
Two ways to improve system security

Trustworthy Untrustworthy

Trusted OK BAD
Untrusted OK OK

• Make components more trustworthy

- Fix bugs, simplify implementations, certify software, . . .

- Sometimes makes it harder to innovate

• Make components less trusted

- There are many untrusted resources out there. . .

- if you can tap them, it may also enable new functionality

– p. 1/64

Medium-term plan

• Next three lectures about untrusted components

• Today: Data security

- Secrecy of stored data on untrusted machines

- Integrity of computation results on untrusted machines

- Integrity of stored data on untrusted machines

• Tuesday: Tamper-resistant computing

- Protecting against an attacker with physical control of a device

• Next Thursday: Owner-resistant computing

- Viewing the legitimate owner of a computer as untrusted

- (Is this even a good idea?)

– p. 2/64

Cryptographic Storage

• Two models of cryptographic storage

• First model: Mitigate stolen computer / USB key

- Assume you will know when data is stolen

- Once stolen, you no longer access compromised device

• Second model: Outsource your data storage

- Store encrypted data on a server

- Attacker may see multiple versions of data

- Attacker may see access patterns

- Very hard even to define security in this setting

– p. 3/64

CFS [Blaze]

VFS client
NFS

Application

user
kernel

system
call

NFS
loopback

server

UDP

FFS disk

• Structured as NFS loopback server

- Implement file system by speaking NFS over UDP

- Encrypt contents of files as they are written

- Must also encrypt file names, symbolic links, etc.

– p. 4/64

Example

'

&

$

%

% cmkdir /usr/mab/secrets

Key: (type password)

Again: (type password)

% cattach /usr/mab/secrets matt

Key: (type password)

% echo murder > /crypt/matt/crimes

% ls -l /usr/mab/secrets

-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124

% cat -v /usr/mab/secrets/8b06e85b87091124

M-Z,k^]^B^VM-VM-6A~uM-LM-_M-DM-^[

% detach matt

%

– p. 5/64

Initialization vectors

• Recall encryption must be randomized

- E.g., if you copy a file, copy’s ciphertext must look different

• CFS solution: Use separate file for IV

- Makes operations like link, rename not atomic

- On some benchmarks, cannot remove empty directories

• Other solution: Store at beginning of file

- Reserve first 512 bytes for IV & other metadata

- Performance impact is not too bad

- Still need file for directory’s IV

– p. 6/64

Sharing encrypted files

• Must encrypt each file so only authorized readers can

decrypt it

• Technique known as broadcast encryption

- E.g., use for radio broadcast to paying subscribers

– p. 7/64

Broadcast encryption solutions

• Small private key, large ciphertext

- Separately encrypt message for each recipient

- E.g., limits number of people who can read file

• Large private key, small ciphertext

- Use separate unique key for each set of recipients

• Cryptographic techniques [Boneh, Gentry, Waters]

- Can make ciphertexts and private keys constant size

- Just have to know for whom file encrypted to decrypt

– p. 8/64

Revocation

• Want to revoke someone’s read access from files

• One approach: re-encrypt all files w. new key
immediately

- Potentially very expensive when kicking someone out of a

widely-used group

- Person may already have stored unencrypted copies of file

anyway

• Lazy revocation: encrypt all new content w. new key

- Ensures person can only read content from before revocation

• Q: How to manage keys?

- People will need to read content encrypted w. old keys

– p. 9/64

Key regression [Fu et al.]

derive derivederive

stp0 stp3stp2stp1

stm1 stm2 stm3

K1 K2 K3

wind wind wind

unwindunwindstp - publisher state

stm - member state

K - encryption key

• Switch from Ki to Ki+1 when key revoked

• Give users state stmi+1

- Can derive key Ki from state stmi

- Can also unwind stmi to any previous state

• Only publisher can compute next member state

– p. 10/64

Old state

• What about data from before a user joins?

• In some cases, must prevent from reading

- E.g., Members of the Ph.D. admissions committee

- Must read sensitive recommendation letters

- Should not be able to read letters submitted about you

• How to fix?

– p. 11/64

Old state

• What about data from before a user joins?

• In some cases, must prevent from reading

- E.g., Members of the Ph.D. admissions committee

- Must read sensitive recommendation letters

- Should not be able to read letters submitted about you

• Might run two instances of key regression

- One “forwards” to current key

- One “backwards” to when you joined

- Derive real encryption key from forwards & backwards keys

• Note: very bad if you have colluding users

– p. 11/64

Byzantine Fault Tolerant
Replication

Miguel Castro and Barbara Liskov

– p. 12/64

BFT replication

• Goal: improve integrity of computation

• Idea: replicate server

- Attacker may be able to compromise one server

- But compromising more than a fraction may be much harder

• Structure server as a deterministic state machine

- If each correct replica executes the same operations, will return

the same results

• System must handle Byzantine failures of replicas

- Most systems expect fail-stop behavior (black smoke)

- Byzantine failure means server can give you bad responses

– p. 13/64

Straw-man BFT replication

• Replicate server on three machines

• Assume at most one will be compromised

• For each operation:

- Broadcast request to all three replicas

- If they differ in their replies, go with the majority

• What’s wrong here?

– p. 14/64

BFT replication complications

• Replicas must somehow agree on order of operations

- Otherwise, will get out of sync

• Failed and slow replicas are indistinguishable

- Say you hear back from replicas 1 and 2 but not 3

- 3 may have failed, so want to proceed

- But what if 2 has actually failed, and 3 is just slow

- If you proceed, honest replicas 1 and 3 will be out of sync

- So at very lease replica 2 can cause divergent views

– p. 15/64

BFT overview

Client

Client
File Server

File Server

File Server

H4CK3D

request

• Replicate server 3f + 1 times to tolerate f faults

- Client sends request to replicas

- 2f + 1 replicas must agree on order of the operation

- 2f + 1 replicas must decide the operation will actually execute

- Client waits for f + 1 such replicas to return identical responses

- Okay if f replicas compromised and/or f replicas slow

– p. 16/64

PBFT (simplified)

1. c → R: m = {REQUEST, o, t, c}K−1
c

- Client c broadcasts request o to set of all replicas R

- Signs message, includes unique timestamp t

2. p → R: {PRE-PREPARE, v, n, d = H(m)}K−1
p

- Replicas proceed through sequence of views

- In view number v, replica v mod (3f + 1) is primary

- Primary picks sequence number n for m & broadcasts it

3. ri → R: {PREPARE, v, n, d, i}K−1
ri

- Each replica promises not to accept operation other than d for

sequence number n in view v

– p. 17/64

PBFT (continued)

• Say prepared(m, v, n, i) when replica i has 2f + 1
matching PREPARE messages (including its own)

- Means prepared(m′, v, n, j) w. m 6= m′ false for any honest rj

• But not safe to execute operation yet!

- Just because another m′ won’t execute doesn’t mean m will

- Might be view change if primary is faulty

• Execute when prepared(m, v, n, i) true for 2f + 1
(meaning f + 1 non-faulty) replicas ri

- Note: means any 2f+1 replicas will contain one honest replica

that can prove no other m′ executed at n in v

• Say committed(m, v, n) when okay to execute

- How does a replica ri know committed(m, v, n)?

– p. 18/64

PBFT (continued)

4. ri → R: {COMMIT, v, n, d, i}K−1
ri

- ri sends COMMIT message once prepared(m, v, n, i)

- Waits for 2f + 1 matching COMMITs, including its own; once

received, we say committed-local(m, v, n, i)

- committed-local(m, v, n, i) implies committed(m, v, n)

5. ri → c: {REPLY, t, c, result, i}K−1
ri

- Execute operation and reply once committed(m, v, n)

- Client c waits for f + 1 matching replies (meaning at least one is

from honest replica)

– p. 19/64

View changes

• Must change views if primary is bad

- Replicas may notice primary not responsive

- f + 1 replicas suspecting primary should trigger view change

• ri → R: {VIEW-CHANGE, v + 1, n, C,P , i}K−1
ri

- P is 2f + 1 matching PREPAREs for all messages where

prepared(m, v, n, i)

- [Actually, C is checkpoint so don’t need whole history in P]

• p′ → R: {NEW-VIEW, v + 1, V, O}

- p′ is new primary

- V is set of 2f + 1 view change messages

- O is PRE-PREPAREs for messages in Ps

– p. 20/64

SFSRO
M. Frans Kaashoek, Kevin Fu, and David Mazières

– p. 21/64

Content distribution problem

• People often distribute popular files from mirrors

- Have files been tampered with?

– p. 22/64

Signing individual files
• One solution: Digitally sign files (e.g., w. PGP)

• But OS distributions consist of many files:#

"

!

... freetype-2.1.3-6.i386.rpm

cvs-1.11.2-10.i386.rpm gcc-3.2.2-5.i386.rpm

emacs-21.2-33.i386.rpm gcc-c++-3.2.2-5.i386.rpm

expat-1.95.5-2.i386.rpm gdb-5.3post-0.20021129.18.i386.rpm

flex-2.5.4a-29.i386.rpm glibc-devel-2.3.2-11.9.i386.rpm

fontconfig-2.1-9.i386.rpm ...

• How do you know file versions go together?

- Bad mirror could roll back one file to version with known bug

• How do you know file name corresponds to contents?

- What about directory name? Any context used to interpret file?

• How do you know users will check signature?

– p. 23/64

SFSRO: Signing whole file systems

Publisher

Client Client

Client
Your File Server

File ServerFile Server

H4X0R

Internet

Stanford

• Give publisher a signature key (public key in path)

• Tie consistent view of whole FS together with one sig

• Read-only FS interface works with all apps (rpm, . . .)
– p. 24/64

Applying Merkle trees to file systems
• Can’t just sign raw disk image (too big)

- Users may want to download and verify only a few files

data

data
...

contents

H(data)...

...

/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

- H is a collision-resistant hash function w. fixed-size output

• Publisher signs hash of root inode

• Idea influenced many systems (CFS, Venti, . . .)

– p. 25/64

SFSRO Protocol

• GETFSINFO () – Get signed hash of root directory

• GETDATA (hash) – Get block with hash value

• Example: To read file /README
- First get signed hash, then walk down tree

GETFSINFO ()

GETDATA (H(/ inode))
...

{H(/ inode), vers.}K−1

ServerClient

– p. 26/64

SFSRO Protocol

data

data
...

contents

H(data)...

...

/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server/ inode

GETDATA (H(/ inode))

– p. 27/64

SFSRO Protocol

data

data
...

contents

H(data)...

...

/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server

GETDATA (H(data))

directory

– p. 27/64

SFSRO Protocol

data

data
...

contents

H(data)...

...

/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server

GETDATA (H(inode))

/README inode

– p. 27/64

SFSRO Protocol

data

data

H(data)...

...

/ inode /README inode

H(data)
H(data)

metadata

...

directory

H(inode)

...

...

“README”

Client Server

GETDATA (H(data))

data

...

contents

– p. 27/64

SUNDR
Jinyuan Li, Max Krohn, David Mazières, and Dennis Shasha

– p. 28/64

SUNDR: End-to-end FS integrity

Client

Client Client

Client
Your

File Server

H4X0RInternet

Stanford

• Normally trust file servers to return correct data

- Reject unauthorized requests, properly execute authorized ones

• Should trust only clients of authorized users

- SUNDR can detect misbehavior even if attacker controls server

– p. 29/64

Motivation: Outsourcing data storage

Client

Client

Client
Client

File ServerInternet

Sourceforge

• E.g., Sourceforge hosting source repositories

• Attractive target of attack

– p. 30/64

A worrisome trend

• 5/17/01: Apache development servers compromised

- Password captured by trojaned ssh binary at sourceforge

- The integrity of all source code repositories is being

individually verified by developers. . . - Apache press release

• 11/20/03: Debian administrators discover “root kit”

- at the time the break-ins were discovered. . . it wasn’t possible

to hold [the release] back anymore. – Debian report

• 3/23/04: Gnome server compromise discovered

- We think that the released gnome sources and the . . . repository

are unaffected. . . . we are cautiously hopeful that the

compromise was limited in scope. – Owen Taylor

– p. 31/64

Good News: Digital Signature Cost

 0

 50000

 100000

 150000

 200000

 250000

2006/20482000/10241993/512

u
se

c

Year/Key size

Signature time
600 mile propagation delay

• Signing every network request soon practical

– p. 32/64

Traditional file system model

File Server

Client

Client
request, request

response, response

request, request
response, response

secure channel

secure channel

• Clients & servers communicate over secure channels

- Network attackers can’t tamper with requests

• Server can’t prove what requests it received

- Trust server to execute requests properly

- Trust server to return correct responses

– p. 33/64

SUNDR model

File Server

user v

user u

{read}K−1
v

{write}K−1
u

{write}K−1
u

• Clients send digitally signed requests to server

- This is now possible with sub-millisecond digital signatures

• Server does not execute anything

- Just stores signed requests from clients

- Answers a request with other signed requests, proving result

- Does not know signing keys—cannot forge requests

– p. 34/64

Danger: Dropping & re-ordering

File Server

user u

user v

u-1, u-2,v-1, u-3,v-2, v-3

u-1, u-2, u-3

v-1, v-2, v-3

u-1, u-2,v-1, v-2, v-3, u-3

• Server can drop signed requests

- E.g., back out critical security fix

• Or show requests to clients in different order

- E.g., overwrite new file with old version

- Can be effectively same as dropping requests

– p. 35/64

A Fetch-Modify interface

• Need to specify FS correctness condition

- Many file system requests in POSIX

- Far too complex to formalize

• Boil FS interface down to two request types:

- Fetch – Client validates cached file or downloads new data

- Modify – One client makes new file data visible to others

- Can map system calls onto fetch & modify operations:

open → fetch (dir & file), write+close → modify,

truncate → modify, creat → fetch+modify, . . .

– p. 36/64

File system correctness

• Goal: fetch-modify consistency

- System orders operations reasonably [linearizability]

- A fetch reflects exactly the authorized modifications that

happened before it

- (Basically a formalization of “close-to-open consistency”)

• How close can we get with an untrusted server?

- A: Fork consistency

• Next: 2 or 3 progressively more realistic realizations

- Signed logs (enormous bandwidth & FS-wide lock)

- Serialized SUNDR (FS-wide lock)

- SUNDR (if we have time)

– p. 37/64

Solution 1: Signed logs

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

modfetch fetch fetch mod fetch fetch
u-1 u-2 v-1 u-3 v-2 u-4 v-3

user u signature user v signature

• Detect reordering by signing entire FS history:

• PREPARE RPC – lock file system, download log

- Client checks signatures on log entries

- Client checks that its previous operation is still in log

• Client plays log to reconstruct FS state

• Client appends new operation, signs new log

• COMMIT RPC – upload signed log, release lock

– p. 38/64

Signed log security properties

• Server cannot manufacture operations

- Clients check signatures, which server can’t forge

• Server cannot undo operations already revealed

- Clients check their last operation is in current log

• Server cannot re-order signed operations

- Signatures over past history would become invalid

– p. 39/64

What can a malicious server do?

• Server can mount a fork attack

- Conceal clients’ operations from one another

- But produces divergent logs for different users

• Suppose server doesn’t lock, conceals mod v-2 from u

��
��
��
��

��
��
��
��

fetch mod fetch fetch

fetchfetch mod fetch mod fetch

u-1

u-1

u-2

u-2

v-1

v-1

u-3

u-3

u-4

v-2 v-3

fetch
signature

signature

user u

user v

- Either client can detect given any later log of the other

– p. 40/64

Fork consistency

fetch mod fetch fetch

modfetch fetch fetch fetch fetch mod fetch fetchmodfetch

• User’s views of file system may be forked

- But operations in each branch fetch-modify consistent

- Can’t undetectably re-join forked users

• Best possible consistency w/o on-line trusted party

- Say u logs in, modifies file, logs out

- v logs in but doesn’t see u’s change

- No defense against this attack (w/o on-line trusted party)

- This is the only possible attack on a fork-consistent system

– p. 41/64

Implications of fork consistency

• Can trivially audit server retroactively

- If you see operation u-n, you were consistent with u (and

transitively anything u saw) at least until u performed u-n

• Exploit any on-line [semi-]trusted parties to improve
consistency

- Clients that communicate get fetch-modify consistency

E.g., two clients on an Ethernet when server “outsourced”

- Pre-arrange for “timestamp” box to update FS every minute

• How to recover from a forking attack?

- This is actually a well-studied problem!

- Ficus, CODA reconcile conflicts after net partition

- Experience: a fork is annoying, but not tragic

– p. 42/64

Limitations of signed logs

• Signed logs achieve fork consistency. . .

• But signed log scheme hopelessly inefficient

- Each client must download every operation

- Each client must reconstruct entire file system state

- Global lock on file system adds unacceptable overhead

• Systems with logs typically use checkpoints. . .

- Can we sign SFSRO-like snapshots instead of history?

– p. 43/64

A plan for signing snapshots

��
��
��
��u-1

state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files in

a way that they can be combined. . .

Somehow prevent re-ordering of users’ snapshots. . .

– p. 44/64

Combining snapshots

• A user’s directory might contain another user’s file

- E.g., root owns /home, dm owns /home/dm
- dm needs to update file w/o having root re-sign anything

- root must sign name “/home/dm” while dm signs contents

data
H(data)

metadata

/home/dm inode

...
...

contents

directory/home inode

H(data)...
...

“dm”

Kdm

signed by
something

Kroot

signed by
something

???

– p. 45/64

Per-user or -group i-numbers

· · ·

· · ·

· · ·

· · ·

inode

...

H(inode)
i-number

i-table
...

per-user/group

per-user/group

i-handle:
H(i-table)

• Add a level of indirection to SFSRO data structures

• SUNDR directory entry:
〈user/group, i-number〉

file name

• Per-user/group i-tables map i-number → H(inode)

• Hash each i-table to a short i-handle users can sign

– p. 46/64

A plan for signing snapshots

��
��
��
��u-1

state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

Somehow represent snapshots of each user’s files in

a way that they can be combined. . .

Somehow prevent re-ordering of users’ snapshots. . .

– p. 47/64

Detect re-ordering w. version vectors

��
��
��
��u-1

state state state state

state state state
user v

user u

u’s sig

u-2 u-3 u-4

v-1 v-2 v-3

• Sign latest version # of every user & group:

version structure: {

i-handle
︷︸︸︷

u-hu ,

version vector
︷ ︸︸ ︷

u-4 v-2 }K−1
u

• Say U ≤ V iff no user has higher vers# in U than in V

- Idea: Unordered version structures signify an attack

– p. 48/64

Solution 2: Serialized SUNDR

• Still no concurrent updates

• Server maintains version structure list or VSL

- Contains latest version structure for each user/group

• To fetch or modify a file, u’s client makes 2 RPCs:

- PREPARE: Locks FS, returns VSL

- Client sanity-checks VSL (ensures it is totally ordered)

- Client calculates & signs new version structure:

{u-hu, u-(nu + 1) v-nv . . .}K−1
u

- If modifying group i-handle, bump group version number:
{

u-hu g-hg, u-(nu + 1) v-nv . . . g-(ng + 1) . . .
}

K−1
u

- COMMIT: Uploads version struct for new VSL, releases lock

– p. 49/64

Example: Honest server

��

��

user u

user v

u-hu

u-1 v-0

u-1 v-1

v-hv

U1

V1

• Users u and v each start at version 1 (sign U1 & V1)

– p. 50/64

Example: Honest server

��

��

��

user u

user v

u-hu

v-hv

u-h′

u

U1 U2

V1

u-2 v-1
after U1, V1

orders U2

Version vector
u-1 v-0

u-1 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f , signs U2 w. new i-handle h′u

– p. 50/64

Example: Honest server

��

�� ��

��

user u

user v

u-hu

u-1 v-0

u-1 v-1

v-hv

u-h′

u

U1 U2

V1 V2

v-hv

u-2 v-2

u-2 v-1

• Users u and v each start at version 1 (sign U1 & V1)

• u modifies file f , signs U2 w. new i-handle h′u

• v fetches f , signs V2 which reflects having seen U2

– p. 50/64

Example: Malicious server

��

��

��

��

user u

user v

u-hu

u-1 v-0

u-1 v-1

v-hv

u-h′

u

U1 U2

V1

u-2 v-1

u-1 v-2

v-hv

V2 version vectors
Unordered

• Suppose server hadn’t shown u’s modification of f to v

• Now U2 6≤ V2 and V2 6≤ U2

- u or v will detect attack upon seeing any future op by other

– p. 51/64

Limitations of serialized SUNDR

BAD

V
SL

V
SL

PR
E

PA
R

E

C
O

M
M

IT

C
O

M
M

IT

PR
E

PA
R

E

u’s client

server

v’s client

U
2

V
2

U
2 ,V

1

U
1
,V

1

• Honest server can only allow one operation at a time

- E.g., server must send U2 to v to prevent fork on last slide

- Must wait even if V2 doesn’t observe any changes made in U2

• Without concurrency, get terrible I/O throughput

– p. 52/64

Solution 3: SUNDR

V
SL

, P
V

L

V
SL

, PV
L

C
O

M
M

IT

P
R

E
P

A
R

E

P
R

E
P

A
R

E

C
O

M
M

IT

U
2

U
1
,V

1u
2

v 2 V
2

U
1 ,V

1 ,u
2

u’s client

server

v’s client

• Pre-declare operations in signed update certificates

- u2 = {“In vstruct U2, I intend to change file f to hash h.”}K−1
u

• Server keeps uncommitted update certificates in

Pending Version List or PVL, returns with VSL

• Plan: Have v compute V2 w/o seeing U2 if it sees u2

– p. 53/64

Danger: Erasing evidence of attacks

��

�� ��
��

��u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0

u-hu

v-3

v3

u-2 v-1

u-h′

u

U2

u-2

f -h

• Let’s revisit attack where v missed modify of f in V2

• Say v then PREPAREs v3 & server returns U1, V2, u2

- Case 1: v3 is fetching a file modified in u2 (read-after-write)

- Case 2: v3 is not observing any changes declared in u2

– p. 54/64

Case 1: Read-after write conflict

V
SL

, PV
L

F
E

T
C

H
V

ST

C
O

M
M

IT

V
SL

P
R

E
P

A
R

E

C
O

M
M

IT
P

R
E

P
A

R
E

u’s client

U
1 ,V

2 ,u
2

V
3

v’s client

server

U
2

U
1
,V

1u
2

v 3

U
2

• Must not show effects of u2 to v’s application

- Recall: when v sees change by u, should guarantee no attack

• Solution: Wait for vstruct w. new FETCHVST RPC

- Example: U2 = {u-2 v-1} V2 = {u-1 v-2}

v detects attack as U2 6≤ V2 (in VSL) and V2 6≤ U2

– p. 55/64

Case 2: No read-after-write conflict

��

��

��

��
��

�� u-2 v-1

u-h′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0

u-hu

v-3

v3

v-hv

V3

u-2 v-3

u-2

f -h

• Don’t want to issue/wait for FETCHVST if no conflict

• Problem: v will sign V3 such that U2 ≤ V3

- VSL is once again ordered, evidence of attack erased

– p. 56/64

Reflect pending updates in vstructs

��

��

��

��

��

�� u-2 v-1

u-h′

u

U2

u-1 v-2

V2

v-hv

user v

user u

u2U1

u-1 v-0

u-hu

v-3

v3

v-hv

V3

u-2 v-3
u-2-H(U′

2)

f -h

u-2

• Vstruct includes hashes of other anticipated vstructs

- Omit i-handles so contents deterministic given order of PVL

• Redefine ≤ to require that hashes match

- E.g., U2 6≤ V3, because V3 contains hash of U′

2 = {u-2 v-2} 6= U2

– p. 57/64

Concurrent version structures
• Define collision-resistant hash V for vstructs

- E.g., delete i-handle, sort u-n/u-n-h data, run through H

• Version structures now reflect pending updates

{

i-handles
︷ ︸︸ ︷

u-hu g-hg,

version vector
︷ ︸︸ ︷

u-4 v-3 . . . ,

pending
︷ ︸︸ ︷

v-3-k u-4-⊥ . . .}K−1
u

- Vstruct has a u-n-k triple for each PVL entry

- u, n = user,version of a pending update

- k is V of a version structure, or reserved “self” value ⊥

• View PVL as containing future version structures

- Each entry is of the form 〈update cert, ℓ〉

- ℓ is still unsigned version structure with i-handle = ⊥

– p. 58/64

Ordering concurrent vstructs

Definition. We say x ≤ y iff:

1. For all users u, x[u] ≤ y[u] (i.e., x ≤ y by old def.), and

2. For each user-version-hash triple u-n-k in y, one of the

following conditions must hold:

(a) x[u] < n (x happened before the pending operation

that u-n-k represents), or

(b) x also contains u-n-k (x happened after the pending

operation and reflects the fact the operation was

pending), or

(c) x contains u-n-⊥ and h = V(x) (x was the pending

operation).

– p. 59/64

Summary of SUNDR properties

• Looks like a file system

- E.g., could use for CVS access to sourceforge

• Only two ways for server to subvert integrity

- Can fork users’ views of file system (recover like Ficus)

- Can throw away your data (recover from backup and/or

untrusted clients’ caches)

• Concurrent operations from different clients

– p. 60/64

Implementation

syscall xfs

application

client
STORE

DECREF

COMMIT

FETCHVST consistency server

block
server

PREPARE

GETDATA

• Client based on xfs device driver

- xfs part of Arla, a free AFS implementation

- Designed for AFS-like semantics

• Server split into two daemons

- Consistency server handles update certs, version structs

- Block server stores bulk of data

- Can run on same or different machines

– p. 61/64

Further optimizations

• i-handles really hash plus some deltas

- Amortizes recomputing hash tree over multiple ops

• Include multiple fetches/modifies in one operation

• i-tables are Merkle B+-trees

• Group i-tables add yet another level of indirection

- No need to change group i-table if same user writes

group-writable file twice

• Concurrent modifications of same group i-table

- Possibly many files in a group—shouldn’t serialize access

- Users fold each other’s forthcoming changes into i-table

- Safety comes from careful definition of “≤”

– p. 62/64

Performance

untar config make install clean
0

20

40

60

R
un

 T
im

e
(s

)
NFS2
NFS3
SUNDR
SUNDR / NVRAM

• Benchmark: unpack, build, install emacs 20.7

- 3 GHz Pentium IVs connected by 100 Mbit/sec Ethernet

- Index on 4 15K RPM SCSI disks, logs on 7,200 RPM IDE disks

– p. 63/64

Scalability to multiple clients

1 2 31 2 3

Concurrent Clients

20

40

60

80

100
A

ve
ra

ge
 R

un
 T

im
e

(s
)

NFS2
SUNDR
NFS3
SUNDR / NVRAM

• Benchmark: unpack phase of emacs build

– p. 64/64

	Two ways to improve system security
	Medium-term plan
	Cryptographic Storage
	CFS [Blaze]
	Example
	Initialization vectors
	Sharing encrypted files
	Broadcast encryption solutions
	Revocation
	Key regression [Fu et al.]
	Old state
	Old state

	BFT replication
	Straw-man BFT replication
	BFT replication complications
	BFT overview
	PBFT (simplified)
	PBFT (continued)
	PBFT (continued)
	View changes
	Content distribution problem
	Signing individual files
	SFSRO: Signing whole file systems
	Applying Merkle trees to file systems
	SFSRO Protocol
	SFSRO Protocol
	SFSRO Protocol
	SFSRO Protocol
	SFSRO Protocol

	SUNDR: End-to-end FS integrity
	Motivation: Outsourcing data storage
	A worrisome trend
	Good News: Digital Signature Cost
	Traditional file system model
	SUNDR model
	Danger: Dropping & re-ordering
	A Fetch-Modify interface
	File system correctness
	Solution 1: Signed logs
	Signed log security properties
	What can a malicious server do?
	Fork consistency
	Implications of fork consistency
	Limitations of signed logs
	A plan for signing snapshots
	Combining snapshots
	Per-user or -group i-numbers
	A plan for signing snapshots
	Detect re-ordering w. version vectors
	Solution 2: Serialized SUNDR
	Example: Honest server
	Example: Honest server
	Example: Honest server

	Example: Malicious server
	Limitations of serialized SUNDR
	Solution 3: SUNDR
	Danger: Erasing evidence of attacks
	Case 1: Read-after write conflict
	Case 2: No read-after-write conflict
	Reflect pending updates in vstructs
	Concurrent version structures
	Ordering concurrent vstructs
	Summary of SUNDR properties
	Implementation
	Further optimizations
	Performance
	Scalability to multiple clients

