
The short-term plan

• Last time we talked about OS protection

- Unix permissions, Capabilities

- TOCTTOU bugs, the confused deputy problem

- Mandatory Access Control (MAC)

• Today’s related topic: confining untrusted code

• We will consider issue from the OS level on up

- Continued discussion of MAC & how it applies

- Other OS extensions

- System call interposition

- User-level sandboxing
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Recall Bell-La Padula’s labels

X

X

X

L1 L1

means L1 ⊑ L2

〈top-secret, {Crypto}〉

〈secret, ∅〉

〈secret, {Crypto}〉

〈top-secret, ∅〉

〈secret, {Nuclear}〉

〈top-secret, {Nuclear}〉

〈top-secret, {Nuclear, Crypto}〉

〈unclassified, ∅〉

• Information can only flow up the lattice

- “No read up, no write down”
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Biba integrity model

• Problem: How to protect integrity

- Suppose text editor gets trojaned, subtly modifies files, might

mess up attack plans

• Observation: Integrity is the converse of secrecy

- In secrecy, want to avoid writing less secret files

- In integrity, want to avoid writing higher-integrity files

• Use integrity hierarchy parallel to secrecy one

- Now security level is a 〈c, i, s〉 triple, i =integrity

- Only trusted users can operate at low integrity levels

- If you read less authentic data, your current integrity level gets

raised, and you can no longer write low files
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DoD Orange book

• DoD requirements for certification of secure systems

• 4 Divisions:

- D – been through certification and not secure

- C – discretionary access control

- B – mandatory access control

- A – like B, but better verified design

- Classes within divisions increasing level of security
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Divisions C and D

• Level D: Certifiably insecure

• Level C1: Discretionary security protection

- Need some DAC mechanism (user/group/other, ACLs, etc.)

- TCB needs protection (e.g., virtual memory protection)

• Level C2: Controlled access protection

- Finer-graunlarity access control

- Need to clear memory/storage before reuse

- Need audit facilities

• Many OSes have C2-security packages

- Is, e.g., C2 Solaris “more secure” than normal Solaris?
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Division B

• B1 - Labeled Security Protection

- Every object and subject has a label

- Some form of reference monitor

- Use Bell-LaPadula model and some form of DAC

• B2 - Structured Protection

- More testing, review, and validation

- OS not just one big program (least priv. within OS)

- Requires covert channel analysis

• B3 - Security Domains

- More stringent design, w. small ref monitor

- Audit required to detect imminent violations

- requires security kernel + 1 or more levels *within* the OS
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Division A

• A1 – Verified Design

- Design must be formally verified

- Formal model of protection system

- Proof of its consistency

- Formal top-level specification

- Demonstration that the specification matches the model

- Implementation shown informally to match specification
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Limitations of Orange book

• How to deal with floppy disks?

• How to deal with networking?

• Takes too long to certify a system

- People don’t want to run n-year-old software

• Doesn’t fit non-military models very well

• What if you want high assurance & DAC?
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Today: Common Criteria

• Replaced orange book around 1998

• Three parts to CC:

- CC Documents, including protection profiles w. both functional

and assurance requirements

- CC Evaluation Methodology

- National Schemes (local ways of doing evaluation)
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Protection Profiles

• Requirements for categories of systems

- Subject to review and certified

• Example: Controlled Access PP (CAPP_V1.d)

- Security functional requirements: Authentication, User Data

Protection, Prevent Audit Loss

- Security assurance requirements: Security testing, Admin

guidance, Life-cycle support, . . .

- Assumes non-hostile and well-managed users

- Does not consider malicious system developers
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Evaluation Assumes Levels 1-4

• EAL 1: Functionally Tested

- Review of functional and interface specifications

- Some independent testing

• EAL 2: Structurally Tested

- Analysis of security functions, incl high-level design

- Independent testing, review of developer testing

• EAL 3: Methodically Tested and Checked

- Development environment controls; config mgmt

• EAL 4: Methodically Designed, Tested, Reviewed

- Informal spec of security policy, Independent testing
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Evaluation Assumes Levels 5-7

• EAL 5: Semi-formally designed and tested

- Formal model, modular design

- Vulnerability search, covert channel analysis

• EAL 6: Semi-formally verified design and tested

- Structured development process

• EAL 7: Formally verified design and tested

- Formal presentation of functional specification

- Product or system design must be simple

- Independent confirmation of developer tests
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LOMAC
• Problem: MAC not widely accepted outside military

• LOMAC’s goal is to make MAC more palatable

- Stands for Low water Mark Access Control

• Concentrates on Integrity

- More important goal for many settings

- E.g., don’t want viruses tampering with all your files

- Also don’t have to worry as much about covert channels

• Provides reasonable defaults (minimally obtrusive)

• Has actually had some impact

- Available for Linux

- Integrated in FreeBSD-current source tree

- Probably inspired Vista’s Mandatory Integrity Control (MIC)
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LOMAC overview

• Subjects are jobs (essentially processes)

- Each subject has an integrity number (e.g., 1, 2)

- Higher numbers mean more integrity

(so unfortunately 2 ⊑ 1 by earlier notation)

- Subjects can be reclassified on observation of low-integrity data

• Objects are files, pipes, etc.

- Objects have fixed integrity level; cannot change

• Security: Low-integrity subjects cannot write to high

integrity objects

• New objects have level of the creator
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LOMAC defaults

• By default two levels, 1 and 2

• Level 2 (high-integrity) contains:

- All the FreeBSD/Linux files intact from software distribution

- The console and trusted terminals

• Level 1 (low-integrity) contains

- Network devices, untrusted terminals, etc.

• Idea: Suppose worm compromises your web server

- Worm comes from network → level 1

- Won’t be able to muck with system files

– p.15/55



The self-revocation problem

• Want to integrate with Unix unobtrusively

• Problem: Application expectations

- Kernel access checks usually done at file open time

- Legacy applications don’t pre-declare they will observe

low-integrity data

- An application can “taint” itself unexpectedly, revoking its own

permission to access an object it created

• Example: ps | grep user
- Pipe created before ps reads low-integrity data

- ps becomes tainted, can no longer write to grep
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Solution

• Don’t consider pipes to be real objects

• Join multiple processes together in a “job”

- Pipe ties processes together in job

- Any processes tied to job when they read or write to pipe

- So will lower integrity of both ps and grep

• Similar idea applies to shared memory and IPC

• LOMAC applies MAC to non-military systems

- But doesn’t allow military-style security policies

(i.e., with secrecy, various categories, etc.)
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The flask security architecture

• Problem: Military needs adequate secure systems

- How to create civilian demand for systems military can use?

• Idea: Separate policy from enforcement mechanism

- Most people will plug in simple DAC policies

- Military can take system off-the-shelf, plug in new policy

• Requires putting adequate hooks in the system

- Each object has manager that guards access to the object

- Conceptually, manager consults security server on each access

• Flask security architecture prototyped in fluke

- Now part of SElinux, which NSA hopes to see accepted

[following figures from Spencer et al.]
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Architecture

Enforcement

Object Manager

Client

Object Request

PolicyEnforcement

Query

Security

Decision
Policy

Security Server

Policy

• Separating enforcement from policy
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Challenges

• Performance

- Adding hooks on every operation

- People who don’t need security don’t want slowdown

• Using generic enough data structures

- Object managers independent of policy still need to associate

data structures (e.g., labels) with objects

• Revocation

- May interact in a complicated way with any access caching

- Once revocation completes, new policy must be in effect

- Bad guy cannot be allowed to delay revocation completion

indefinitely
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Basic flask concepts

• All objects are labeled with a security context

- Security context is an arbitrary string—opaque to obj mgr

- Example: {invoice [(Andy, Authorize)]}

• Labels abbreviated with security IDs (SIDs)

- 32-bit integer, interpretable only by security server

- Not valid across reboots (can’t store in file system)

- Fixed size makes it easier for obj mgr to handle

• Queries to server done in terms of SIDs

- Create (client SID, old obj SID, obj type)? → SID

- Allow (client SID, obj SID, perms)? → {yes, no}
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Creating new object

Label Rules

Policy Logic

SID/Context
MapNew

Obj
Obj

SI
DObj

SI
D

(C)

Object Manager

Create Object Request

New SID Request

New SID

Security Server
Objects

Client (SID C)

New SID
(SID, SID, Obj Type)

PolicyEnforcement
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Security server interface

int security_compute_av(

security_id_t ssid, security_id_t tsid,

security_class_t tclass, access_vector_t requested,

access_vector_t *allowed, access_vector_t *decided,

__u32 *seqno);

• Server can decide more than it is asked for

- de
ided will contain more than requested
- Effectively implements decision prefetching
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Access vector cache (AVC)
• Want to minimize calls into security server

• AVC caches results of previous decisions

- Note: Relies on simple enumerated permissions

• Decisions therefore cannot depend on paremeters:

- Andy can authorize expenses up to $999.99

- Bob can run processes at priority 10 or higher

• Decisions also limited to two SIDs

- Complicates file relabeling, which requires 3 checks:

Source Target Permission checked

Subject SID File SID Relabel-From

Subject SID New SID Relabel-To

File SID New SID Transition-From
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AVC in a query

Map

(SID, SID, Perms)
Access Check

AVC

Obj

SI
DObj

SI
D

(C)

Object Manager Security Server

Modify Object Request

Access Query

Access Ruling

Objects

Client (SID C)

PolicyEnforcement

Access Rules

Policy Logic

SID/Context
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AVC interface

int avc_has_perm_ref(

security_id_t ssid, security_id_t tsid,

security_class_t tclass, access_vector_t requested,

avc_entry_ref_t *aeref);

• a

ess_ve
tor_t is bitmap of permissions to check

• aeref argument is hint

- On first call, will be set to relevent AVC entry

- On subsequent calls speeds up lookup

• Example: New kernel check when binding a socket:

ret = avc_has_perm_ref(

current->sid, sk->sid, sk->sclass,

SOCKET__BIND, &sk->avcr);
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Revocation support

• Decisions may be cached in in AVCs

• Decisions may implicitly be cached in migrated
permissions

- Unix file descriptors obtained after a file open

- Memory mapped pages

- Open sockets/pipes

• AVC contains hooks for callbacks

- After revoking in AVC, AVC makes callbacks to revoke

migrated permissions
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Revocation protocol

Permissions

Complete

Revocation of
Security

Microkernel

Server

Seq #
Revocation Req

Revocation

AVC

Examine

State
Memory

Memory
State

Thread State
Examine

(stopped)

IPC
State

Migrated
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Persistence

File System

Security Server

Map
SID/PSID

Inode

Filesystem
Label

PSID/Security
Context Map

Inode/PSID
Map

and Files
Directories

In
od

e 
T

ab
le

Vnode

SIDOSKit File

Secure File Server

Context SID

• Track “persistent SIDs” (PSIDs), specific to each file

system
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Transitioning SIDs

• May need to relabel objects (e.g., files)

- E.g., in file system

• Processes may also want to transition their SIDs

- Depends on existing permission, but also on program

- SElinux allows programs to be defined as entrypoints

- Thus, one can restrict with which programs users enter a new

SID
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Example: Paying invoices

• Invoices are special immutable files

• Each invoice must undergo the following processing:

- Receipt of the invoice recorded by a clerk

- Receipt of of the merchandise verified by purchase officer

- Payment of invoice approved by supervisor

• Special programs allowed to record each of the above
events

- E.g., force clerk to read invoice—cannot just write a batch script

to relabel all files
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Illustration

(Vince, Verify)
(Andy, Authorize)]}

Relabel

Invoice
Record

Invoice
Verify

Invoice
Authorize

Invoice
Dispatch

{invoice [(Rick, Record)
(Vince, Verify)]}

Network
Server

{generic [null]}

Relabel

Relabel

Relabel

Relabel

{generic [(any, any)]}

{invoice_record [(Clerk, Rick)]}

{invoice_verify [(Purchase Officer, Vince)]}

{invoice_authorize [(Supervisor, Andy)]}

{invoice_dispatch [(Dispatcher, Dan)]}

{invoice [null]}

{invoice [(Rick, Record)]}

{invoice [(Rick, Record)
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Example: Loading kernel modules

(1) allow sysadm_t insmod_exec_t:file x_file_perms;

(2) allow sysadm_t insmod_t:process transition;

(3) allow insmod_t insmod_exec_t:process { entrypoint execute };

(4) allow insmod_t sysadm_t:fd inherit_fd_perms;

(5) allow insmod_t self:capability sys_module;

(6) allow insmod_t sysadm_t:process sigchld;

1: Allow sysadm domain to run insmod

2: Allow sysadm domain to transition to insmod

3: Allow insmod program to be entrypoint for insmod domain

4: Let insmod inherit file descriptors from sysadm

5: Let insmod use CAP_SYS_MODULE (load a kernel module)

6: Let insmod signal sysadm with SIGCHLD when done
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Confining code with legacy OSes

• Often want to confine code on legacy OSes

• Analogy: Firewalls

Hopelessly
Insecure
Server

attacker

attacker

- Your machine runs hopelessly insecure software

- Can’t fix it—no source or too complicated

- Can reason about network traffic

• Similarly block unrusted code within a machine

- By limiting what it can interact with
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Using chroot

• 
hroot (
har *dir) “changes root directory”

- Kernel stores root directory of each process

- File name “/” now refers to dir
- Accessing “..” in dir now returns dir

• Need root privs to call chroot

- But subsequently can drop privileges

• “Chrooted process” can’t affect system outside of dir

- Even process still running as root cannot escape chroot

dir
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Using chroot

• 
hroot (
har *dir) “changes root directory”

- Kernel stores root directory of each process

- File name “/” now refers to dir
- Accessing “..” in dir now returns dir

• Need root privs to call chroot

- But subsequently can drop privileges

• “Chrooted process” can’t affect system outside of dir

- Even process still running as root cannot escape chroot

• Wrong: Many ways to create damage outside of dir
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Escaping chroot

• Re-chroot to a lower directory, then chroot ..
- Each process has one root directory, so chrooting to a new

directory can put you above your new root

• Create devices that let you access raw disk

• Send signals to or ptrace non-chrooted processes

• Create setuid program for non-chrooted proc. to run

• Bind privileged ports, mess with clock, reboot, etc.

• Problem: chroot was not originally intended for
security

- FreeBSD jail, Linux vserver have tried to address problems
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System call interposition

• Why not use ptrace or other debugging facilities to

control untrusted programs?

• Almost any “damage” must result from system call

- delete files → unlink

- overwrite files → open/write

- attack over network → socket/bind/connect/send/recv

- leak private data → open/read/socket/connect/write . . .

• So enforce policy by allowing/disallowing each
syscall

- Theoretically much more fine-grained than chroot

- Plus don’t need to be root to do it

• Q: Why is this not a panacea?
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Limitations of syscall interposition

• Hard to know exact implications of a system call

- Too much context not available outside of kernel

(e.g., what’s does this file descriptor number mean?)

- Context-dependent (e.g., /pro
/self/
wd)

• Indirect paths to resources

- File descriptor passing, core dumps, “unhelpful processes”

• Race conditions

- Remember difficulty of eliminating TOCCTOU bugs?

- Now imagine malicious application deliberately doing this

- Symlinks, directory renames (so “..” changes), . . .
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Sandboxing code

• What about protecting code within an application?

• Often security ends up restricting functionality

- Take insecure system, add restrictions,

- Hope result is more secure

• Sometimes can actually enhance functionality

- What if you could safely use “unsafe” code?

- Could allow previously impractical enhancements
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Uses of unsafe code

• Extensible applications

- E.g., browser, photoshop, etc., plug-ins

- Wouldn’t it be nice if they couldn’t crash application?

• Saving kernel/user crossings

- Packet filters (e.g., bpf for tcpdump)

- Applications-specific virtual memory management

- Active messages (application-specific msg. handlers)

• Could just run in separate process, but. . .
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Cross-address-space calls expensive

• System call overhead much higher than procedure

- Requires trapping into the kernel

- Often requires draining the processor pipeline

• Switching address spaces increasingly expensive

- On some architectures requires flushing the TLB

- Increases cache pressure

- Cache/TLB miss service times increasingly expensive

compared to faster and faster cycle times

• Kernel must copy arguments back and forth between
address spaces

- Change page mappings, etc.
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Sandboxing also gives control

• Example: Exokernel OS

- Goal: Let applications manage resources as much as possible

• Don’t hardcode TCP/IP or other protocols

• Instead, download packet filters into kernel

- Express which packets an application wants to see

- By downloading filters, kernel can ensure no conflicts

- Also ensures apps don’t leak information on other’s pkts

• DPF (dynamic packet filter) created code on the fly
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Exokernel disk abstraction

• How to multiplex disk with untrusted apps?

- Need metadata–i.e., for a file, what blocks to use

- Don’t want to hard-code metadata formats

• Solution: UDFs (untrusted deterministic functions)

- Download metadata interpretation code

- UDF takes metadata, outputs list of blocks

- Kernel checks metadata updates by output of UDF

- Downloading ensures that UDFs are deterministic

• Determinism useful in less esoteric settings

- Ensure code you sign will keep behaving same way
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Challenges of untrusted code

• Fault domain—logically separate portion of A.S.

- Each untrusted component runs in its own fault domain

• Prevent FDs from trashing each other’s memory

• Prevent FDs from jumping to arbitrary locations

• Prevent code from accessing operating system

- Otherwise, e.g., could execute arbitrary programs

• Other possible goals:

- Prevent FDs from reading each other’s memory

- Prevent infinite loops

- Bound physical memory utilization
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Software fault isolation

• Goal: Make fault isolation cheap enough that

developers can ignore performance impact

• General approach:

- Modify compiler to generate “safe” code

- Verifier can check code is safe before loading/running it

• Alternate approach: binary patching

- Rewrite unsafe binaries to be safe

- Doesn’t tie system to one compiler/language

- Unfortunately, binary rewriting hard to do
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Review: Typical RISC instruction sets

• Have 31 general-purpose integer registers

- Instruction set treats all registers identically

- Convention dictates certain uses (e.g., stack ptr, . . . )

- Across calls, some regs caller-saved, some callee-

- All ALU operations occur on registers

• Memory accessed w. load/store instructions only

- LD rd, offset(rp) ST rs, offset(rp)

• All instructions 32 bits (and must be aligned)

- Makes it easy to check each instruction in code
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MIPS calling conventions

fp

and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

• Like x86; should be very familiar from project 1
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SFI implementation

• Divide virtual address space into segments

- All addresses in a segment share same prefix

- Not all virtual addresses in segment need to be valid

• Each fault domain has two segments

- Code segment and separate data segment

- Q: Why not use one combined segment?

• Go over code identifying unsafe instructions

- Any store or jump that can’t be statically verified

- PC-relative branches OK, stores to static vars often OK

- Insert checking code before instructions that are not OK
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Segment matching

• Use dedicated registers to hold addresses

• Always check segment ID of target address of store

dedicated-reg <= target address

scratch-reg <= (dedicated-reg >> shift-reg)

compare scratch-reg segment-reg

trap if not equal

store value dedicated-reg

• Adds 4 instructions to every store

• Q: Why use dedicated register for store address?
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Address sandboxing

• Segment matching good for debugging, but slow

• Instead of checking segment IDs, can just set them:

dedicated-reg <= target-reg & and-mask-reg

dedicated-reg <= dedicated-reg | segment-reg

store value dedicated-reg

• Now requires only 2 extra instructions per store

• Again, dedicated register prevents harm if code

jumps to middle of store sequence
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Optimizations

• Traditional compiler optimizations

- E.g., might move sandboxing out of a loop

• Guard zones at each end of data segment

- Load/store instructions tage address reg. & offset

- Unmapped zones larger than maximum ld/st offset

- Means only register need be sandboxed, not full addr

- Sandbox the stack pointer only when it is set

- Avoid sandboxing SP if adjusted by small amount and used

before next control transfer
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Cross-domain calls

• Jump table contains allowed exit points from FD

- Each jump table entry is a control transfer instruction

(address hard-coded into instruction, so no register use)

- Explicitly enumerates allowed calls between each 2 FDs

- Jump table trusted, and in read-only code segment

• Jump table entries transfer control to stubs

- Must save any caller-saved registers (can’t trust target)

- Copy arguments of call from caller’s segment to target’s
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Fig 4

Add:call Add

return

Callee Domain

Call
Stub

Return
Stub

Trusted

Jump Table

Caller Domain
Untrusted

br ..

br ..

br ..

• Q: Why not embed stubs directly in segment?
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Sharing memory accross domains

• Read sharing is not a problem

• If we need write sharing, use VM hardware

- Just map the same page into multiple segments in same A.S.

• Slight trickiness: pointer comparisons

- Don’t compare aliased ptrs w. different segment IDs

- Give shared region canonical address

- Fix pointer for write access (automatic w. sandboxing)
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Limitations of SFI

• Performance

- Usually good, but slowdown bad for packet filters, . . .

• Harder to implement on some architectures

- E.g., x86 has variable-length, unaligned instructions (would

have to do more expensive checks on jumps)

- x86 has fewer registers (can’t dedicate 5 of them)

- Most x86 instructions affect memory (more sandboxing)

• Compiler and verifier tightly bound

- Once verifier deployed, might be hard to make further

improvements in compiler

– p.55/55
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