Control Hijacking Attacks

Note: project 1 is out

Section this Friday 4:15pm (Gates B03)

Control hijacking attacks

- Attacker's goal:
 - Take over target machine (e.g. web server)
 - Execute arbitrary code on target by hijacking application control flow
- This lecture: three examples.
 - Buffer overflow attacks
 - Integer overflow attacks
 - Format string vulnerabilities
- Project 1: Build exploits

1. Buffer overflows

- Extremely common bug.
 - First major exploit: 1988 Internet Worm. fingerd.

≈20% of all vuln.

2005-2007: ≈ 10%

Source: NVD/CVE

- Developing buffer overflow attacks:
 - Locate buffer overflow within an application.
 - Design an exploit.

What is needed

- Understanding C functions and the stack
- Some familiarity with machine code
- Know how systems calls are made
- The exec() system call
- Attacker needs to know which CPU and OS are running on the target machine:
 - Our examples are for x86 running Linux
 - Details vary slightly between CPUs and OSs:
 - Little endian vs. big endian (x86 vs. Motorola)
 - Stack Frame structure (Unix vs. Windows)
 - Stack growth direction

Linux process memory layout

What are buffer overflows?

Suppose a web server contains a function:

```
void func(char *str) {
  char buf[128];

strcpy(buf, str);
  do-something(buf);
}
```

When the function is invoked the stack looks like:

What if *str is 136 bytes long? After strcpy:

Basic stack exploit

- Problem: no range checking in strcpy().
- Suppose *str is such that after strcpy stack looks like:

Program P: exec("/bin/sh")

(exact shell code by Aleph One)

- When func() exits, the user will be given a shell!
- Note: attack code runs in stack.
- To determine ret guess position of stack when func() is called

Many unsafe C lib functions

```
strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, ...)
```

- "Safe" versions strncpy(), strncat() are misleading
 - strncpy() may leave buffer unterminated.
 - strncpy(), strncat() encourage off by 1 bugs.

Exploiting buffer overflows

- Suppose web server calls func() with given URL.
 - Attacker sends a 200 byte URL. Gets shell on web server
- Some complications:
 - Program P should not contain the '\0' character.
 - Overflow should not crash program before func() exists.
- Sample <u>remote</u> buffer overflows of this type:
 - (2005) Overflow in MIME type field in MS Outlook.
 - (2005) Overflow in Symantec Virus Detection
 Set test = CreateObject("Symantec.SymVAFileQuery.1")
 test.GetPrivateProfileString "file", [long string]

Control hijacking opportunities

- Stack smashing attack:
 - Override return address in stack activation record by overflowing a local buffer variable.
- Function pointers: (e.g. PHP 4.0.2, MS MediaPlayer Bitmaps)

```
buf[128] FuncPtr stack
```

- Overflowing buf will override function pointer.
- Longjmp buffers: longjmp(pos) (e.g. Perl 5.003)
 - Overflowing buf next to pos overrides value of pos.

Heap-based control hijacking

Compiler generated function pointers (e.g. C++ code)

Suppose vtable is on the heap next to a string object:

Heap-based control hijacking

Compiler generated function pointers (e.g. C++ code)

Other types of overflow attacks

◆ Integer overflows: (e.g. MS DirectX MIDI Lib) Phrack60

```
void func(int a, char v) {
  char buf[128];
  init(buf);
  buf[a] = v;
}
```

- Problem: a can point to `ret-addr' on stack.
- Double free: double free space on heap.
 - Can cause mem mgr to write data to specific location
 - Examples: CVS server

Finding buffer overflows

- To find overflow:
 - Run web server on local machine
 - Issue requests with long tags
 All long tags end with "\$\$\$\$\$"
 - If web server crashes, search core dump for "\$\$\$\$" to find overflow location
- Many automated tools exist (called fuzzers next lecture)
- Then use disassemblers and debuggers (e.g. IDA-Pro) to construct exploit

Defenses

Preventing hijacking attacks

1. Fix bugs:

- Audit software
 - Automated tools: Coverity, Prefast/Prefix.
- Rewrite software in a type safe languange (Java, ML)
 - Difficult for existing (legacy) code ...
- 2. Concede overflow, but prevent code execution
- 3. Add <u>runtime code</u> to detect overflows exploits
 - Halt process when overflow exploit detected
 - StackGuard, LibSafe, ...

Marking memory as non-execute (w^x)

- Prevent overflow code execution by marking stack and heap segments as non-executable
 - NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
 - NX bit in every Page Table Entry (PTE)
 - Deployment:
 - Linux (via PaX project); OpenBSD
 - Windows since XP SP2 (DEP)
 - Boot.ini : /noexecute=OptIn or AlwaysOn
- Limitations:
 - Some apps need executable heap (e.g. JITs).
 - Does not defend against `return-to-libc' exploit

Examples: DEP controls in Vista

Return to libc

Control hijacking without executing code

Response: randomization

- ASLR: (Address Space Layout Randomization)
 - Map shared libraries to rand location in process memory
 - ⇒ Attacker cannot jump directly to exec function
 - Deployment:
 - Windows Vista: 8 bits of randomness for DLLs
 - aligned to 64K page in a 16MB region ⇒ 256 choices
 - Linux (via PaX): 16 bits of randomness for libraries
 - More effective on 64-bit architectures
- Other randomization methods:
 - Sys-call randomization: randomize sys-call id's
 - Instruction Set Randomization (ISR)

ASLR Example

Booting Vista twice loads libraries into different locations:

ntlanman.dll	0x6D7F0000	Microsoft® Lan Manager
ntmarta.dll	0x75370000	Windows NT MARTA provider
ntshrui.dll	0x6F2C0000	Shell extensions for sharing
ole32.dll	0x76160000	Microsoft OLE for Windows

ntlanman.dll	0x6DA90000	Microsoft® Lan Manager
ntmarta.dll	0x75660000	Windows NT MARTA provider
ntshrui.dll	0x6D9D0000	Shell extensions for sharing
ole32.dll	0x763C0000	Microsoft OLE for Windows

Note: ASLR is only applied to images for which the dynamic-relocation flag is set

Run time checking: StackGuard

- Many many run-time checking techniques ...
 - we only discuss methods relevant to overflow protection
- Solution 1: StackGuard
 - Run time tests for stack integrity.
 - Embed "canaries" in stack frames and verify their integrity prior to function return.

Canary Types

- Random canary:
 - Choose random string at program startup.
 - Insert canary string into every stack frame.
 - Verify canary before returning from function.
 - To corrupt random canary, attacker must learn current random string.
- ◆ Terminator canary:

Canary = 0, newline, linefeed, EOF

- String functions will not copy beyond terminator.
- Attacker cannot use string functions to corrupt stack.

StackGuard (Cont.)

- StackGuard implemented as a GCC patch.
 - Program must be recompiled.
- Minimal performance effects: 8% for Apache.
- Note: Canaries don't offer fullproof protection.
 - Some stack smashing attacks leave canaries unchanged
- Heap protection: PointGuard.
 - Protects function pointers and setjmp buffers by encrypting them: XOR with random cookie
 - More noticeable performance effects

StackGuard variants - ProPolice

- ◆ ProPolice (IBM) gcc 3.4.1. (-fstack-protector)
 - Rearrange stack layout to prevent ptr overflow.

MS Visual Studio /GS

[2003]

Compiler /GS option:

- Combination of ProPolice and Random canary.
- Triggers UnHandledException in case of Canary mismatch to shutdown process.

```
mov eax,dword ptr [___security_cookie]
xor eax,ebp
mov dword ptr [ebp-8],eax
...
mov ecx,dword ptr [ebp-8]
xor ecx,ebp
call __security_check_cookie@4
```

- Litchfield vulnerability report
 - Overflow overwrites exception handler
 - Redirects exception to attack code

Run time checking: Libsafe

- Solution 2: Libsafe (Avaya Labs)
 - Dynamically loaded library (no need to recompile app.)
 - Intercepts calls to strcpy (dest, src)
 - Validates sufficient space in current stack frame:

|frame-pointer - dest| > strlen(src)

If so, does strcpy,
 otherwise, terminates application

More methods ...

- StackShield
 - At function prologue, copy return address RET and SFP to "safe" location (beginning of data segment)
 - Upon return, check that RET and SFP is equal to copy.
 - Implemented as assembler file processor (GCC)

- Control Flow Integrity (CFI)
 - A combination of static and dynamic checking
 - Statically determine program control flow
 - Dynamically enforce control flow integrity

Format string problem

```
int func(char *user) {
    fprintf( stdout, user);
}

Problem: what if user = "%s%s%s%s%s%s%s%s" ??
```

- Most likely program will crash: DoS.
- If not, program will print memory contents. Privacy?
- Full exploit using user = "%n"

Correct form:

```
int func(char *user) {
  fprintf( stdout, "%s", user);
}
```

History

- First exploit discovered in June 2000.
- Examples:
 - wu-ftpd 2.*:
 - Linux rpc.statd:
 - IRIX telnetd:
 - BSD chpass:

remote root

remote root

remote root

local root

Vulnerable functions

Any function using a format string.

Printing:

printf, fprintf, sprintf, ...

vprintf, vfprintf, vsprintf, ...

Logging:

syslog, err, warn

Exploit

- Dumping arbitrary memory:
 - Walk up stack until desired pointer is found.
 - printf("%08x.%08x.%08x.%08x|%s|")

- Writing to arbitrary memory:
 - printf("hello %n", &temp) -- writes '6' into temp.
 - printf("%08x.%08x.%08x.%08x.%n")

Overflow using format string

```
char errmsg[512], outbuf[512];
sprintf (errmsg, "Illegal command: %400s", user);
sprintf( outbuf, errmsg );
```

- What if user = "%500d <nops> <shellcode>"
 - Bypass "%400s" limitation.
 - Will ovreflow outbuf.

Heap Spray Attacks A reliable method for exploiting heap overflows

Heap-based control hijacking

Compiler generated function pointers (e.g. C++ code)

Suppose vtable is on the heap next to a string object:

Heap-based control hijacking

Compiler generated function pointers (e.g. C++ code)

A reliable exploit?

```
<SCRIPT language="text/javascript">
shellcode = unescape("%u4343%u4343%...");
overflow-string = unescape("%u2332%u4276%...");
cause-overflow( overflow-string );  // overflow buf[ ]
</SCRIPT>
```

Problem: attacker does not know where browser places **shellcode** on the heap

buf[256] vtable

shellcode

Heap Spraying

[SkyLined 2004]

Idea:

- 1. use Javascript to spray heap with shellcode (and NOP slides)
- 2. then point vtable ptr anywhere in spray area

Javascript heap spraying

```
var nop = unescape("%u9090%u9090")
while (nop.length < 0x100000) nop += nop

var shellcode = unescape("%u4343%u4343%...");

var x = new Array ()
for (i=0; i<1000; i++) {
    x[i] = nop + shellcode;
}</pre>
```

Pointing func-ptr almost anywhere in heap will cause shellcode to execute.

Vulnerable buffer placement

- Placing vulnerable buf[256] next to object O:
 - By sequence of Javascript allocations and frees make heap look as follows:

- Allocate vuln. buffer in Javascript and cause overflow
- Successfully used against a Safari PCRE overflow [DHM'08]

Many heap spray exploits

Date	$\operatorname{Browser}$	Description
11/2004	IE	IFRAME Tag BO
04/2005	$_{ m IE}$	DHTML Objects Corruption
01/2005	$^{ m IE}$.ANI Remote Stack BO
07/2005	$_{ m IE}$	javaprxy.dll COM Object
03/2006	$_{ m IE}$	${ t createTextRang} \; { m RE}$
09/2006	$_{ m IE}$	VML Remote BO
03/2007	$_{ m IE}$	ADODB Double Free
09/2006	ΙE	${ m WebViewFolderIcon}$ setSlice
09/2005	FF	0xAD Remote Heap BO
12/2005	$_{ m FF}$	compareTo() RE
07/2006	FF	Navigator Object RE
07/2008	Safari	Quicktime Content-Type BO

[RLZ'08]

- Improvements: Heap Feng Shui [5'07]
 - Reliable heap exploits on IE without spraying
 - Gives attacker full control of IE heap from Javascript

(partial) Defenses

- Protect heap function pointers (e.g. PointGuard)
- Better browser architecture:
 - Store JavaScript strings in a separate heap from browser heap
- OpenBSD heap overflow protection:

Nozzle [RLZ'08]: detect sprays by prevalence of code on heap

References on heap spraying

- [1] **Heap Feng Shui in Javascript**, by A. Sotirov, *Blackhat Europe* 2007
- [2] Engineering Heap Overflow Exploits with JavaScript

M. Daniel, J. Honoroff, and C. Miller, *WooT* 2008

[3] Nozzle: A Defense Against Heap-spraying Code Injection Attacks,

by P. Ratanaworabhan, B. Livshits, and B. Zorn

