, SSH “known hosts”)
Contagion worm
 Propagate parasitically along with normally initiated communication

 27

Internet Worm Quarantine
Internet Worm Quarantine Techniques
 Destination port blocking
 Infected source host IP blocking
 Content-based blocking [Moore et al.]

Worm Signature
05:45:31.912454 90.196.22.196.1716 > 209.78.235.128.80: . 0:1460(1460) ack 1
win 8760 (DF)
0x0000 4500 05dc 84af 4000 6f06 5315 5ac4 16c4 E.....@.o.S.Z...
0x0010 d14e eb80 06b4 0050 5e86 fe57 440b 7c3b .N.....P^..WD.|;
0x0020 5010 2238 6c8f 0000 4745 5420 2f64 6566 P."8l...GET./def
0x0030 6175 6c74 2e69 6461 3f58 5858 5858 5858 ault.ida?XXXXXXX
0x0040 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0x00e0 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x00f0 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x0100 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x0110 5858 5858 5858 5858 5825 7539 3039 3025 XXXXXXXXX%u9090%
0x01a0 303d 6120 4854 5450 2f31 2e30 0d0a 436f 0=a.HTTP/1.0..Co .

Signature for CodeRed II

Signature: A Payload Content String Specific To A Worm

Next slides: Brad Karp

 28

Content-based Blocking

Our network
X

Traffic
Filtering

Internet

Signature for CodeRed II

 Can be used by Bro, Snort, Cisco’s NBAR, ...

http://images.google.com/imgres?imgurl=www.eirefirst.com/clipart/gifs/St%2520Patrick%2520Worm.gif&imgrefurl=http://www.eirefirst.com/clipart.htm&h=398&w=490&sz=8&tbnid=DaavbgCpeSEJ:&tbnh=103&tbnw=126&start=144&prev=/images%3Fq%3Dworm%26start%3D140%26hl%3Dko%26lr%3D%26ie%3DUTF-8%26sa%3DN

 29

Signature derivation is too slow

Current Signature Derivation Process
 New worm outbreak
 Report of anomalies from people via

phone/email/newsgroup
 Worm trace is captured
 Manual analysis by security experts
 Signature generation

⇒ Labor-intensive, Human-mediated

 30

Autograph [Kim & Karp]

 Goal: Automatically generate signatures of

previously unknown Internet worms

 as accurately as possible

 as quickly as possible
⇒ Content-Based Analysis

⇒ Automation, Distributed Monitoring

 31

Autograph: Assumptions

Propagation is via scanning
Source address can't be asily spoofed
Can easily monitor/decode communications
Worm’s payloads share a common substring
 Definitely holds for non-polymorphic worms
 May hold anyway because vulnerability exploit part is

not easily mutable
 In 2004, Singh et al. claim all common worms have had

at least 400 bytes of constant payload

 32

l

Automated Signature Generation

Step 1: Select suspicious flows using heuristics
Step 2: Generate signature using content-
prevalence analysis

Our network

Traffic
Filtering

Internet Autograph
Monitor

Signature

X

SignatureSignature

 33

Heuristic: Flows from scanners are suspicious
 Focus on the successful flows from IPs who made unsuccessful

connections to more than s destinations for last 24 hours

⇒ Suitable heuristic for TCP worm that scans network

Suspicious Flow Pool
 Holds reassembled, suspicious flows captured during the last time

period t
 Triggers signature generation if there are more than θ flows

Suspicious Flow Selection

Reduce the work by filtering out
vast amount of innocuous flows

Autograph (s = 2)

Non-existent

Non-existent
This flow will be

selected

 34

Suspicious Flow Selection

Heuristic: Flows from scanners are suspicious
 Focus on the successful flows from IPs who made unsuccessful

connections to more than s destinations for last 24 hours

⇒ Suitable heuristic for TCP worm that scans network

Suspicious Flow Pool
 Holds reassembled, suspicious flows seen in last t time
 Triggers signature generation if there are more than θ flows

Note suspicion heuristic far from perfect
 Must assume classifier will have false positives &

negatives

Reduce the work by filtering out
vast amount of innocuous flows

 35

Signature Generation

 All instances of a worm have a common byte
pattern specific to the worm

Rationale
 Worms propagate by duplicating themselves
 Worms propagate using vulnerability of a service

Use the most frequent byte sequences across
suspicious flows as signatures

How to find the most frequent byte sequences?

 36

Worm-specific Pattern Detection
Use the entire payload
 Brittle to byte insertion, deletion, reordering

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX

 37

Worm-specific Pattern Detection

Partition flows into non-overlapping small blocks and
count the number of occurrences

Fixed-length Partition
 Still brittle to byte insertion, deletion, reordering

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX

 38

Worm-specific Pattern Detection
Content-based Payload Partitioning (COPP)
 Partition if Rabin fingerprint of a sliding window matches

Breakmark
 Configurable parameters: content block size (minimum,

average, maximum), breakmark, sliding window

Breakmark = last 8 bits of fingerprint (ABCD)

GARBAGEEABCDEFGHIJKABCDXXXXFlow 1

Flow 2 GARBAGEABCDEFGHIJKABCDXXXXX

 39

Why Prevalence?

Worm flows dominate in the suspicious flow pool
Content-blocks from worms are highly ranked

Nimda

CodeRed2

Nimda (16 different payloads)

WebDAV exploit

Innocuous,
misclassified

 Prevalence Distribution in Suspicious Flow Pool
- From 24-hr http traffic trace

 40

Select Most Frequent Content Block

A B D

A B E

A C E

A D

C F

C D G

B

f0

f1

f2
f3

f4

f5

H I Jf6

I H Jf7

G I Jf8

 41

Select Most Frequent Content Block

D

C

E

E

A

A

A

A D

FC

C D G

B

B

B

H

H

G

I

I

I

J

J

J

f0

f1

f2
f3

f4

f5

f6

f7

f8

f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

 42

A
A
A

E
E

A

FC

C
C

D
D
DB

B
B H

H
G
G

I
I
I

J
J
J

Select Most Frequent Content Block

f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

 43

Select Most Frequent Content Block

A

B

D
A

B E

A

C
E

A

D
C

F
C

D
GB H

I J
I

H
J

GI J

f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I JP≥3

Signature:

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

 44

Signature: A

Select Most Frequent Content Block

A

B

D
A

B E

A

C
E

A

D
C

F
C

D
GB H

I J
I

H
J

GI J

f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I JP≥3

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

 45

Select Most Frequent Content Block

B

DBA
A
A

C E
E

A

D
F

C
C

D
GB H

I J
I

H
J

GI J

P≥3

Signature: A
f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

 46

Select Most Frequent Content Block

F
C
C D

G H
I J
I

H
J

GI J

P≥3

Signature: A
f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

I

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

 47

Select Most Frequent Content Block

F
C
C DG

P≥3

Signature: A
f0 C F
f1 C D G
f2 A B D
f3 A C E

f4 A B E
f5 A B D
f6 H I J
f7 I H J
f8 G I J

ISignature:

W: target coverage in suspicious flow pool
P: minimum occurrence to be selected

 48

Signature Quality

Larger block sizes generate more specific signatures

A range of w (90-95%, workload dependent) produces a good
signature

 49

Signature Generation Speed
Bounded by worm payload accumulation speed
 Aggressiveness of scanner detection heuristic

s: # of failed connection peers to detect a scanner
 # of payloads enough for content analysis

θ: suspicious flow pool size to trigger signature generation

Single Autograph
 Worm payload accumulation is slow

Internet

A

AA

A

A A

A

tattler

 Distributed Autograph
 Share scanner IP list
 Tattler: limit bandwidth

consumption within a
predefined cap

Another approach: Earlybird [Singh]

Use overlapping fixed-size blocks (40 bytes), not COPP
[next few slides]
Inspect packets, not flows
Assume some (relatively) unique invariant bitstring W
across all instances of a particular worm
Two consequences
 Content Prevalence: W will be more common in traffic than

other bitstrings of the same length
 Address Dispersion: the set of packets containing W will

address a disproportionate number of distinct sources and
destinations

Content sifting: find W’s with high content prevalence and
high address dispersion and drop that traffic

Slide: S Savage

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10 100 1000 10000 100000

Only 0.6% of the 40 byte
substrings repeat more
than 3 times in a minute

Number of repeats

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

 o
f

si
g

n
at

u
re

s

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)

Which substrings to index?

Approach 1: Index all substrings
 Way too many substrings  too much computation  too much

state

Approach 2: Index whole packet
 Very fast but trivially evadable (e.g., Witty, Email Viruses)

Approach 3: Index all contiguous substrings of a fixed length
‘S’
 Can capture all signatures of length ‘S’ and larger

A B C D E F G H I J K

(Stefan Savage, UCSD *)

How to subsample?
Approach 1: sample packets
 If we chose 1 in N, detection will be slowed by N

Approach 2: sample at particular byte offsets
 Susceptible to simple evasion attacks
 No guarantee that we will sample same sub-string in

every packet

Approach 3: sample based on the hash of the
substring
 Like COPP, but chose strings to remember, not

partition points this way

(Stefan Savage, UCSD *)

Earlybird contributions

Fast ways to track blocks with minimal state
Multistate filters
 Hash blocks into multiple tables of counters
 Increment low counter
 Consider block high-prevelance if all counters high

Scalable bitmap counters for detecting dispersion
 5x memory usage reduction, modest error

 55

What about polymorphic worms?

• Polymorphic worms
minimize invariant
content
 Encrypted payload
 Obfuscated decryption

routine

Polymorphic tools
already available
 Clet, ADMmutate

Slides: Brad Karp

 56

Good News: Still some invariant content

GET Host:
Payload
Part 2

HTTP/1.1URL Host:
Payload
Part 1

Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload

\xff\xbfNOP
slide

• Protocol framing
• Needed to make server go down vulnerable code path

• Overwritten Return Address
• Needed to redirect execution to worm code

• Decryption routine
• Needed to decrypt main payload
• BUT, code obfuscation can eliminate patterns here

 57

Bad News: Previous Approaches Insufficient

Previous approaches use a common substring
Longest substring
 “HTTP/1.1”
 93% false positive rate

Most specific substring
 “\xff\xbf”
 .008% false positive rate (10 / 125,301)

GET Host: Payload
Part 2

HTTP/1.1URL Host: Payload
Part 1

Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbf

NOP
slide

 58

Polygraph signatures [Newsome]

Borrow ideas from Biology
 Motif finding is common task when analyzing DNS
 Can use same algorithms for worm analysis

Types of signature:
Conjunction: Flow matches signature if it contains
all tokens in signature
 E.g., “GET” and “HTTP/1.1” and “\r\nHost:” and

“\r\nHost:” and “\xff\xbf”

Token subsequence: match if all tokens in order
 E.g., GET.*HTTP/1.1.*\r\nHost:.*\r\nHost:.*\xff\xbf

 59

Limitations of previous techniques

False positives
 E.g., Earlybird triggers on some P2P traffic
 Requires manual whitelist generation

False negatives
 If you tune for low false positives, could miss ones
 Or take so long that it is too late

Problem would be simpler if we could classify
flows without error

How to recognize malicious flows?

Autograph, Earlybird use very crude metrics
 Create hitlist worm to avoid port scanning
 Earlybird 40-byte strings might have false positives
 Attackers might intentionally poison detecter [Paragraph]

Wouldn't it be great if we could test payloads?
 Feed packet to application
 Detect if it exploits a buffer overrun, etc.

TaintCheck [Newsome]
 Run application in environment where can detect this
 Goal: Avoid false alarms

Fast, Low-Cost Distributed Detection

Low load servers & Honeypots:
 Monitor all incoming requests
 Monitor port scanning traffic

High load servers:
 Randomly select requests to monitor
 Select suspicious requests to monitor

 When server is abnormal
 E.g., server becomes client, server starts strange

network/OS activity

 Anomalous requests

Incoming traffic

Trace logger

TaintCheck

Port scanning traffic

Flow
Selector

Randomly selected flows

Suspicious flows

How TaintCheck works

Run application under valgrind x86 emulator
Keep 4-byte pointer to taint struct for each byte
 TaintSeed – mark bytes read from network
 TaintTracker – propagate taint where data flows [no

condition codes, so not completely airtight]
 TaintAssert – check data not misused (e.g., jump target

should not be data from network)

Things that can be checked
 Untrusted format string, buffer overflow, double free,

heap smash

Worm Request

Semantic-based Signature
Generation (I)

!!!Overwritten
Return Address

•Identifying invariants using semantic-based
analysis
•Example invariants (I):

•Identify overwrite value
•Trace back to value in original request

•Experiment: ATPHttpd exploit
•Identified overwrite return address
•Used top 3 bytes as signature
•Signature had 1 false positive
 out of 59,280 HTTP requests

!!!

!!!

Sting Architecture

Incoming traffic Exploit
Detector

Malicious flows Signature
Generator

Generated
Signatures

Signature
Dissemination

System

Disseminating
Signatures

Innocuous
Flows

Sting Evaluation

Slammer worm attack:
 100,000 vulnerable hosts
 4000 scans per second
 Effective contact rate r: 0.1 per second

Sting evaluation I:
 10% deployment, 10% sample rate
 Dissemination rate: 2*r = 0.2 per second
 Fraction of protected vulnerable host: 70%

Sting evaluation II:
 1% deployment, 10% sample rate
 10% vulnerable host protected for dissemination rate 0.2 per

second
 98% vulnerable host protected for dissemination rate 1 per

second

Generic Exploit Blocking
Idea
 Write signature to block all future attacks on a vulnerability
 Different from writing a signature for a specific exploit!

Step #1: Characterize the vulnerability “shape”
 Identify fields, services or protocol states that must be

present in attack traffic to exploit the vulnerability
 Identify data footprint size required to exploit the

vulnerability
 Identify locality of data footprint; will it be localized or spread

across the flow?

Step #2: Write a generic signature that can detect
data that “mates” with the vulnerability shape
Similar to Shield research from Microsoft

Slide: Carey Nachenberg, Symantec

Generic Exploit Blocking Example #1

Consider MS02-039 Vulnerability (SQL Buffer Overflow):

Field/service/protocol
UDP port 1434
Packet type: 4

Minimum data footprint
Packet size > 60 bytes

Data Localization
Limited to a single packet

Pseudo-signature:

if (packet.port() == 1434 &&
 packet[0] == 4 &&
 packet.size() > 60)
{
 report_exploit(MS02-039);
}

BEGIN
 DESCRIPTION: MS02-039
 NAME: MS SQL Vuln
 TRANSIT-TYPE: UDP
 TRIGGER: ANY:ANY->ANY:1434
 OFFSET: 0, PACKET
 SIG-BEGIN
 "\x04<getpacketsize(r0)>
 <inrange(r0,61,1000000)>
 <reportid()>"
 SIG-END
END

Slide: Carey Nachenberg, Symantec

Consider MS03-026 Vulnerability (RPC Buffer Overflow):

Field/service/protocol
RPC request on TCP/UDP 135
szName field in
CoGetInstanceFromFile func.

Minimum data footprint
Arguments > 62 bytes

Data Localization
Limited to 256 bytes from
start of RPC bind command

Sample signature:

if (port == 135 &&
 type == request &&
 func == CoGetInstanceFromFile &&
 parameters.length() > 62)
{
 report_exploit(MS03-026);
}

Generic Exploit Blocking Example #2

BEGIN
 DESCRIPTION: MS03-026
 NAME: RPC Vulnerability
 TRANSIT-TYPE: TCP, UDP
 TRIGGER: ANY:ANY->ANY:135
 SIG-BEGIN
 "\x05\x00\x0B\x03\x10\x00\x00
 (about 50 more bytes...)
 \x00\x00.*\x05\x00
 <forward(5)><getbeword(r0)>
 <inrange(r0,63,20000)>
 <reportid()>"
 SIG-END
END

Slide: Carey Nachenberg, Symantec

