
Control Hijacking Attacks

Note:      project 1 is out

Section this Friday 4:15pm   (Gates B03)



Control hijacking attacks

Attacker’s goal:

� Take over target machine     (e.g.  web server)

� Execute arbitrary code on target by 
hijacking application control flow

This lecture:   three examples.

� Buffer overflow attacks

� Integer overflow attacks

� Format string vulnerabilities

Project 1:    Build exploits



1.  Buffer overflows

Extremely common bug.   

� First major exploit:  1988 Internet Worm.   fingerd.

400

500

600

≈20% of all vuln.

2005-2007:  ≈ 10%

Developing buffer overflow attacks:

� Locate buffer overflow within an application.

� Design an exploit.

0

100

200

300

400

1995 1997 1999 2001 2003 2005

Source:  NVD/CVE

2005-2007:  ≈ 10%



What is needed

Understanding C functions and the stack

Some familiarity with machine code

Know how systems calls are made

The exec() system call

Attacker needs to know which CPU and OS are running on 
the target machine:

� Our examples are for  x86  running  Linux

� Details vary slightly between CPUs and OSs:

� Little endian vs. big endian   (x86 vs. Motorola)

� Stack Frame structure     (Unix vs. Windows)

� Stack growth direction



Linux process memory layout

user stack
0xC0000000

%esp

unused
0x08048000

run time heap

shared libraries
0x40000000

brk

Loaded 
from exec

0



Stack Frame

Parameters

Return address

Stack Frame Pointer

Local variables

SP

Stack
Growth



What are buffer overflows?

Suppose a web server contains a function:

void func(char *str) {

char buf[128];

strcpy(buf, str);

do-something(buf);

}}

When the function is invoked the stack looks like:

What if  *str is  136 bytes long?   After   strcpy:

strret-addrsfpbuf
top
of

stack

str
top
of

stack
*str ret



Basic stack exploit

Problem:   no range checking in  strcpy().

Suppose    *str is such that after  strcpy stack looks like:

top
of

stack
*str                 ret    Code for P

When   func() exits,  the user will be given a shell  !

Note:  attack code runs in stack.

To determine ret guess position of stack when func() is called

stack
*str                 ret    Code for P

Program P:   exec( “/bin/sh” )

(exact shell code by Aleph One)



Many unsafe C lib functions

strcpy (char *dest,  const char *src)

strcat (char *dest, const char *src)

gets (char *s)

scanf ( const char *format, … )

“Safe” versions  strncpy(), strncat() are misleading

� strncpy()   may leave buffer unterminated.

� strncpy(), strncat()    encourage off by 1 bugs.



Exploiting buffer overflows

Suppose web server calls  func() with given URL.

� Attacker sends a 200 byte URL.  Gets shell on web server

Some complications:

� Program   P  should not contain the ‘\0’  character.� Program   P  should not contain the ‘\0’  character.

� Overflow should not crash program before  func()  exists.

Sample remote buffer overflows of this type:
� (2005) Overflow in MIME type field in MS Outlook.

� (2005) Overflow in Symantec Virus Detection

Set test = CreateObject("Symantec.SymVAFileQuery.1") 

test.GetPrivateProfileString  "file",  [long string]



Control hijacking opportunities

Stack smashing attack:

� Override return address in stack activation record by 
overflowing a local buffer variable.

Function pointers:    Function pointers:    (e.g.  PHP 4.0.2,   MS MediaPlayer Bitmaps)

� Overflowing  buf will override function pointer.

Longjmp buffers:  longjmp(pos)         (e.g. Perl 5.003)

� Overflowing buf next to pos overrides value of pos.

Heap
or

stack
buf[128] FuncPtr



Heap-based control hijacking

Compiler generated function pointers   (e.g.  C++ code)

ptr

data

FP1

FP2

FP3

vtable

method #1

method #2

method #3

Suppose   vtable is on the heap next to a string object:

data

Object  T

vtable

p
trbuf[256]

d
a
ta

object T

vtable



Heap-based control hijacking

Compiler generated function pointers   (e.g.  C++ code)

ptr

data

FP1

FP2

FP3

vtable

method #1

method #2

method #3

After overflow of  buf we have:

data

Object  T

vtable

p
trbuf[256]

d
a
ta

object T

vtable

shell
code



Other types of overflow attacks

Integer overflows:    (e.g.  MS DirectX MIDI Lib)     Phrack60

void func(int a, char v) {
char buf[128];

init(buf);

buf[a] = v;
}
buf[a] = v;

}

� Problem:   a  can point to `ret-addr’  on stack.

Double free:    double free space on heap.

� Can cause mem mgr to write data to specific location

� Examples:    CVS server



80

100

120

140

Integer overflow stats

0

20

40

60

80

1996 1998 2000 2002 2004 2006

Source:  NVD/CVE



Finding buffer overflows

To find overflow:

� Run web server on local machine

� Issue requests with long tags
All long tags end with    “$$$$$”

If web server crashes,� If web server crashes,
search core dump for  “$$$$$” to find 
overflow location

Many automated tools exist  (called  fuzzers – next lecture)

Then use disassemblers and debuggers (e.g. IDA-Pro) to 
construct exploit



DefensesDefenses



Preventing hijacking attacks

1. Fix bugs:

� Audit software

�Automated tools:   Coverity,  Prefast/Prefix. 

� Rewrite software in a type safe languange  (Java, ML)

Difficult for existing (legacy) code …�Difficult for existing (legacy) code …

2. Concede overflow,  but prevent code execution

3. Add runtime code to detect overflows exploits

� Halt process when overflow exploit detected

� StackGuard,  LibSafe, …



Marking memory as non-execute   (W^X)

Prevent overflow code execution by marking 
stack and heap segments as non-executable

� NX-bit on AMD Athlon 64,     XD-bit on Intel P4  Prescott

� NX bit in every Page Table Entry (PTE)

� Deployment: 

�Linux (via PaX project);    OpenBSD

�Windows since XP SP2    (DEP)
� Boot.ini :        /noexecute=OptIn or AlwaysOn

Limitations:

� Some apps need executable heap   (e.g. JITs).

� Does not defend against `return-to-libc’ exploit



Examples:   DEP controls in Vista

DEP terminating a program



Return to libc

Control hijacking without executing code

args

stack libc.so

ret-addr

sfp

local buf

exec()

printf()

“/bin/sh”



Response:   randomization

ASLR:       (Address Space Layout Randomization)

� Map shared libraries to rand location in process memory

⇒ Attacker cannot jump directly to exec function

� Deployment: 

�Windows Vista: 8 bits of randomness for DLLs�Windows Vista: 8 bits of randomness for DLLs
� aligned to 64K page in a 16MB region   ⇒ 256 choices

� Linux (via PaX): 16 bits of randomness for libraries

� More effective on  64-bit architectures

Other randomization methods:

� Sys-call randomization:    randomize sys-call id’s

� Instruction Set Randomization (ISR)



ASLR Example

Booting Vista twice loads libraries into different locations:

Note: ASLR is only applied to images for which the 
dynamic-relocation flag is set



Run time checkingRun time checking



Run time checking: StackGuard

Many many run-time checking techniques …

� we only discuss methods relevant to overflow protection

Solution 1:  StackGuard

� Run time tests for stack integrity. 

� Embed “canaries” in stack frames and verify their 
integrity prior to function return.

strretsfplocal

top
of

stack
canarystrretsfplocal canary

Frame 1Frame 2



Canary Types

Random canary:

� Choose random string at program startup.

� Insert canary string into every stack frame.

� Verify canary before returning from function.

� To corrupt random canary, attacker must learn current � To corrupt random canary, attacker must learn current 
random string.

Terminator canary:
Canary =  0, newline, linefeed, EOF

� String functions will not copy beyond terminator.

� Attacker cannot use string functions to corrupt stack.



StackGuard (Cont.)

StackGuard implemented as a GCC patch.

� Program must be recompiled.

Minimal performance effects: 8% for Apache.

Note: Canaries don’t offer fullproof protection.

� Some stack smashing attacks leave canaries unchanged

Heap protection:  PointGuard.
� Protects function pointers and setjmp buffers by 
encrypting them:   XOR with random cookie

� More noticeable performance effects



StackGuard variants - ProPolice

ProPolice (IBM)    - gcc 3.4.1.      (-fstack-protector)

� Rearrange stack layout to prevent ptr overflow.

args No arrays or pointersString
Growth

ret addr

SFP

CANARY

arrays

local variables

Stack
Growth Ptrs, but no arrays

Growth



MS Visual Studio  /GS     [2003]

Compiler /GS option:

� Combination of ProPolice and Random canary.

� Triggers UnHandledException in case of Canary 
mismatch to shutdown process.

Litchfield vulnerability report

� Overflow overwrites exception handler

� Redirects exception to attack code



Run time checking: Libsafe

Solution 2:  Libsafe (Avaya Labs)

� Dynamically loaded library      (no need to recompile app.)

� Intercepts calls to  strcpy (dest, src)

� Validates sufficient space in current stack frame:

|frame-pointer – dest| > strlen(src)|frame-pointer – dest| > strlen(src)

� If so, does strcpy,   

otherwise, terminates application

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main



More methods …

� StackShield

� At function prologue, copy return address RET and SFP

to “safe” location  (beginning of data segment)

� Upon return, check that RET and SFP is equal to copy.

Implemented as assembler file processor (GCC)� Implemented as assembler file processor (GCC)

� Control Flow Integrity  (CFI)

� A combination of static and dynamic checking

� Statically determine program control flow

� Dynamically enforce control flow integrity



Format string bugsFormat string bugs



Format string problem

int func(char *user)  {

fprintf( stdout, user);

}

Problem:   what if   user = “%s%s%s%s%s%s%s” ??

� Most likely program will crash:   DoS.

� If not, program will print memory contents.  Privacy?

� Full exploit using   user = “%n”

Correct form:

int func(char *user)  {

fprintf( stdout, “%s”, user);

}



History

First exploit discovered in June 2000.

Examples:

� wu-ftpd  2.* : remote root

� Linux rpc.statd: remote root

� IRIX telnetd: remote root� IRIX telnetd: remote root

� BSD chpass: local root



Vulnerable functions

Any function using a format string.

Printing:

printf, fprintf, sprintf, …

vprintf, vfprintf, vsprintf, …vprintf, vfprintf, vsprintf, …

Logging:

syslog,  err, warn



Exploit

Dumping arbitrary memory:

� Walk up stack until desired pointer is found.

� printf( “%08x.%08x.%08x.%08x|%s|”)

Writing to arbitrary memory:

� printf( “hello %n”, &temp)   -- writes ‘6’ into temp.

� printf( “%08x.%08x.%08x.%08x.%n”)



Overflow using format string

char errmsg[512],  outbuf[512];

sprintf (errmsg, “Illegal command: %400s”, user);

sprintf( outbuf, errmsg );

What if   user = “%500d <nops> <shellcode>”

� Bypass  “%400s”  limitation.

� Will ovreflow outbuf.



Heap Spray AttacksHeap Spray Attacks

A reliable method for exploiting heap overflows



Heap-based control hijacking

Compiler generated function pointers   (e.g.  C++ code)

ptr

data

FP1

FP2

FP3

vtable

method #1

method #2

method #3

Suppose   vtable is on the heap next to a string object:

data

Object  T

vtable

p
trbuf[256]

d
a
ta

object T

vtable



Heap-based control hijacking

Compiler generated function pointers   (e.g.  C++ code)

ptr

data

FP1

FP2

FP3

vtable

method #1

method #2

method #3

After overflow of  buf we have:

data

Object  T

vtable

p
trbuf[256]

d
a
ta

object T

vtable

shell
code



A reliable exploit?   

<SCRIPT language="text/javascript">

shellcode = unescape("%u4343%u4343%...");

overflow-string = unescape(“%u2332%u4276%...”);

cause-overflow( overflow-string );        // overflow  buf[ ]

</SCRIPT></SCRIPT>

Problem: attacker does not know where browser 
places shellcode on the heap

p
trbuf[256]

d
a
ta

shellcodevtable

???



Heap Spraying     [SkyLined 2004]

Idea: 1. use Javascript to spray heap 
with shellcode (and NOP slides)

2. then point vtable ptr anywhere in spray area

h
e
a
p

vtable

NOP  slide shellcode

heap spray area



Javascript heap spraying

var nop = unescape(“%u9090%u9090”)

while (nop.length < 0x100000)  nop += nop

var shellcode = unescape("%u4343%u4343%...");

var x = new Array ()

for (i=0;  i<1000;  i++) {

x[i] = nop + shellcode;

}

Pointing  func-ptr almost anywhere in heap will 
cause shellcode to execute.



Vulnerable buffer placement

Placing vulnerable   buf[256] next to object O:

� By sequence of Javascript allocations and frees
make heap look as follows:

free blocks

� Allocate vuln. buffer in Javascript and cause overflow

� Successfully used against a Safari PCRE overflow [DHM’08]

object O

heap



Many heap spray exploits

[RLZ’08]

Improvements:     Heap Feng Shui [S’07]

� Reliable heap exploits on IE without spraying

� Gives attacker full control of  IE heap  from Javascript



(partial)  Defenses

Protect heap function pointers       (e.g.    PointGuard)

Better browser architecture:
� Store JavaScript strings in a separate heap from browser heap

OpenBSD heap overflow protection:

Nozzle [RLZ’08] :  detect sprays by prevalence of code on heap

non-writable pages

prevents 
cross-page
overflows



References on heap spraying

[1] Heap Feng Shui in Javascript,
by A. Sotirov,     Blackhat Europe 2007

[2] Engineering Heap Overflow Exploits with 
JavaScriptJavaScript
M. Daniel, J. Honoroff, and C. Miller,    WooT 2008

[3] Nozzle: A Defense Against Heap-spraying Code
Injection Attacks,

by P. Ratanaworabhan, B. Livshits, and B. Zorn



THE  ENDTHE  END


