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Running untrusted code

We often need to run buggy/unstrusted code:

� programs from untrusted Internet sites:

� toolbars,   viewers,   codecs for media player

� old or insecure applications:    ghostview,   outlook� old or insecure applications:    ghostview,   outlook

� legacy daemons:   sendmail,  bind

� honeypots

Goal:    if application “misbehaves,”  kill it



Approach:   confinement

Confinement:   ensure application does not deviate from 
pre-approved behavior 

Can be implemented at many levels:

� Hardware:   run application on isolated hw  (air gap)

� difficult to manage� difficult to manage

� Virtual machines:   isolate OS’s on single hardware

� System call interposition:

� Isolates a process in a single operating system

� Isolating threads sharing same address space:  

� Software Fault Isolation (SFI)

� Application specific:  e.g.   browser-based confinement



Implementing confinement

Key component:    reference monitor

� Mediates requests from applications

� Implements protection policy

� Enforces isolation and confinement

Must always be invoked:� Must always be invoked:

� Every application request must be mediated

� Tamperproof:

� Reference monitor cannot be killed

�… or if killed, then monitored process is killed too

� Small enough to be analyzed and validated



A simple example:    chroot

Often used for “guest” accounts on ftp sites

To use do:   (must be root)

chroot   /tmp/guest root dir “/” is now “/tmp/guest”

su guest EUID set to “guest”

Now  “/tmp/guest”  is added to file system accesses for 
applications in jail

open(“/etc/passwd”,   “r”)    ⇒⇒⇒⇒

open(“/tmp/guest/etc/passwd”,   “r”)

⇒ application cannot access files outside of jail



Jailkit

Problem:   all utility progs (ls, ps, vi) must live inside jail

• jailkit project:    auto builds files, libs, and dirs needed in 
jail environment

• jk_init:    creates jail environment• jk_init:    creates jail environment

• jk_check: checks jail env for security problems

• checks for any modified programs,

• checks for world writable directories, etc.

• jk_lsh:   restricted shell to be used inside jail

• note:  simple chroot jail does not limit network access



Escaping from jails

Early escapes:    relative paths

open( “../../etc/passwd”,   “r”)   ⇒⇒⇒⇒

open(“/tmp/guest/../../etc/passwd”,   “r”)

chroot should only be executable by root 

� otherwise jailed app can do:

� create dummy file   “/aaa/etc/passwd”

� run    chroot   “/aaa”

� run    su  root    to become root

(bug in Ultrix 4.0)



Many ways to escape jail as root

Create device that lets you access raw disk

Send signals to non chrooted process

Reboot system

Bind to privileged ports



Freebsd jail

Stronger mechanism than simple   chroot

To run:

jail   jail-path   hostname  IP-addr   cmd

calls hardened  chroot    (no  “../../”  escape)� calls hardened  chroot    (no  “../../”  escape)

� can only bind to sockets with specified IP address 
and authorized ports

� can only communicate with process inside jail

� root is limited, e.g. cannot load kernel modules



Problems with   chroot and jail

Coarse policies:

� All or nothing access to file system

� Inappropriate for apps like web browser

� Needs read access to files outside jail � Needs read access to files outside jail 
(e.g. for sending attachments in gmail)

Do not prevent malicious apps from:

� Accessing network and messing with other machines

� Trying to crash host OS



System call interposition:

a better approach to confinementa better approach to confinement



Sys call interposition

Observation:   to damage host system (i.e. make 
persistent changes)  app must make system calls

� To delete/overwrite files:     unlink, open, write

� To do network attacks:    socket, bind, connect, send

Idea:   

� monitor app system calls and block unauthorized calls

Implementation options:

� Completely kernel space (e.g. GSWTK)

� Completely user space (e.g.  program shepherding)

� Hybrid  (e.g.   Systrace)



Initial implementation  (Janus)

Linux ptrace:    process tracing

tracing process calls:     ptrace (… ,  pid_t  pid ,  …)

and wakes up when  pid makes sys call.

monitored
application monitor

user space

Monitor kills application if request is disallowed

OS Kernel
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(outlook)

monitor

open(“etc/passwd”,  “r”)



Complications

If app forks, monitor must also fork

� Forked monitor monitors forked app

If monitor crashes, app must be killed

Monitor must maintain all OS state associated with app

� current-working-dir (CWD),    UID,   EUID,   GID

� Whenever app does “cd path” monitor must also 
update its CWD

� otherwise:   relative path requests interpreted 
incorrectly  



Problems with ptrace
Ptrace too coarse for this application

� Trace all system calls or none

� e.g.  no need to trace “close” system call 

� Monitor cannot abort sys-call without killing app

Security problems:   race conditionsSecurity problems:   race conditions

� Example: symlink:    me  ->  mydata.dat

proc 1:   open(“me”)

monitor checks and authorizes

proc 2:   me  ->  /etc/passwd

OS executes    open(“me”) 

� Classic TOCTOU bug:   time-of-check /  time-of-use
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Alternate design:  systrace

monitored
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policy file
for app

systrace only forwards monitored sys-calls to monitor  
(saves context switches)

systrace resolves sym-links and replaces sys-call 
path arguments by full path to target

When app calls  execve,  monitor loads new policy file

OS Kernel
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Policy

Sample policy file:

path allow  /tmp/*

path deny  /etc/passwd

network deny all

Specifying policy for an app is quite difficult

� Systrace can auto-gen policy by learning how app 
behaves on “good” inputs

� If policy does not cover a specific sys-call, ask user

… but user has no way to decide

Difficulty with choosing policy for specific apps (e.g. 
browser) is main reason this approach is not widely used



Confinement using 
Virtual MachinesVirtual Machines



Virtual Machines

Guest OS 2

Apps

Guest OS 1

Apps

VM2 VM1

Virtual Machine Monitor (VMM)

Guest OS 2 Guest OS 1

Hardware

Host OS

Example:    NSA  NetTop

• single HW platform used for both classified 

and unclassified data



Why so popular now?

VMs in the 1960’s:

� Few computers,  lots of users

� VMs allow many users to shares a single computer

VMs  1970’s – 2000:    non-existent

VMs since 2000:

� Too many computers, too few users

� Print server,  Mail server,  Web server, 
File server,  Database server, …

� Wasteful to run each service on a different computer

� VMs save power while isolating services



VMM security assumption

VMM Security assumption:

� Malware can infect guest OS and guest apps

� But malware cannot escape from the infected VM

� Cannot infect host OS

� Cannot infect other VMs on the same hardware 

Requires that VMM protect itself and is not buggy

� VMM is much simpler than full OS

� … but device drivers run in Host OS



Problem:   covert channels

Covert channel:    unintended communication channel 
between isolated components

� Can be used to leak classified data from secure 
component to public component

Classified VM Public VM
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An example covert channel

Both VMs use the same underlying hardware

To send a bit   b ∈ {0,1}   malware does:

� b= 1:   at  1:30.00am  do CPU intensive calculation

� b= 0:   at  1:30.00am  do nothing

At  1:30.00am listener does a CPU intensive calculation 
and measures completion time

� Now    b = 1     ⇔ completion-time > threshold

Many covert channel exist in running system:

� File lock status,    cache contents,    interrupts,  …

� Very difficult to eliminate



VMM Introspection:  [GR’03]

protecting the anti-virus system



Intrusion Detection / Anti-virus

Runs as part of OS kernel and user space process

� Kernel root kit can shutdown protection system

� Common practice for modern malware

Standard solution:     run  IDS  system in the networkStandard solution:     run  IDS  system in the network

� Problem:   insufficient visibility into user’s machine

Better:   run IDS as part of VMM  (protected from malware)

� VMM can monitor virtual hardware for anomalies

� VMI:   Virtual Machine Introspection

� Allows VMM to check Guest OS internals



Sample checks

Stealth malware:

� Creates processes that are invisible to  “ps”

� Opens sockets that are invisible to  “netstat”

1. Lie detector check

Goal:   detect stealth malware that hides processes � Goal:   detect stealth malware that hides processes 
and network activity

� Method:

� VMM lists processes running in GuestOS

� VMM requests GuestOS to list processes (e.g.  ps)

� If mismatch,   kill VM



Sample checks

2. Application code integrity detector

� VMM computes hash of user app-code running in VM

� Compare to whitelist of hashes

� Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity

� example:   detect changes to  sys_call_table

4. Virus signature detector

� Run virus signature detector on GuestOS memory

5. Detect if GuestOS puts NIC in promiscuous mode



Subvirt:Subvirt:
subvirting VMM confinement



Subvirt

Virus idea:

� Once on the victim machine, install a malicious VMM

� Virus hides in VMM

� Invisible to virus detector running inside VM

HW     

OS     

⇒
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The MATRIX





VM Based Malware  (blue pill virus)

VMBR:    a virus that installs a malicious VMM  
(hypervisor)

Microsoft Security Bulletin:   (Oct, 2006)

http://www.microsoft.com/whdc/system/platform/virtual/CPUVirhttp://www.microsoft.com/whdc/system/platform/virtual/CPUVir
tExt.mspx

� Suggests disabling hardware virtualization features 
by default for client-side systems

But VMBRs are easy to defeat

� A guest OS can detect that it is running on top of VMM



VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

� Virus detector can detect VMBR

Normal virus (non-VMBR) can detect VMM� Normal virus (non-VMBR) can detect VMM

� refuse to run to avoid reverse engineering

� Software that binds to hardware (e.g. MS Windows) can 
refuse to run on top of VMM

� DRM systems may refuse to run on top of VMM



VMM detection    (red pill techniques)

1. VM platforms often emulate simple hardware

� VMWare emulates an ancient i440bx chipset

… but report  8GB RAM,  dual Opteron CPUs, etc.

2.  VMM introduces time latency variances

Memory cache behavior differs in presence of VMM� Memory cache behavior differs in presence of VMM

� Results in relative latency in time variations 
for any two operations

3.  VMM shares the TLB with GuestOS

� GuestOS can detect reduced TLB size

… and many more methods  [GAWF’07]



VMM Detection

Bottom line:     The perfect VMM does not exist

VMMs today   (e.g. VMWare)  focus on:

Compatibility:   ensure off the shelf software works

Performance:    minimize virtualization overheadPerformance:    minimize virtualization overhead

VMMs do not provide transparency

� Anomalies reveal existence of VMM 



Software Fault IsolationSoftware Fault Isolation



Software Fault Isolation

Goal:    confine apps running in same address space

� Codec code should not interfere with media player

� Device drivers should not corrupt kernel 

Simple solution:   runs apps in separate address spaces

� Problem:  slow if apps communicate frequently

� requires context switch per message



Software Fault Isolation

SFI approach:

� Partition process memory into segments

code
segment

data
segment

code
segment

data
segment

� Locate unsafe instructions:   jmp, load, store

� At compile time, add guards before unsafe instructions

�When loading code, ensure all guard are present

segment segment segment segment

app #1 app #2



Segment matching technique
Designed for MIPS processor.   Many registers available.

dr1,  dr2:   dedicated registers not used by binary

� Compiler pretends these registers don’t exist

� dr2 contains segment ID

Guard ensures code does not 

load data from another segment

Indirect load instruction       R12 ←←←← [addr]
becomes:

dr1 ← addr

scratch-reg ← (dr1 >> 20) : get segment ID

compare scratch-reg  and  dr2 : validate seg. ID

trap if not equal

R12 ← [addr] : do load



Address sandboxing technique

dr2:    holds segment ID

Indirect load instruction       R12 ←←←← [addr]
becomes:

dr1 ← addr  &  segment-mask : zero out seg bitsdr1 ← addr  &  segment-mask : zero out seg bits

dr1 ← dr1  |  dr2 : set valid seg ID

R12 ← [dr1] : do load

Fewer instructions than segment matching

… but does not catch offending instructions

Lots of room for optimizations:   reduce # of guards



Cross domain calls

caller
domain

callee
domain

call draw
stub draw:

return

br addr
br addr
br addr

stub

Only stubs allowed to make croos-domain jumps

Jump table contains allowed exit points from callee

� Addresses are hard coded,   read-only segment



SFI:   concluding remarks

For shared memory:  use virtual memory hardware

� Map same physical page to two segments in addr space

Performance

� Usually good:    mpeg_play,   4%  slowdown� Usually good:    mpeg_play,   4%  slowdown

Limitations of SFI:   harder to implement on x86 :

� variable length instructions:  unclear where to put guards

� few registers:   can’t dedicate three to SFI

� many instructions affect memory:  more guards needed



Summary

Many sandboxing techniques:

� Physical air gap,

� Virtual air gap (VMMs),

� System call interposition

� Software Fault isolation� Software Fault isolation

� Application specific (e.g. Javascript in browser)

Often complete isolation is inappropriate

� Apps need to communicate through regulated interfaces

Hardest aspect of sandboxing:

� Specifying policy:    what can apps do and not do



THE  ENDTHE  END


