
1

Access Control and
Operating System Security

CS 155 Spring 2009

John Mitchell

What is security?

Functionality
If user does 〈some expected input〉
Then system does 〈some expected action〉

Security

2

y
If a user or outsider does 〈some unexpected thing〉
Then system does not do 〈any really bad action〉

Why is security difficult?
What are all possible unexpected things?
How do we know that all of them are protected?
At what level of system abstraction?

General concepts

Identify threat model
Set of possible actions available to attacker
Examples

Eavesdropper: intercept packets on network

3

Active network attacker: eavesdrop, forge packets
Web attacker: set up bad web site; no network attacks
Dictionary attacker: has dictionary of common passwords
Timing attacker: measure timing on network, bus, etc.

Investigate consequences of possible attacks
Inherently an analytical problem
Experiments, knowledge of past attacks helps

Another important idea

Functionality
Expressed using meaningful user actions

E.g., well-formed commands to operating system

4

Security
Design can be good
But implementation can be insecure

If implementation allows more actions than design, then
attack can succeed as a result of implementation error

This lecture

Operating system security
Examples of design features meant to provide
security

User gets access to resource only if policy allows it

5

Next few lectures: implementation attacks

Outline

Access Control Concepts
Matrix, ACL, Capabilities

OS Mechanisms
Multics

Ring structure

Web browser (briefly)
“OS of the future”
Protect content based on
origins instead of user id

6

g
Amoeba

Distributed, capabilities
Unix

File system, Setuid
Windows

File system, Tokens, EFS

Least privilege
Qmail vs Sendmail

2

Access control

Assumptions
System knows who the user is

Authentication via name and password, other credential

Access requests pass through gatekeeper
System must not allow monitor to be bypassed

7

Resource
User

process

Reference
monitor

access request

policy

?

Access control matrix [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

Objects

8

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subjects

Two implementation concepts

Access control list (ACL)
Store column of matrix
with the resource

Capability

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

9

p y
User holds a “ticket” for
each resource
Two variations

store row of matrix with user, under OS control
unforgeable ticket in user space

…

User m read write write

Access control lists are widely used, often with groups
Some aspects of capability concept are used in Kerberos, …

Capabilities

Operating system concept
“… of the future and always will be …”

Examples
Dennis and van Horn, MIT PDP-1 Timesharing
Hydra StarOS Intel iAPX 432 Eros

10

Hydra, StarOS, Intel iAPX 432, Eros, …
Amoeba: distributed, unforgeable tickets

References
Henry Levy, Capability-based Computer Systems

http://www.cs.washington.edu/homes/levy/capabook/
Tanenbaum, Amoeba papers

ACL vs Capabilities

Access control list
Associate list with each object
Check user/group against list
Relies on authentication: need to know user

11

Capabilities
Capability is unforgeable ticket

Random bit sequence, or managed by OS
Can be passed from one process to another

Reference monitor checks ticket
Does not need to know identify of user/process

ACL vs Capabilities

Process P
User U

Process P
Capabilty c,d

12

Process Q
User U

Process R
User U

Process Q

Process R
Capabilty c

Capabilty c

3

ACL vs Capabilities

Delegation
Cap: Process can pass capability at run time
ACL: Try to get owner to add permission to list?

More common: let other process act under current user

Revocation

13

Revocation
ACL: Remove user or group from list
Cap: Try to get capability back from process?

Possible in some systems if appropriate bookkeeping
OS knows which data is capability
If capability is used for multiple resources, have to revoke all
or none …
Other details …

Roles (also called Groups)

Role = set of users
Administrator, PowerUser, User, Guest
Assign permissions to roles; each user gets permission

Role hierarchy

14

Partial order of roles
Each role gets
permissions of roles below
List only new permissions
given to each role

Administrator

Guest

PowerUser

User

Role-Based Access Control

Individuals Roles Resources

engineering Server 1

15

marketing

human res Server 3

Server 2

Advantage: user’s change more frequently than roles

Groups for resources, rights

Permission = 〈right, resource〉
Permission hierarchies

If user has right r, and r>s, then user has right s
If user has read access to directory, user has read

16

access to every file in directory

General problem in access control
Complex mechanisms require complex input
Difficult to configure and maintain
Roles, other organizing ideas try to simplify problem

Multi-Level Security (MLS) Concepts

Military security policy
Classification involves sensitivity levels, compartments
Do not let classified information leak to unclassified files

Group individuals and resources

17

Use some form of hierarchy to organize policy

Other policy concepts
Separation of duty
“Chinese Wall” Policy

Military security policy

Sensitivity levels Compartments

Satellite data
Afghanistan

Middle East

18

Top Secret
Secret
Confidential
Restricted
Unclassified

Middle East
Israel

4

Other policy concepts

Separation of duty
If amount is over $10,000, check is only valid if
signed by two authorized people
Two people must be different

19

Policy involves role membership and ≠

Chinese Wall Policy
Lawyers L1, L2 in same firm
If company C1 sues C2,

L1 and L2 can each work for either C1 or C2
No lawyer can work for opposite sides in any case

Permission depends on use of other permissions
These policies cannot be represented using access matrix

Example OS Mechanisms

Multics
Amoeba
Unix
Windows

20

Windows

Multics

Operating System
Designed 1964-1967

MIT Project MAC, Bell Labs, GE

At peak, ~100 Multics sites

21

Last system, Canadian Department of Defense,
Nova Scotia, shut down October, 2000

Extensive Security Mechanisms
Influenced many subsequent systems

http://www.multicians.org/security.html

E.I. Organick, The Multics System: An Examination of Its Structure, MIT Press, 1972

Multics time period

Timesharing was new concept
Serve Boston area with one 386-based PC

F.J. Corbato

22

Multics Innovations

Segmented, Virtual memory
Hardware translates virtual address to real address

High-level language implementation
Written in PL/1, only small part in assembly lang

Shared memory multiprocessor

23

Shared memory multiprocessor
Multiple CPUs share same physical memory

Relational database
Multics Relational Data Store (MRDS) in 1978

Security
Designed to be secure from the beginning
First B2 security rating (1980s), only one for years

Multics Access Model

Ring structure
A ring is a domain in which a process executes
Numbered 0, 1, 2, … ; Kernel is ring 0
Graduated privileges

24

Processes at ring i have privileges of every ring j > i

Segments
Each data area or procedure is called a segment
Segment protection 〈b1, b2, b3〉 with b1 ≤ b2 ≤ b3

Process/data can be accessed from rings b1 … b2
A process from rings b2 … b3 can only call segment at
restricted entry points

5

Multics process

Multiple segments
Segments are dynamically linked
Linking process uses file system to find segment
A segment may be shared by several processes

Multiple rings

25

p g
Procedure, data segments each in specific ring
Access depends on two mechanisms

Per-Segment Access Control
File author specifies the users that have access to it

Concentric Rings of Protection
Call or read/write segments in outer rings
To access inner ring, go through a “gatekeeper”

Interprocess communication through “channels”

Amoeba

Distributed system
Multiple processors, connected by network
Process on A can start a new process on B
Location of processes designed to be transparent

Server port Check fieldObj # Rights

26

Capability-based system
Each object resides on server
Invoke operation through message to server

Send message with capability and parameters
Sever uses object # to indentify object
Sever checks rights field to see if operation is allowed
Check field prevents processes from forging capabilities

Capabilities

Owner capability
When server creates object, returns owner cap.

All rights bits are set to 1 (= allow operation)
Check field contains 48-bit rand number stored by server

Derived capability

Server port Check fieldObj # Rights

27

Derived capability
Owner can set some rights bits to 0
Calculate new check field

XOR rights field with random number from check field
Apply one-way function to calculate new check field

Server can verify rights and check field
Without owner capability, cannot forge derived capability

Protection by user-process at server; no special OS support needed

Unix file security

Each file has owner and group
Permissions set by owner

Read, write, execute
Owner, group, other

rwx rwxrwx-

setid

28

, g p,
Represented by vector of
four octal values

Only owner, root can change permissions
This privilege cannot be delegated or shared

Setid bits – Discuss in a few slides

ownr grp othr

Question

Owner can have fewer privileges than other
What happens?

Owner gets access?
Owner does not?

29

Prioritized resolution of differences
if user = owner then owner permission

else if user in group then group permission
else other permission

Effective user id (EUID)

Each process has three Ids (+ more under Linux)
Real user ID (RUID)

same as the user ID of parent (unless changed)
used to determine which user started the process

Effective user ID (EUID)

30

Effective user ID (EUID)
from set user ID bit on the file being executed, or sys call
determines the permissions for process

file access and port binding

Saved user ID (SUID)
So previous EUID can be restored

Real group ID, effective group ID, used similarly

6

Process Operations and IDs

Root
ID=0 for superuser root; can access any file

Fork and Exec
Inherit three IDs, except exec of file with setuid bit

Setuid system calls

31

Setuid system calls
seteuid(newid) can set EUID to

Real ID or saved ID, regardless of current EUID
Any ID, if EUID=0

Details are actually more complicated
Several different calls: setuid, seteuid, setreuid

Setid bits on executable Unix file

Three setid bits
Setuid – set EUID of process to ID of file owner
Setgid – set EGID of process to GID of file
Sticky

32

Off: if user has write permission on directory, can
rename or remove files, even if not owner
On: only file owner, directory owner, and root can
rename or remove file in the directory

Example

…;
…;
exec();

RUID 25 SetUID

program

Owner 18

33

exec();

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 25

read/write

read/write

Owner 18

Compare to stack inspection

Careful with Setuid !
Can do anything that
owner of file is
allowed to do
B t t

A 1

B 1

34

Be sure not to
Take action for
untrusted user
Return secret data to
untrusted user

C 1

Note: anything possible if root; no middle
ground between user and root

Setuid programming

Be Careful!
Root can do anything; don’ t get tricked
Principle of least privilege – change EUID when
root privileges no longer needed

35

Setuid scripts
This is a bad idea
Historically, race conditions

Begin executing setuid program; change contents of
program before it loads and is executed

Unix summary

Good things
Some protection from most users
Flexible enough to make things possible

36

g g p

Main bad thing
Too tempting to use root privileges
No way to assume some root privileges without all
root privileges

7

Access control in Windows (NTFS)

Some basic functionality similar to Unix
Specify access for groups and users

Read, modify, change owner, delete

Some additional concepts

37

Tokens
Security attributes

Generally
More flexibility than Unix

Can define new permissions
Can give some but not all administrator privileges

Sample permission options

Security ID (SID)
Identity (replaces UID)

SID revision number
48-bit authority value
variable number of

38

variable number of
Relative Identifiers
(RIDs), for uniqueness

Users, groups,
computers, domains,
domain members all
have SIDs

Permission Inheritance

Static permission inheritance (Win NT)
Initially, subfolders inherit permissions of folder
Folder, subfolder changed independently
Replace Permissions on Subdirectories command

39

Eliminates any differences in permissions

Dynamic permission inheritance (Win 2000)
Child inherits parent permission, remains linked
Parent changes are inherited, except explicit settings
Inherited and explicitly-set permissions may conflict

Resolution rules
Positive permissions are additive
Negative permission (deny access) takes priority

Tokens

Security Reference Monitor
uses tokens to identify the security context of a
process or thread

Security context

40

privileges, accounts, and groups associated with
the process or thread

Impersonation token
thread uses temporarily to adopt a different
security context, usually of another user

Security Descriptor

Information associated with an object
who can perform what actions on the object

Several fields
Header

41

Descriptor revision number
Control flags, attributes of the descriptor

E.g., memory layout of the descriptor

SID of the object's owner
SID of the primary group of the object
Two attached optional lists:

Discretionary Access Control List (DACL) – users, groups, …
System Access Control List (SACL) – system logs, ..

Example access request
User: Mark
Group1: Administrators
Group2: Writers

Control flags
Revision Number

Access
token

Access request: write
Action: denied

42

Control flags

Group SID
DACL Pointer
SACL Pointer

Deny
Writers
Read, Write
Allow
Mark
Read, Write

Owner SID

Security
descriptor

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request

8

Impersonation Tokens (=setuid?)

Process uses security attributes of another
Client passes impersonation token to server

Client specifies impersonation level of server
Anonymous

43

y
Token has no information about the client

Identification
server obtain the SIDs of client and client's privileges,
but server cannot impersonate the client

Impersonation
server identify and impersonate the client

Delegation
lets server impersonate client on local, remote systems

An Analogy

Operating system
Primitives

System calls
Processes
Disk

Web browser
Primitives

Document object model
Frames
Cookies / localStorage

44

Disk

Principals: Users
Discretionary access
control

Vulnerabilities
Buffer overflow
Root exploit

Cookies / localStorage

Principals: “Origins”
Mandatory access control

Vulnerabilities
Cross-site scripting
Universal scripting

Components of browser security policy

Frame-Frame relationships
canScript(A,B)

Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

canNavigate(A B)

45

canNavigate(A,B)
Can Frame A change the origin of content for Frame B?

Frame-principal relationships
readCookie(A,S), writeCookie(A,S)

Can Frame A read/write cookies from site S?

Principles of secure design

Compartmentalization
Principle of least privilege
Minimize trust relationships

Defense in depth
Use more than one security mechanism

46

Use more than one security mechanism
Secure the weakest link
Fail securely

Keep it simple
Consult experts

Don’t build what you can easily borrow/steal
Open review is effective and informative

Compartmentalization

Divide system into modules
Each module serves a specific purpose
Assign different access rights to different modules

Read/write access to files

47

Read user or network input
Execute privileged instructions (e.g., Unix root)

Principle of least privilege
Give each module only the rights it needs

Example: Mail Transport Agents

Sendmail
Complicated system, many past vulnerabilities
Sendmail runs as root

Root privilege needed to bind port 25

48

No longer needed after port bind established
But most systems keep running as root

Root privileges needed later to write to user mailboxes

Qmail
Simpler system designed with security in mind

Qmail was written by Dan Bernstein, starting 1995
$500 reward for successful attack; no one has collected

9

Simplified Mail Transactions

Mail User
Agent

Mail
Transport
Agent

Mail
Transport
Agent

Mail User
Agent

49

mbox mbox
Mail
Delivery
Agent

Mail
Delivery
Agent

Message composed using an MUA
MUA gives message to MTA for delivery
• If local, the MTA gives it to the local MDA
• If remote, transfer to another MTA

Qmail design

Least privilege
Each module uses least privileges necessary
Only one setuid program

setuid to one of the other qmail user IDs, not root
No setuid root binaries

50

No setuid root binaries
Only one run as root

Spawns the local delivery program under the UID and
GID of the user being delivered to
No delivery to root
Always changes effective uid to recipient before running
user-specified program

Other secure coding ideas

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue

Incoming SMTP mail Other incoming mail

51

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue
Splits mail msg into 3 files
• Message contents

2 f h d

52

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send
• 2 copies of header, etc.

Signals qmail-send

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue
qmail-send signals
• qmail-lspawn if local

l f

53

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send
• qmail-remote if remote

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue

54

qmail-local

qmail-lspawn

qmail-send

qmail-lspawn
• Spawns qmail-local
• qmail-local runs with ID of

user receiving local mail

10

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue

55

qmail-local

qmail-lspawn

qmail-send

qmail-local
• Handles alias expansion
• Delivers local mail
• Calls qmail-queue if needed

Structure of qmail

qmail-smtpd qmail-inject

qmail-queue

56

qmail-remote

qmail-rspawn

qmail-send

qmail-remote
• Delivers message to remote MTA

Least privilege

qmail-smtpd qmail-inject

qmail-queuesetuid

57

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

root

UIDs

qmail-smtpd qmail-inject

qmail-queue
setuid

qmaild user

qmailq

qmailq – user who is allowed to read/write mail queue

58

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

root

qmailsqmailr

qmailr

root

user

setuid user

Principles, sendmail vs qmail

Do as little as possible in setuid programs
Of 20 recent sendmail security holes, 11 worked
only because the entire sendmail system is setuid
Only qmail-queue is setuid

59

Its only function is add a new message to the queue

Do as little as possible as root
The entire sendmail system runs as root

Operating system protection has no effect

Only qmail-start and qmail-lspawn run as root.

60

