The short-term plan

e Last time we talked about OS protection
- Unix permissions, Capabilities
- TOCTTOU bugs, the confused deputy problem
- Mandatory Access Control (MAC)

e Today’s related topic: confining untrusted code

e We will consider issue from the OS level on up

Continued discussion of MAC & how it applies

Other OS extensions

System call interposition

User-level sandboxing
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Recall Bell-La Padula’s labels

(top-secret, {Nuclear, Crypto})
A

(top-secret, {Nuclear}) (top-secret, {Crypto})
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e Information can only flow up the lattice

secret, ()

(unclassified, )

- “No read up, no write down”
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Biba integrity model

e Problem: How to protect integrity
- Suppose text editor gets trojaned, subtly modifies files, might
mess up attack plans
e Observation: Integrity is the converse of secrecy
- In secrecy, want to avoid writing less secret files
- In integrity, want to avoid writing higher-integrity files
e Use integrity hierarchy parallel to secrecy one
- Now security level is a (c, i,s) triple, i =integrity
- Only trusted users can operate at low integrity levels

- If you read less authentic data, your current integrity level gets
raised, and you can no longer write low files
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DoD Orange book

e DoD requirements for certification of secure systems

e 4 Divisions:

- D —been through certification and not secure

C — discretionary access control

B — mandatory access control

A —like B, but better verified design

Classes within divisions increasing level of security
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Divisions C and D

Level D: Certifiably insecure

Level C1: Discretionary security protection
- Need some DAC mechanism (user/group/other, ACLs, etc.)

- TCB needs protection (e.g., virtual memory protection)

Level C2: Controlled access protection
- Finer-graunlarity access control
- Need to clear memory/storage before reuse

- Need audit facilities

Many OSes have C2-security packages

- Is, e.g., C2 Solaris “more secure” than normal Solaris?
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Division B

e B1-Labeled Security Protection
- Every object and subject has a label

- Some form of reference monitor
- Use Bell-LaPadula model and some form of DAC

e B2 - Structured Protection
- More testing, review, and validation
- OS not just one big program (least priv. within OS)

- Requires covert channel analysis

e B3 - Security Domains
- More stringent design, w. small ref monitor
- Audit required to detect imminent violations

- requires security kernel + 1 or more levels *within* the OS
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Division A

e A1l - Verified Design

Design must be formally verified

Formal model of protection system

Proof of its consistency

Formal top-level specification

Demonstration that the specification matches the model

Implementation shown informally to match specification
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Limitations of Orange book

How to deal with floppy disks?

How to deal with networking?

Takes too long to certify a system

- People don’t want to run n-year-old software
Doesn’t fit non-military models very well

What if you want high assurance & DAC?
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Today: Common Criteria

e Replaced orange book around 1998
e Three parts to CC:

- CC Documents, including protection profiles w. both functional
and assurance requirements

- CC Evaluation Methodology

- National Schemes (local ways of doing evaluation)
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Protection Profiles

e Requirements for categories of systems

- Subject to review and certified

e Example: Controlled Access PP (CAPP_V1.d)

Security functional requirements: Authentication, User Data
Protection, Prevent Audit Loss

Security assurance requirements: Security testing, Admin
guidance, Life-cycle support, ...

Assumes non-hostile and well-managed users

Does not consider malicious system developers
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Evaluation Assumes Levels 1-4

e EAL 1: Functionally Tested

- Review of functional and interface specifications

- Some independent testing

e EAL 2: Structurally Tested

- Analysis of security functions, incl high-level design

- Independent testing, review of developer testing

e EAL 3: Methodically Tested and Checked

- Development environment controls; config mgmt

e EAL 4: Methodically Designed, Tested, Reviewed

- Informal spec of security policy, Independent testing
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Evaluation Assumes Levels 5-7

e EAL 5: Semi-formally designed and tested
- Formal model, modular design

- Vulnerability search, covert channel analysis

e EAL 6: Semi-formally verified design and tested

- Structured development process

e EAL 7: Formally verified design and tested
- Formal presentation of functional specification
- Product or system design must be simple

- Independent confirmation of developer tests
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LOMAC

Problem: MAC not widely accepted outside military
LOMAC'’s goal is to make MAC more palatable

- Stands for Low water Mark Access Control

Concentrates on Integrity
- More important goal for many settings
- E.g., don’t want viruses tampering with all your files

- Also don’t have to worry as much about covert channels

Provides reasonable defaults (minimally obtrusive)

Has actually had some impact
- Available for Linux
- Integrated in FreeBSD-current source tree

- Probably inspired Vista’s Mandatory Integrity Control (MIC)
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LOMAC overview

Subjects are jobs (essentially processes)
- Each subject has an integrity number (e.g., 1, 2)

- Higher numbers mean more integrity
(so unfortunately 2 C 1 by earlier notation)

- Subjects can be reclassified on observation of low-integrity data

Objects are files, pipes, etc.

- Objects have fixed integrity level; cannot change

Security: Low-integrity subjects cannot write to high

integrity objects

New objects have level of the creator

~p.14/5



LOMAC defaults

By default two levels, 1 and 2
Level 2 (high-integrity) contains:

- All the FreeBSD/Linux files intact from software distribution

- The console and trusted terminals

Level 1 (low-integrity) contains

- Network devices, untrusted terminals, etc.

Idea: Suppose worm compromises your web server
- Worm comes from network — level 1

- Won't be able to muck with system files
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The self-revocation problem

e Want to integrate with Unix unobtrusively

e Problem: Application expectations
- Kernel access checks usually done at file open time
- Legacy applications don’t pre-declare they will observe
low-integrity data
- An application can “taint” itself unexpectedly, revoking its own
permission to access an object it created
e Example: ps | grep user
- Pipe created before ps reads low-integrity data

- ps becomes tainted, can no longer write to grep
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Solution

Don’t consider pipes to be real objects

Join multiple processes together in a “job”
- Pipe ties processes together in job
- Any processes tied to job when they read or write to pipe

- So will lower integrity of both ps and grep

Similar idea applies to shared memory and IPC

LOMAC applies MAC to non-military systems

- But doesn’t allow military-style security policies
(i.e., with secrecy, various categories, etc.)
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The flask security architecture

e Problem: Military needs adequate secure systems

- How to create civilian demand for systems military can use?
e Idea: Separate policy from enforcement mechanism
- Most people will plug in simple DAC policies
- Military can take system off-the-shelf, plug in new policy
e Requires putting adequate hooks in the system

- Each object has manager that guards access to the object

- Conceptually, manager consults security server on each access

e Flask security architecture prototyped in fluke
- Now part of SElinux, which NSA hopes to see accepted

[following figures from Spencer et al.]
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Architecture
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e Separating enforcement from policy
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Challenges

o Performance
- Adding hooks on every operation

- People who don’t need security don’t want slowdown

e Using generic enough data structures
- Object managers independent of policy still need to associate
data structures (e.g., labels) with objects
e Revocation
- May interact in a complicated way with any access caching
- Once revocation completes, new policy must be in effect

- Bad guy cannot be allowed to delay revocation completion
indefinitely
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Basic flask concepts

o All objects are labeled with a security context
- Security context is an arbitrary string—opaque to obj mgr

- Example: {invoice [(Andy, Authorize)|}
e Labels abbreviated with security IDs (SIDs)

- 32-bit integer, interpretable only by security server
- Not valid across reboots (can’t store in file system)

- Fixed size makes it easier for obj mgr to handle

e Queries to server done in terms of SIDs
- Create (client SID, old obj SID, obj type)? — SID
- Allow (client SID, obj SID, perms)? — {yes, no}
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Creating new object
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Security server interface

int security_compute_av(
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
access_vector_t *allowed, access_vector_t *decided,

__u32 *seqno);

e Server can decide more than it is asked for
- decided will contain more than requested

- Effectively implements decision prefetching
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Access vector cache (AVC)

Want to minimize calls into security server

AVC caches results of previous decisions

- Note: Relies on simple enumerated permissions

Decisions therefore cannot depend on paremeters:

- Andy can authorize expenses up to $999.99

- Bob can run processes at priority 10 or higher

Decisions also limited to two SIDs

- Complicates file relabeling, which requires 3 checks:

Source Target Permission checked
Subject SID | File SID | Relabel-From
Subject SID | New SID | Relabel-To

File SID New SID | Transition-From
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AVC in a query
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AVC interface

int avc_has_perm_ref (
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,

avc_entry_ref_t *aeref);

e access_vector_t is bitmap of permissions to check

e aeref argument is hint
- On first call, will be set to relevent AVC entry

- On subsequent calls speeds up lookup

e Example: New kernel check when binding a socket:

ret = avc_has_perm_ref (
current->sid, sk->sid, sk->sclass,
SOCKET__BIND, &sk->avcr);
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Revocation support

e Decisions may be cached in in AVCs
e Decisions may implicitly be cached in migrated
permissions
- Unix file descriptors obtained after a file open
- Memory mapped pages
- Open sockets/pipes
e AVC contains hooks for callbacks

- After revoking in AVC, AVC makes callbacks to revoke
migrated permissions
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Revocation protocol
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Persistence
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Transitioning SIDs

e May need to relabel objects (e.g., files)
- E.g., in file system

e Processes may also want to transition their SIDs
- Depends on existing permission, but also on program
- SElinux allows programs to be defined as entrypoints

- Thus, one can restrict with which programs users enter a new
SID
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Example: Paying invoices

e Invoices are special immutable files

¢ Each invoice must undergo the following processing:
- Receipt of the invoice recorded by a clerk
- Receipt of of the merchandise verified by purchase officer
- Payment of invoice approved by supervisor
e Special programs allowed to record each of the above
events

- E.g., force clerk to read invoice—cannot just write a batch script
to relabel all files
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Illustration

{generic [null]} @ {generic [(any, any)]}

Relabel Vl<
{invoice [null]} 9( g‘g’gfg ) {invoice record [(Clerk, Rick)]}
Relabel v:<
{invoice [(Rick, Record)]}%( {?;/rci)]i;e ) {invoice_verify [(Purchase Officer, Vince
Relabel i<
{invoice ([\(/FIQ:] c(::Ié 5(3;%)]} % {invoice_authorize [(Supervisor, Andy)]}
Relabel i<

{invoice([\(/l‘?’:]cclé 5%‘;%@) = E)?Zp?;fc?h ) {invoice_dispatch [(Dispatcher, Dan)]}
(Andy, Authorize)]

e

Network
Server
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Example: Loading kernel modules

(1)
(2)
(3)
(4)
(5)
(6)

allow
allow
allow
allow
allow

allow

sysadm_t
sysadm_t
insmod_t
insmod_t
insmod_t

insmod_t

insmod_exec_t:file x_file_perms;
insmod_t:process transition;
insmod_exec_t:process { entrypoint execute };
sysadm_t:fd inherit_fd_perms;

self:capability sys_module;

sysadm_t:process sigchld;

1: Allow sysadm domain to run insmod

2: Allow sysadm domain to transition to insmod

3: Allow insmod program to be entrypoint for insmod domain

4: Let insmod inherit file descriptors from sysadm
5: Let insmod use CAP_SYS_MODULE (load a kernel module)

6: Let insmod signal sysadm with SIGCHLD when done

-p.33/5



Confining code with legacy OSes

¢ Often want to confine code on legacy OSes

e Analogy: Firewalls

Insecure
Server

(&

p
Hopelessly

\

)

/

- Your machine runs hopelessly insecure software

- Can’t fix it—mno source or too complicated

- Can reason about network traffic

e Similarly block unrusted code within a machine

- By limiting what it can interact with
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Using chroot

e chroot (char *dir) “changes root directory”
- Kernel stores root directory of each process
- File name “/” now refers to dir

- Accessing “..” in dir now returns dir

e Need root privs to call chroot

- But subsequently can drop privileges

o “Chrooted process” can’t affect system outside of dir

- Even process still running as root cannot escape chroot
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Using chroot

144

chroot (char *dir) “changes root directory
- Kernel stores root directory of each process
- File name “/” now refers to dir

- Accessing “..” in dir now returns dir

Need root privs to call chroot

- But subsequently can drop privileges

“Chrooted process” can’t atfect system outside of dir

- Even process still running as root cannot escape chroot

Wrong: Many ways to create damage outside of dir

-p.35/5



Escaping chroot

Re-chroot to a lower directory, then chroot ..

- Each process has one root directory, so chrooting to a new
directory can put you above your new root

Create devices that let you access raw disk
Send signals to or ptrace non-chrooted processes
Create setuid program for non-chrooted proc. to run

Bind privileged ports, mess with clock, reboot, etc.

Problem: chroot was not originally intended for
security

- FreeBSD jail, Linux vserver have tried to address problems
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System call interposition

Why not use ptrace or other debugging facilities to
control untrusted programs?

Almost any “damage” must result from system call

- delete files — unlink

- overwrite files — open/write

- attack over network — socket/bind/connect/send/recv

- leak private data — open/read/socket/connect/write ...
So enforce policy by allowing/disallowing each
syscall

- Theoretically much more fine-grained than chroot

- Plus don’t need to be root to do it

Q: Why is this not a panacea?
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Limitations of syscall interposition

e Hard to know exact implications of a system call

- Too much context not available outside of kernel
(e.g., what’s does this file descriptor number mean?)

- Context-dependent (e.g., /proc/self/cwd)

e Indirect paths to resources

- File descriptor passing, core dumps, “unhelpful processes”

e Race conditions
- Remember difficulty of eliminating TOCCTOU bugs?

- Now imagine malicious application deliberately doing this

- Symlinks, directory renames (so “..” changes), ...
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Sandboxing code

e What about protecting code within an application?

e Often security ends up restricting functionality
- Take insecure system, add restrictions,

- Hope result is more secure

e Sometimes can actually enhance functionality
- What if you could safely use “unsafe” code?

- Could allow previously impractical enhancements
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Uses of unsafe code

e Extensible applications

- E.g., browser, photoshop, etc., plug-ins

- Wouldn't it be nice if they couldn’t crash application?
e Saving kernel/user crossings

- Packet filters (e.g., bpf for tcpdump)

- Applications-specific virtual memory management

- Active messages (application-specific msg. handlers)

e Could just run in separate process, but...
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Cross-address-space calls expensive

e System call overhead much higher than procedure
- Requires trapping into the kernel

- Often requires draining the processor pipeline

e Switching address spaces increasingly expensive
- On some architectures requires flushing the TLB
- Increases cache pressure
- Cache/TLB miss service times increasingly expensive
compared to faster and faster cycle times
¢ Kernel must copy arguments back and forth between
address spaces
- Change page mappings, etc.
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Sandboxing also gives control

Example: Exokernel OS

- Goal: Let applications manage resources as much as possible

Don’t hardcode TCP/IP or other protocols

Instead, download packet filters into kernel
- Express which packets an application wants to see
- By downloading filters, kernel can ensure no conflicts

- Also ensures apps don’t leak information on other’s pkts

DPF (dynamic packet filter) created code on the fly
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Exokernel disk abstraction

¢ How to multiplex disk with untrusted apps?
- Need metadata—i.e., for a file, what blocks to use

- Don’t want to hard-code metadata formats

e Solution: UDFs (untrusted deterministic functions)

Download metadata interpretation code

UDF takes metadata, outputs list of blocks

Kernel checks metadata updates by output of UDF

Downloading ensures that UDFs are deterministic

¢ Determinism useful in less esoteric settings

- Ensure code you sign will keep behaving same way
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Challenges of untrusted code

Fault domain—logically separate portion of A.S.

- Each untrusted component runs in its own fault domain
Prevent FDs from trashing each other’s memory

Prevent FDs from jumping to arbitrary locations

Prevent code from accessing operating system

- Otherwise, e.g., could execute arbitrary programs

Other possible goals:
- Prevent FDs from reading each other’s memory
- Prevent infinite loops

- Bound physical memory utilization
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Software fault isolation

e Goal: Make fault isolation cheap enough that
developers can ignore performance impact

e General approach:
- Modity compiler to generate “safe” code

- Verifier can check code is safe before loading /running it

o Alternate approach: binary patching
- Rewrite unsafe binaries to be safe
- Doesn’t tie system to one compiler/language

- Unfortunately, binary rewriting hard to do
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Review: Typical RISC instruction sets

e Have 31 general-purpose integer registers
- Instruction set treats all registers identically
- Convention dictates certain uses (e.g., stack ptr, .. .)
- Across calls, some regs caller-saved, some callee-

- All ALU operations occur on registers

e Memory accessed w. load/store instructions only
- LD rd, offset(rp) ST rs, offset(rp)

e All instructions 32 bits (and must be aligned)

- Makes it easy to check each instruction in code
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MIPS calling conventions

Call
arguments

return addr

¢ old frame ptr
P callee-saved
registers
Local vars
and temps
Sp

e Like x86; should be very familiar from project 1
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SFI implementation

e Divide virtual address space into segments
- All addresses in a segment share same prefix

- Not all virtual addresses in segment need to be valid

e Each fault domain has two segments
- Code segment and separate data segment

- Q: Why not use one combined segment?

e Go over code identifying unsafe instructions
- Any store or jump that can’t be statically verified
- PC-relative branches OK, stores to static vars often OK

- Insert checking code before instructions that are not OK
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Segment matching

Use dedicated registers to hold addresses
Always check segment ID of target address of store

dedicated-reg <= target address
scratch-reg <= (dedicated-reg >> shift-reg)
compare scratch-reg segment-reg

trap 1f not equal

store value dedicated-reg

Adds 4 instructions to every store

Q: Why use dedicated register for store address?
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Address sandboxing

Segment matching good for debugging, but slow
Instead of checking segment IDs, can just set them:
dedicated-reg <= target-reg & and-mask-reg

dedicated-reg <= dedicated-reg | segment-reg

store value dedicated-reg

Now requires only 2 extra instructions per store

Again, dedicated register prevents harm if code
jumps to middle of store sequence
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Optimizations

e Traditional compiler optimizations

E.g., might move sandboxing out of a loop

¢ Guard zones at each end of data segment

Load/store instructions tage address reg. & offset
Unmapped zones larger than maximum ld /st offset
Means only register need be sandboxed, not full addr
Sandbox the stack pointer only when it is set

Avoid sandboxing SP if adjusted by small amount and used
before next control transfer
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Cross-domain calls

e Jump table contains allowed exit points from FD

- Each jump table entry is a control transfer instruction
(address hard-coded into instruction, so no register use)

- Explicitly enumerates allowed calls between each 2 FDs

- Jump table trusted, and in read-only code segment

e Jump table entries transfer control to stubs
- Must save any caller-saved registers (can’t trust target)

- Copy arguments of call from caller’s segment to target’s
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Fig 4

Trusted

Cdler Doman

call Add—
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\

Untrusted
Calee Doman

Cal
Stub

—= Add:

return

Return
Stub

br .Y
~<— br ..

br ..

Jump Table

e Q: Why not embed stubs directly in segment?
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Sharing memory accross domains

e Read sharing is not a problem

o If we need write sharing, use VM hardware

- Just map the same page into multiple segments in same A.S.

o Slight trickiness: pointer comparisons
- Don’t compare aliased ptrs w. different segment IDs
- Give shared region canonical address

- Fix pointer for write access (automatic w. sandboxing)
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Limitations of SFI

o Performance
- Usually good, but slowdown bad for packet filters, ...

e Harder to implement on some architectures

- E.g., x86 has variable-length, unaligned instructions (would
have to do more expensive checks on jumps)

- x86 has fewer registers (can’t dedicate 5 of them)

- Most x86 instructions affect memory (more sandboxing)

e Compiler and verifier tightly bound

- Once verifier deployed, might be hard to make further
improvements in compiler
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	The short-term plan
	Recall Bell-La Padula's labels
	Biba integrity model
	DoD Orange book
	Divisions C and D
	Division B
	Division A
	Limitations of Orange book
	Today: Common Criteria
	Protection Profiles
	Evaluation Assumes Levels 1-4
	Evaluation Assumes Levels 5-7
	LOMAC
	LOMAC overview
	LOMAC defaults
	The self-revocation problem
	Solution
	The flask security architecture
	Architecture
	Challenges
	Basic flask concepts
	Creating new object
	Security server interface
	Access vector cache (AVC)
	AVC in a query
	AVC interface
	Revocation support
	Revocation protocol
	Persistence
	Transitioning SIDs
	Example: Paying invoices
	Illustration
	Example: Loading kernel modules
	Confining code with legacy OSes
	Using chroot
	Escaping chroot
	System call interposition
	Limitations of syscall interposition
	Sandboxing code
	Uses of unsafe code
	Cross-address-space calls expensive
	Sandboxing also gives emph {control}
	Exokernel disk abstraction
	Challenges of untrusted code
	Software fault isolation
	Review: Typical RISC instruction sets
	MIPS calling conventions
	SFI implementation
	Segment matching
	Address sandboxing
	Optimizations
	Cross-domain calls
	Fig 4
	Sharing memory accross domains
	Limitations of SFI

