
Running code in browser poses
security risks

● Compromise host
– Write to file system

– Interfere with other processes in browser
environment

● Steal information
– Read file system

– Read information associated with other browser
processes (e.g., other windows)

– Fool the user

– Reveal information through traffic analysis

Browser sandbox

● Idea
– Code executed in browser has only restricted

access to OS, network, and browser data
structures

● Isolation
– Similar to address spaces or SFI, conceptually

– Browser is a “weak” OS

– Same-origin principle
● Browser “process” consists of related pages and the site

they come from

Java

● General programming language
● Web pages may contain Java code

– Java executed by Java Virtual Machine

– Special security measures associated with Java
code from remote URLs

● Javascript, other security models are based
on Java security model

Java Applet

● Local window
● Download

– Seat map
– Airline data

● Local data
– User profile
– Credit card

● Transmission
– Select seat
– Encrypted msg

Mobile code security mechanisms

● Examine code before executing
– Java bytecode verifier performs critical tests

● Interpret code and trap risky operations
– Java bytecode interpreter does run-time tests

– Security manager applies local access policy

● Security manager policy based on
– Site that suppplied the code

– Code signing – who signed it?

A.classA.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine Architecture

Class loader

● Runtime system loads classes as needed
– When class is referenced, loader searches for

file of compiled bytecode instructions

● Default loading mechanism can be replaced
– Define alternate ClassLoader object

● Extend the abstract ClassLoader class and
implementation

– Can obtain bytecode from network
● VM restricts applet communication to site that supplied

applet

Verifier

● Bytecode may not come from standard compiler
– Evil hacker may write dangerous bytecode

● Verifier checks correctness of bytecode
– Every instruction must have a valid operation code

– Every branch instruction must branch to the start of
some other instruction, not middle of instruction

– Every method must have a structurally correct
signature

– Every instruction obeys the Java type discipline

Last condition is fairly complicated .

Type Safety of JVM

● Load-time type checking
● Run-time type checking

– All casts are checked to make sure type safe

– All array references are checked to be within bounds

– References are tested to be not null before
dereference

● Additional features
– Automatic garbage collection

– NO pointer arithmetic
 If program accesses memory, the memory is allocated to the program

and declared with correct type

How do we know verifier is correct?

● Many early attacks based on verifier errors
● Formal studies prove correctness

– Abadi and Stata

– Freund and Mitchell
● Found error in initialize-before-use analysis

JVM uses stack machine

● Java
Class A extends Object {
 int i
 void f(int val) { i = val + 1;}
}

● Bytecode
Method void f(int)
 aload 0 ; object ref this
 iload 1 ; int val
 iconst 1
 iadd ; add val +1
 putfield #4 <Field int i>
 return

data
area

local
variables

operand
stack

Return addr,
exception info,
Const pool res.

JVM Activation Record

refers to const pool

Java Object Initialization

● No easy pattern to match.
● Multiple refs to same uninitialized object.

Bug in Sun’s JDK 1.1.4

● Example:

variables 1 and 2 contain
references to two different
objects,
verifier thinks they are aliases

Security Manager

● Java library functions call security manager
● Security manager object answers at run time

– Decide if calling code is allowed to do operation

– Examine protection domain of calling class
● Signer: organization that signed code before loading
● Location: URL where the Java classes came from

– Uses the system policy to decide access
permission

Stack Inspection

● Permission depends on
– Permission of calling method
– Permission of all methods

above it on stack
● Up to method that is trusted and

asserts this trust

Many details omitted
java.io.FileInputStream

method f

method g

method h

Stories: Netscape font / passwd bug; Shockwave plug-in

ActiveX

● ActiveX controls reside on client's machine,
activated by HTML object tag on the page
– ActiveX controls are not interpreted by browser
– Compiled binaries executed by client OS
– Controls can be downloaded and installed

● Security model relies on three components
– Digital signatures to verify source of binary
– IE policy can reject controls from network zones
– Controls marked by author as safe for initialization, safe

for scripting which affects the way control used

Once accepted, installed and started, no control over execution

Installing Controls

If you install and run, no further control over the code.

In principle, browser/OS could apply sandboxing, other techniques for
containing risks in native code. But don’t count on it.

Risks associated with controls

● MSDN Warning
– An ActiveX control can be an extremely insecure way to provide a

feature
● Why?

– A COM object, control can do any user action
● read and write Windows registry
● access the local file system

– Other web pages can attack a control
● Once installed, control can be accessed by any page
● Page only needs to know class identifier (CLSID)

● Recommendation: use other means if possible

http://msdn.microsoft.com/library/default.asp?url=/code/list/ie.asp

IE Browser Helper Objects (Extensions)

● COM components loaded when IE starts up
● Run in same memory context as the browser
● Perform any action on IE windows and

modules
– Detect browser events

● GoBack, GoForward, and DocumentComplete

– Access browser menu, toolbar and make changes

– Create windows to display additional information

– Install hooks to monitor messages and actions

● Summary: No protection from extensions
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebgen/html/bho.asp

Dynamic content

● Servers often generate client-specific content
– E.g., your shopping cart, your portal home page, ...

● Simplest method: CGI programs
– Client connects to server

– Server spawns CGI program in a new process

– Script generates contents of web page

● Problem: slow
– Interpreters (perl, python, php) slow to start up

– Even creating processes is somewhat slow

Solution: Embeded interpreter

● Embed script interpreter into web server
– Eliminates need to spawn a process per connection

– Eliminates need to keep re-parsing same script

● Structure server as pool of workers
– Pre-spawn many identical server processes

– Any free server can handle any connection

● Problem: Isolation

Example: Apache/PHP

● History of buffer overruns in Apache & PHP
● Bugs allow escape from chroot-like PHP feature
● Users often introduce bugs in PHP scripts

– E.g., SQL injection (download list of users)

– E.g., forget to check for “../../” in path

● Performance often requires other C code
– Which introduced more overruns, etc.

Apache/PHP

Apache/PHP Isolation

Search
Index and
Profiles

Process 1

Search.php

ShowProfile.php

ChangePW.php

Process 2

Search.php

ShowProfile.php

ChangePW.php

Passwordslogger config logger config

Apache/PHP

Process 1

Search.php

ShowProfile.php

ChangePW.php

Process 2

Search.php

ShowProfile.php

ChangePW.php

logger config logger config

Apache/PHP Isolation

Search
Index and
Profiles

Passwords

OKWS web server [Krohn]

● Attempt to achieve performance and security
● As secure as possible given Unix underneath
● Used for production web site okcupid.com

OKWS Design

● A Web site consists of many Web services.
– e.g., Search, ShowProfile, ChangePW

– A and B are distinct services if they access
different pools of data.

● One-to-one mapping between Web
Services and Unix processes.

OKWS Isolation Strategy

● Process pool fixed at startup (~10).
● Each obeys least-privilege principle.
● Isolates processes:

– From SQL database access

– From each other

– From the OS (filesystem in particular)

– From DBs they need not access.

R/O In-Memory
Profile Cache

Server

How To Build a Web Service

Profile-DB
Translator

DB

SQL

ShowProfile

RPC

~2000 LOC

~50 LOC

Structured DB Interface

● SQL Alone
– Allow ShowProfile to SELECT from the
PROFILES table.

– Allows ShowProfile to "SELECT * FROM
PROFILES";

● SQL + RPC-to-SQL Translator
– Allow ShowProfile to read a profile from the

database for a given user ID.

OKWS Block Diagram

demux

Search ShowProfile ChangePW

logger
(write to FS)

Profile-DB
Translator

PW-DB
Translator

DB1

pubd
(read from FS)

clie
nt

launcher

DB2

GET /ShowProfile HTTP/1.1

Pass FD

RPC

SQL

RPC
RPC

HTTP Response

Isolating DBs

Search ShowProfile ChangePW

Profile-DB
Translator

PW-DB
Translator

DB1 DB2

LOGIN(PW2)LOGIN(PW1)
LOGIN(PW3)

LOGIN(PW2)

OKWS Process Isolation

demux
UID=okd

Search
UID=51001

ShowProfile
UID=51002

ChangePW
UID=51003

logger
UID=oklog

Profile-DB
Translator

PW-DB
Translator

DB1

pubd
UID=www

launcher
UID=0

DB2

Web Server Machine

Database Machines

Log Jail Run Jail Docs Jail

http://slackerhtml.tripod.com/images/bomb.gif

If Service A is Compromised…

● cannot access its own DB outside the RPC
interface provided.

● cannot access setuid executables.
● cannot access logs, config files, source files,

privileged ports.
● cannot send service B signals
● cannot trace service B's system calls
● cannot access B's database

OKWS limitations

● No isolation within a service
– Implemented by Unix process

– E.g., buffer overrun would allow one user to see
another user's data

● Many bugs lead to data disclosure
● How to provide better isolation?

– Maybe launch one process per connection

– But very expensive, need different DB interface

● To do it right, might need a new OS

HiStar [Zeldovich et al.]

● Resurrect MAC ideas for very different domain
● OS that makes all information flow explicit
● Idea: Damage from bug can only spread where

information can flow
– If A can't communicate with B

– Then A can't subvert B's proper operation

– And A can't learn B's private information

● Force cross-user information flows to go
through small, well-understood code

Review: Covert channels on Unix

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database

Network

● Goal: private files cannot go onto the network

ClamAV

● E.g., how to prevent virus scanner leaking file?

Information Flow Control

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database

Network

● Goal: private files cannot go onto the network

Buggy scanner leaks private data

Private
User Files

Virus
Scanner

/tmp

Update
Process

Virus
Database

Network

● Must restrict sockets to protect private data

Buggy scanner leaks private data

Update
Process

Virus
Database

Network
Private

User Files

Virus
Scanner

/tmp

● Must restrict scanner's ability to use IPC

Buggy scanner leaks private data

setproctitle:
0x6e371bc2

Update
Process

Virus
Database

Network

ps

Private
User Files

/tmp

● Must restrict access to /proc, ...

Buggy scanner leaks private data

Update
Process

Virus
Database

Network

disk
usage

Private
User Files

Private
User Files

Virus
Scanner

/tmp

● Must restrict FS'es that virus scanner can write

Buggy scanner leaks private data

Update
Process

Virus
Database

Network

fcntl
locking

Private
User Files

Virus
Scanner

/tmp

● List goes on – is there any hope?

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
enforce these policies

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

What's going on?

P1

Unix
Kernel

Unix

P2 P3

Hardware

● Kernel not designed to
enforce these policies

● Retrofitting difficult
– Need to track potentially

any memory observed or
modified by a system call!

– Hard to even enumerate

HiStar Solution

HiStar
Kernel

Unix HiStar

Unix
Library

P1 P2 P3

U1 U2 U3

Hardware

P1

Unix
Kernel

P2 P3

Hardware

● Make all state explicit, track all communication

Kernel has only low-level objects

Segment
(Data)

Address
Space

Thread Gate
(IPC)

Container
(Directory) Device

(Network)

Label
Label

Label Label LabelLabel

Think of labels as

a “tainted” bit

which says

where info

can flow

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY) Kernel

State

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

X

Kernel
State

● Tainted process only talks to other tainted procs

Unix File Descriptors

Process A Process B

File Descriptor
(O_RDONLY)

Seek pointer: 0xa32f

X

Kernel
State

● Lots of shared state in kernel, easy to miss

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

HiStar File Descriptors

Address Space A

Thread A

File Descriptor Segment
(O_RDONLY)

Seek pointer: 0xa32f

Address Space B

Thread B

X

● All shared state is now explicitly labeled
● Just need segment read/write checks

How do we get anything out?

Network

Virus
Scanner

X

Alice's
Files

“Owner” privilege

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

● Yellow objects can only interact with other
yellow objects, or objects with yellow star

● Small, trusted shell can isolate a large,
frequently-changing virus scanner

Multiple categories of taint

Alice's
shell

Network

Virus
Scanner

X

Alice's
Files

Bob's
shell

Bob's
Files

Virus
Scanner

X

● Owner privilege and information flow control
are the only access control mechanism

● Anyone can allocate a new category, gets star

HiStar benefits

● Can factor applications into many mutually
distrustful pieces

● Much of the code can be mostly untrusted
● No need for fully trusted code

– Even login doesn't need superuser privs

● Flexible enough for web applications
– Can allocate huge number of categories (e.g., could

use one per user account on okcupid.com)

– Can re-use OS login mechanism for web server

Login on HiStar

Login
Process

Alice's
Auth. Service

Bob's
Auth. Service

User: Bob
Pass: 1bob

PW:
H(alic3)

PW:
H(1bob)

● Each user can provide their own auth. service

Login on HiStar

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● Each user can provide their own auth. service

Login on HiStar

Login
Process

OK

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

Password disclosure

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● What if Bob mistypes his username as “alice”?

Password disclosure

Login
Process

Pass: 1bob

Alice's
Auth. Service

Bob's
Auth. Service

PW:
H(alic3)

PW:
H(1bob)

● What if Bob mistypes his username as “alice”?

Network

Avoiding password disclosure

● It's all about information flow
– HiStar enforces:

– “Password cannot go out onto the network”

● Real login uses ephemoral taint category to
protect passwords

300 lines

HiStar SSL Web Server

User's
browser

inetd SSL RSAd
RSA
key

httpd

User
authentication

Application
code

User
data

● Unlike OKWS, isolate application code per user

310 lines 340K lines 4600 lines

680K lines: PDF maker

Reducing trusted code

● HiStar lets developers reduce trusted code
– No code with every user's privilege during login

– No trusted code needed to initiate authentication

– 110-line trusted wrapper for complex virus scanner

– Web server isolates different users' app. code

● Small kernel: <20,000 lines of code

Advertising

● Publishers get ads through Ad networks
– E.g., AdBrite

● AdBrite gives you Javascript to generate ads
function print_ads () {
 for (each ad) {
 document.write (text of ad);
 }
}

● Publisher gets paid per click on an Ad

Incentives for fraud

● Publishers want to inflate click counts
– Make it look like many people clicked on ads served

by their sites so as to get ad revenue

● Advertisers want to inflate competitors' counts
– Cause lots of bogus clicks on competitors' ads

– Maxes out competitor's ad budget

– Ensures they only reach small audience

● Ad network profits from inflated clicks
– But also needs to maintain perception of quality

Clickbot.A [Daswani et al.]

● Some machines infected by Trojan horse
– Application disguised as game

– Contacts botmaster to determine next download

– Chain of downloads ends up with Clickbot.A

● Also probably bought existing bots
● Structured as IE browser helper object

– Simplified parsing HTML

– Made HTTP requests look ordinary

● Running on 100,000 machines by June 2006

Clickbot.A bot master

● Used PHP & MySQL
● Hosted by ISP with

compromised
accounts

● Compromised
accounts also used to
host “doorway” sites

How Clickbot.A worked

● Contact botmaster to register
● Loop every 15 minutes:

– Learn about a “doorway” site from bot master

– Receive instructions on queries

● Bot queried doorway site based on instructions
– Clicked through advertising

– Used “redirector” to strip off Referer header

– Made it harder to track bad doorway sites

● Google claims to have identified all Clickbot.A
clicks by pattern and not charged for them

Badvertisements [Gandhi et al.]

● Attack identified by researchers, not yet seen
● Attacker creates two web sites:

– nastyporn.com – lots of legitimate traffic, but
content unacceptable to most advertisers (called
the “Facade page”)

– niceflorist.com – site that carries advertising
(called the “dual-personality page”)

Generating clicks

● Facade site (nastyporn) includes “dual
personality” site (niceflorist) in a tiny iframe (not
visible to user)
– Passes unique ID to niceflorist

● If niceflorist sees user ID for first time
– Sends “badvertisement” javascript to generate

clicks

● Otherwise
– Sends innocuous javascript

Thwarting detection

● If you go back to inspect niceflowers
– With already seen unique ID, get innocuous

javascript

● Prevent crawlers from understanding nastyporn
– Iframe is generated with javascript

– Crawlers don't execute javascript

– Can also use tricks to obfuscate javascript

Google AdSense not vulnerable

● Also include Javascript
<script type="text/javascript"
 src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script>

● But ad not generated by javascript
● Instead, generates code to include Ad
(function () {
 function print_ads () {
 document . write (" < iframe src = url of ad server > ");
 }
 print_ads ();
})()

● Inline frame generated by Google's servers
● Possibly makes adblocking easier?

