Running Untrusted
Application Code:
Sandboxing

Running untrusted code

#® \We often need to run buggy/unstrusted code:

~~ m programs from untrusted Internet sites:

» toolbars, viewers, codecs for media player

= old or insecure applications: ghostview, outlook

= legacy daemons: sendmail, bind

. honeypots

® Goal: if application “misbehaves,” Kkill it

Approach: confinement

Confinement: ensure application does not deviate from
pre-approved behavior

Can be implemented at many levels:
= Hardware: run application on isolated hw (air gap)
+ difficult to manage

= Virtual machines: isolate OS’s on single hardware

= System call interposition:
+ Isolates a process in a single operating system

s [solating threads sharing same address space:
+ Software Fault Isolation (SFI)

= Application specific: e.g. browser-based confinement

Implementing confinement

® Key component: reference monitor

= Mediates requests from applications
» Implements protection policy
» Enforces isolation and confinement

= Must always be invoked:
» Every application request must be mediated

= Tamperproof:
» Reference monitor cannot be killed
» ... or if killed, then monitored process is killed too

= Small enough to be analyzed and validated

A simple example: chroot

Often used for “guest” accounts on ftp sites
To use do: (must be root)

chroot /tmp/guest root dir /" is now “/tmp/guest”
Su guest EUID set to “quest”

Now “/tmp/guest” is added to file system accesses for
applications in jail

open("/etc/passwd”, “r") =
open("/tmp/guest/etc/passwd”, "r")

— application cannot access files outside of jail

Jailkit
Problem: all utility progs (Is, ps, vi) must live inside jail

o jailkit project: auto builds files, libs, and dirs needed in
jail environment

e jk_iInit: creates jail environment

e jk_check: checks jail env for security problems
» checks for any modified programs,
» checks for world writable directories, etc.

e jk_Ish: restricted shell to be used inside jail

e note: simple chroot jail does not limit network access

Escaping from jails

® Early escapes: relative paths
open(“../../etc/passwd”, “r") =
open(“/tmp/guest/../../etc/passwd”, “r")

chroot should only be executable by root
= otherwise jailed app can do:
» create dummy file “/aaa/etc/passwd”
erun chroot “/aaa”
*run su root to become root
(bug in Ultrix 4.0)

Many ways to escape jail as root

Create device that lets you access raw disk
Send signals to non chrooted process
#® Reboot system

Bind to privileged ports

Freebsd jail

#® Stronger mechanism than simple chroot

#® To run:

jail jail-path hostname IP-addr cmd
= calls hardened chroot (no “../../" escape)

= can only bind to sockets with specified IP address
and authorized ports

= can only communicate with process inside jail

= root is limited, e.g. cannot load kernel modules

Problems with chroot and jail

Coarse policies:
= All or nothing access to file system
= Inappropriate for apps like web browser

» Needs read access to files outside jail
(e.qg. for sending attachments in gmail)

Do not prevent malicious apps from:
s Accessing network and messing with other machines
= Trying to crash host OS

System call interposition:

a better approach to confinement

Sys call interposition

® QObservation: to damage host system (i.e. make
persistent changes) app must make system calls

» To delete/overwrite files: unlink, open, write
= T0 do network attacks: socket, bind, connect, send

Idea:
= monitor app system calls and block unauthorized calls

Implementation options:
s Completely kernel space (e.g. GSWTK)
s Completely user space (e.g. program shepherding)
= Hybrid (e.g. Systrace)

Initial implementation @anus)

Linux ptrace: process tracing
tracing process calls: ptrace (..., pid_t pid, ...)
and wakes up when pid makes sys call.

user space
monitored
application monitor
(outlook)
open(“etc/passwd”, “r")
h 4
'''''''''''''''''''''''''''''''''' OS Kernel

Monitor kills application if request is disallowed

Complications

® If app forks, monitor must also fork
= Forked monitor monitors forked app

If monitor crashes, app must be killed

#® Monitor must maintain all OS state associated with app
= current-working-dir (CWD), UID, EUID, GID

= Whenever app does “cd path” monitor must also
update its CWD

» otherwise: relative path requests interpreted
incorrectly

Problems with ptrace

Ptrace too coarse for this application
= [race all system calls or none
* e.g. no need to trace "close” system call
= Monitor cannot abort sys-call without killing app

Security problems: race conditions

= Example: symlink: me -> mydata.dat
proc 1: open("me”)
monitor checks and authorizes
proc 2: me -> /etc/passwd not atomic
OS executes open("me”)

s Classic TOCTOU bug: time-of-check / time-of-use

time

Alternate design: systrace

user space
monitored
application monitor policy file
(outlook) for app
open(“etc/passwd”, “r")
sys-call)
systrace
ateway | ¢
4 Y permit/deny
OS Kernel

systrace only forwards monitored sys-calls to monitor
(saves context switches)

gystrace resolves sym-links and replaces sys-call
path arguments by full path to target

#® When app calls execve, monitor loads new policy file

Policy

Sample policy file:
path allow /tmp/*
path deny /etc/passwd
network deny all

Specifying policy for an app is quite difficult

= Systrace can auto-gen policy by learning how app
behaves on “good” inputs

= If policy does not cover a specific sys-call, ask user
... but user has no way to decide

Difficulty with choosing policy for specific apps (e.g.
browser) is main reason this approach is not widely used

Confinement using
Virtual Machines

Virtual Machines

Guest OS 2 Guest OS 1

Virtual Machine Monitor (VMM)

Host OS

Hardware

Example: NSA NetTop

e single HW platform used for both classified
and unclassified data

Why so popular now?

#® \/Ms in the 1960’s:
= Few computers, lots of users
= VMs allow many users to shares a single computer

® VMs 1970's — 2000: non-existent

#® \/Ms since 2000:
= 100 many computers, too few users

+ Print server, Mail server, Web server,
File server, Database server, ...

= Wasteful to run each service on a different computer
» VMs save power while isolating services

VMM security assumption

#® VMM Security assumption:
= Malware can infect guest OS and guest apps
= But malware cannot escape from the infected VM

¢ (Cannot infect host OS

+ Cannot infect other VMs on the same hardware

® Requires that VMM protect itself and is not buggy

= VMM is much simpler than full OS
= ... but device drivers run in Host OS

Problem: covert channels

#® Covert channel: unintended communication channel
between isolated components

= Can be used to leak classified data from secure
component to public component

Classified VM Public VM

secret
covert

doc

channel

An example covert channel

Both VMs use the same underlying hardware

Tosend abit be {0,1} malware does:
= b=1: at 1:30.00am do CPU intensive calculation
= b=0: at 1:30.00am do nothing

At 1:30.00am listener does a CPU intensive calculation
and measures completion time

s Now b=1 <« completion-time > threshold

#® Many covert channel exist in running system:
» File lock status, cache contents, interrupts, ...
= Very difficult to eliminate

VMM Introspection: [cro3;

protecting the anti-virus system

Intrusion Detection / Anti-virus

@ Runs as part of OS kernel and user space process
s Kernel root kit can shutdown protection system
= Common practice for modern malware

Standard solution: run IDS system in the network
= Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from malware)
= VMM can monitor virtual hardware for anomalies
= VMI: Virtual Machine Introspection
+ Allows VMM to check Guest OS internals

Sample checks

Stealth malware:
= Creates processes that are invisible to “ps”
= Opens sockets that are invisible to “netstat”

1. Lie detector check

s Goal: detect stealth malware that hides processes
and network activity

= Method:
+ VMM lists processes running in GuestOS

*+ VMM requests GuestOS to list processes (e.g. ps)
+ If mismatch, kill VM

Sample checks

2. Application code integrity detector
= VMM computes hash of user app-code running in VM
= Compare to whitelist of hashes
+ Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity
= example: detect changes to

4. Virus signature detector
= Run virus signature detector on GuestOS memory

5. Detect if GuestOS puts NIC in promiscuous mode

Subvirt:
subvirting VMM confinement

Subvirt

® \/irus idea:
= Once on the victim machine, install a malicious VMM
= Virus hides in VMM
= Invisible to virus detector running inside VM

OS
0S B VMM and virus
HW HW

The MATRIX

Y R OS BRSNS, Sy DE D, i

By B DE- BECE Sy FE N XER

> & O o= D8 e o] O = O Ll o= s =

S rRaRtat i RS OEdHdBEE Y SEOONES HESGND. L PR SR E DR HE Q8 & e

HE DN X e.oE Sl
> O 0 S e O OO e

b RENS IR E TVHRR S FELI RO TR WURY BB YRR EIE) 8. SNy

HE DS BFC.OF Rl ==« T=S5= hes

ST NS ST R 2 NaCgREE e (RO 3 @R B D e piE 2R (W

St EHE CS-N0 S« TIE 2t w8
- R E MY BPE O THEE YT RESDY XS NELSDN LHE - WURY B Dt HHON
' BT O <MY ROl EES XESMN P iU E Dkl

Mu' -/nun gmﬂyﬂmmm - Hﬂ i e 98 Kf{wnb EHE N WwErar- - E DRl

4 TIE

B e TTEE maetm B
BCE RENIMY BPE DrdBEEY RELY XE NEISN LJE WUV HE D BIG.NE
20 RE DNt HE S 0E SEes TTE D -3k

R BTN MW WER TIE YN XW

WUKY 3 DR H

WL B D8] ‘ ¢ TIE-AE AW

P B - HAE - OF L -1~

o < = s . .
= = = o= = = - 6 = O o= - o = =
B SN BT OwdAEBEYT REON € MNEDSD UK Wiy FrE DXt BHE e oE SEEas

LS HNE . EeE SRR BPY OrHBEYT REDLD X8 HESN LHE SURY HE DBe

K == 5 £l Qi a—r) D 020 A KIS N M D BT SR o R CUE =t C-§ =21

'!\»wﬂn..r_ E.me Uuﬂ-&a Mnmwunmnt.dnh BIJ& T B 8 b ,-o.n

= « =1 - - - =g - - o - S

=Y Y W= o > e A W U oS o S s et i) - 5Y tJl..r! hﬂfc N oH w3

M-gyﬂwuliﬁﬁ B L BT |

AT S RHEEy RiEoD ES HMESD st o BB O wtt- I
URD Bl BESSE BEE Tl S Ml LS e

-y o - . - - -

SImEws TIED S rei < @EQ

L2 S ot EE S 0tE S T i e

LU Dt B Syl Rl

HIiK-U FE DN EHE e 0E S

FERHERNVERYE SHERETY RED) ET NENN L3F WISV HE DR« @R

= S P - > MY Ril.Lo ES NEDS —UE UK FE DNt EEl

VM Based Malware (blue pill virus)

VMBR: a virus that installs a malicious VMM
(hypervisor)

@ Microsoft Security Bulletin: (oct, 2006)
http: / /www.microsoft.com/whdc/system/platform/virtual/CPUVir
tExt.mspx

m Suggests disabling hardware virtualization features
by default for client-side systems

4 But VMBRSs are easy to defeat
= A guest OS can detect that it is running on top of VMM

VMM Detection

#® Can an OS detect it is running on top of a VMM?

Applications:

a Virus detector can detect VMBR

= Normal virus (non-VMBR) can detect VMM
+ refuse to run to avoid reverse engineering

s Software that binds to hardware (e.g. MS windows) can
refuse to run on top of VMM

= DRM systems may refuse to run on top of VMM

VMM detection (red pill techniques)

1. VM platforms often emulate simple hardware
= VMWare emulates an ancient i440bx chipset
... but report 8GB RAM, dual Opteron CPUs, etc.

2. VMM introduces time latency variances
= Memory cache behavior differs in presence of VMM

m Results in relative latency in time variations
for any two operations

3. VMM shares the TLB with GuestOS
m GuestOS can detect reduced TLB size

... and many more methods [GAWF'07]

VMM Detection

Bottom line: The perfect VMM does not exist

#® \VMMs today (e.g. VMWare) focus on:
Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

VMMs do not provide transparency

= Anomalies reveal existence of VMM

Software Fault Isolation

Software Fault Isolation

Goal: confine apps running in same address space
= Codec code should not interfere with media player
= Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
= Problem: slow if apps communicate frequently
* requires context switch per message

Software Fault Isolation

@ SFI approach:

= Partition process memory into segments

code data code data
segment| segment | segment | segment

— 7 — 7
—~ —~

app #1 app #2

= Locate unsafe instructions: jmp, load, store
» At compile time, add guards before unsafe instructions
* When loading code, ensure all guard are present

Segment matching technique

#® Designed for MIPS processor. Many registers available.

#® drl, dr2: d
= Compiler Guard ensures code does not
= dr2 contai

W

load data from another segment

Indirect load instruc
becomes:

: get segment ID
: validate seqg. ID

R12 « [addr] : do load

Address sandboxing technique

® dr2: holds segment ID

Indirect load instruction R12 « [addr]
becomes:

drl < addr & segment-mask : zero out seg bits
drl < drl | dr2 : set valid seg ID
R12 « [drl] : do load

® Fewer instructions than segment matching
... but does not catch offending instructions

Lots of room for optimizations: reduce # of guards

Cross domain calls

caller callee
domain domain
stub .
call draw-/””///+ draw:
x\\\ return

\ br addr

SWD [———" braddr _f—
br addr

Only stubs allowed to make croos-domain jumps
Jump table contains allowed exit points from callee
= Addresses are hard coded, read-only segment

SFI: concluding remarks

® For shared memory: use virtual memory hardware
= Map same physical page to two segments in addr space

#® Performance
= Usually good: mpeg_play, 4% slowdown

Limitations of SFI: harder to implement on x86 :
= variable length instructions: unclear where to put guards
= few registers: can't dedicate three to SFI
= many instructions affect memory: more guards needed

Summary

#® Many sandboxing techniques:
= Physical air gap,
= Virtual air gap (VMMs),
= System call interposition
= Software Fault isolation
= Application specific (e.g. Javascript in browser)

Often complete isolation is inappropriate
= Apps need to communicate through regulated interfaces

#® Hardest aspect of sandboxing:
= Specifying policy: what can apps do and not do

THE END

