
Unwanted Traffic:
Denial of Service and Spam email

CS 155 Spring 2009

1

Dan Boneh

What is network DoS?

Goal: take out a large site with little computing work

How: Amplification

� Small number of packets ⇒ big effect

2

Two types of amplification attacks:

� DoS bug:

�Design flaw allowing one machine to disrupt a
service

� DoS flood:

� Command bot-net to generate flood of requests

A high profile example: Estonia

3

• Attacked sites: (started apr. 2007, lasted two weeks)

• Estonian ministerial sites

• Various Estonian commercial sites
(more on this later)

DoS can happen at any layer

This lecture:

� Sample Dos at different layers (by order):

� Link

� TCP/UDP

4

� TCP/UDP

� Application

� Payment

� Generic DoS solutions

� Network DoS solutions

Sad truth:

� Current Internet not designed to handle DDoS attacks

Warm up: 802.11b DoS bugs

Radio jamming attacks: trivial, not our focus.

Protocol DoS bugs: [Bellardo, Savage, ’03]

� NAV (Network Allocation Vector):

� 15-bit field. Max value: 32767

5

� 15-bit field. Max value: 32767

� Any node can reserve channel for NAV seconds

� No one else should transmit during NAV period

�… but not followed by most 802.11b cards

� De-authentication bug:

� Any node can send deauth packet to AP

�Deauth packet unauthenticated

�… attacker can repeatedly deauth anyone

Smurf amplification DoS attack

gateway
DoS

Source

DoS
Target

1 ICMP Echo Req
Src: Dos Target

Dest: brdct addr

3 ICMP Echo Reply
Dest: Dos Target

6

Send ping request to broadcast addr (ICMP Echo Req)

Lots of responses:

� Every host on target network generates a ping
reply (ICMP Echo Reply) to victim

Prevention: reject external packets to broadcast address

Modern day example (May ’06)

DNS Query
EDNS Reponse

DNS Amplification attack: (×50 amplification)

7

580,000 open resolvers on Internet (Kaminsky-Shiffman’06)

DNS
Server

DoS
Source

DoS
Target

DNS Query
SrcIP: Dos Target

(60 bytes)

EDNS Reponse

(3000 bytes)

Review: IP Header format

Connectionless

� Unreliable

� Best effort

Version Header Length

Type of Service
Total Length

Identification
Flags

Time to Live
Protocol

Fragment Offset

0 31

8

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

Review: TCP Header format

TCP:

� Session based

� Congestion control

� In order delivery

Source Port Dest port

SEQ Number

ACK Number

U PA P S F

0 31

9

Other stuff

U
R
G

P
S
R

A
C
K

P
S
H

S
Y
N

F
I
N

Review: TCP Handshake

C S

SYN: Listening
SNC←randC

ANC←0

10

SYN/ACK:

ACK:

Store SNC , SNS

Wait

Established

SNS←randS

ANS←SNC

SN←SNC

AN←SNS

TCP SYN Flood I: low rate (DoS bug)

C

SYNC1

SYN

S Single machine:

• SYN Packets with
random source IP
addresses

11

SYNC2

SYNC3

SYNC4

SYNC5

addresses

• Fills up backlog queue
on server

• No further connections
possible

SYN Floods (phrack 48, no 13, 1996)

OS

Backlog
queue size

Linux 1.2.x 10

FreeBSD 2.1.5 128

12

FreeBSD 2.1.5 128

WinNT 4.0 6

Backlog timeout: 3 minutes

⇒ Attacker need only send 128 SYN
packets every 3 minutes.

⇒ Low rate SYN flood

A classic SYN flood example

MS Blaster worm (2003)

� Infected machines at noon on Aug 16th:

� SYN flood on port 80 to windowsupdate.com

50 SYN packets every second.

13

� 50 SYN packets every second.

� each packet is 40 bytes.

� Spoofed source IP: a.b.X.Y where X,Y random.

MS solution:

� new name: windowsupdate.microsoft.com

� Win update file delivered by Akamai

Low rate SYN flood defenses

Non-solution:

� Increase backlog queue size or decrease timeout

Correct solution (when under attack) :

14

Correct solution (when under attack) :

� Syncookies: remove state from server

� Small performance overhead

Syncookies

Idea: use secret key and data in packet to gen. server SN

Server responds to Client with SYN-ACK cookie:

� T = 5-bit counter incremented every 64 secs.

� L = MACkey (SAddr, SPort, DAddr, DPort, SN , T) [24 bits]

[Bernstein, Schenk]

15

� L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T) [24 bits]

� key: picked at random during boot

� SNS = (T . mss . L) (|L| = 24 bits)

� Server does not save state (other TCP options are lost)

Honest client responds with ACK (AN=SNS , SN=SNC+1)

� Server allocates space for socket only if valid SNS.

SYN floods: backscatter [MVS’01]

SYN with forged source IP ⇒ SYN/ACK to random host

16

Backscatter measurement [MVS’01]

Listen to unused IP addresss space (darknet)

Lonely SYN/ACK packet likely to be result of SYN attack

0 232monitor

/8 network

17

Lonely SYN/ACK packet likely to be result of SYN attack

2001: 400 SYN attacks/week

2008: 4425 SYN attacks/24 hours (arbor networks ATLAS)

� Larger experiments: (monitor many ISP darknets)

� Arbor networks

� Network telescope (UCSD)

SYN Floods II: Massive flood
(e.g BetCris.com ‘03)

Command bot army to flood specific target: (DDoS)

� 20,000 bots can generate 2Gb/sec of SYNs (2003)

At web site:

18

� At web site:

� Saturates network uplink or network router

� Random source IP ⇒

attack SYNs look the same as real SYNs

� What to do ???

Prolexic

Idea: only forward established TCP connections to site

Prolexic

Lots-of-SYNs

Lots-of-SYN/ACKs

19

Prolexic capacity: 20Gb/sec link

can handle 40⋅106 SYN/sec

Prolexic
Proxy

Web
site

Lots-of-SYN/ACKs

Few ACKs
Forward
to site

Other junk packets

Attack Packet Victim Response Rate (2008)
[ATLAS]

TCP SYN to open port TCP SYN/ACK 4425

TCP SYN to closed port TCP RST

TCP ACK or TCP DATA TCP RST

20

Proxy must keep floods of these away from web site

TCP ACK or TCP DATA TCP RST

TCP RST No response 276

TCP NULL TCP RST 2821

ICMP ECHO Request ICMP ECHO Response 8352

UDP to closed port ICMP Port unreachable

Estonia attack (ATLAS ‘07)

Attack types detected:

� 115 ICMP floods, 4 TCP SYN floods

Bandwidth:

12 attacks: 70-95 Mbps for over 10 hours� 12 attacks: 70-95 Mbps for over 10 hours

All attack traffic was coming from outside Estonia

� Estonia’s solution:

� Estonian ISPs blocked all foreign traffic until
attacks stopped

=> DoS attack had little impact inside Estonia

21

Stronger attacks: TCP con flood

Command bot army to:

� Complete TCP connection to web site

� Send short HTTP HEAD request

� Repeat

22

Will bypass SYN flood protection proxy

… but:

� Attacker can no longer use random source IPs.

� Reveals location of bot zombies

� Proxy can now block or rate-limit bots.

DNS DoS Attacks (e.g. bluesecurity ’06)

DNS runs on UDP port 53

� DNS entry for victim.com hosted at victim_isp.com

DDoS attack:

� flood victim_isp.com with requests for victim.com

23

� flood victim_isp.com with requests for victim.com

� Random source IP address in UDP packets

Takes out entire DNS server: (collateral damage)

� bluesecurity DNS hosted at Tucows DNS server

� DNS DDoS took out Tucows hosting many many sites

What to do ???

Root level DNS attacks

Feb. 6, 2007:

� Botnet attack on the 13 Internet DNS root servers

� Lasted 2.5 hours

� None crashed, but two performed badly:

24

� None crashed, but two performed badly:

� g-root (DoD), l-root (ICANN)

�Most other root servers use anycast

Attack in Oct. 2002 took out 9 of the 13 TLD servers

DNS DoS solutions

Generic DDoS solutions:

� Later on. Require major changes to DNS.

DoS resistant DNS design:

25

� CoDoNS: [Sirer’04]

� Cooperative Domain Name System

� P2P design for DNS system:

�DNS nodes share the load

� Simple update of DNS entries

� Backwards compatible with existing DNS

DoS via route hijacking

YouTube is 208.65.152.0/22 (includes 210 IP addr)

youtube.com is 208.65.153.238, …

Feb. 2008:

� Pakistan telecom advertised a BGP path for� Pakistan telecom advertised a BGP path for

208.65.153.0/24 (includes 28 IP addr)

� Routing decisions use most specific prefix

� The entire Internet now thinks

208.65.153.238 is in Pakistan

Outage resolved within two hours

… but demonstrates huge DoS vuln. with no solution!
26

DoS at higher layers

SSL/TLS handshake [SD’03]

Web
Server

Client Hello

Server Hello (pub-key)

Client key exchangeRSA

27

� RSA-encrypt speed ≈ 10× RSA-decrypt speed

⇒ Single machine can bring down ten web servers

Similar problem with application DoS:

� Send HTTP request for some large PDF file

⇒ Easy work for client, hard work for server.

RSA
Encrypt RSA

Decrypt

Payment DDoS

Aquiring
Bank • Low rate at each Merchant

• High rate at Aquiring bank

28

Merchant A Merchant B Merchant C

Dummy
purchase
Requests

Google DoS

�Firefox phishing/malware protection:

� Browser downloads blacklisted list from Google

http://safebrowsing.clients.google.com/safebrowsing/gethash

� List contains hashes of (prefixes) of badware sites

� Firefox consults list before following a URL

� Jan. 31, 2009: Google adds “/” to blacklist

� For 55 minutes, all web sites marked as malware

� Reason: human error

�Browser bug: Firefox no longer checks for “/” on list
29

Google DoS: results

30

Amsterdam peering point

DoS Mitigation

31

1. Client puzzles

Idea: slow down attacker

Moderately hard problem:

� Given challenge C find X such that

LSB (SHA-1(C || X)) = 0
n

32

LSBn (SHA-1(C || X)) = 0
n

� Assumption: takes expected 2n time to solve

� For n=16 takes about .3sec on 1GhZ machine

� Main point: checking puzzle solution is easy.

During DoS attack:

� Everyone must submit puzzle solution with requests

� When no attack: do not require puzzle solution

Examples

TCP connection floods (RSA ‘99)

� Example challenge: C = TCP server-seq-num

� First data packet must contain puzzle solution

�Otherwise TCP connection is closed

33

SSL handshake DoS: (SD’03)

� Challenge C based on TLS session ID

� Server: check puzzle solution before RSA decrypt.

Same for application layer DoS and payment DoS.

Benefits and limitations

Hardness of challenge: n

� Decided based on DoS attack volume.

34

Limitations:

� Requires changes to both clients and servers

� Hurts low power legitimate clients during attack:

� Clients on cell phones, PDAs cannot connect

Memory-bound functions

CPU power ratio:

� high end server / low end cell phone = 8000

⇒ Impossible to scale to hard puzzles

Interesting observation:

35

Interesting observation:

� Main memory access time ratio:

� high end server / low end cell phone = 2

Better puzzles:

� Solution requires many main memory accesses

�Dwork-Goldberg-Naor, Crypto ‘03

� Abadi-Burrows-Manasse-Wobber, ACM ToIT ‘05

2. CAPTCHAs

Idea: verify that connection is from a human

36

Applies to application layer DDoS [Killbots ’05]

� During attack: generate CAPTCHAs and process
request only if valid solution

� Present one CAPTCHA per source IP address.

3. Source identification

Goal: identify packet source

37

Goal: identify packet source

Ultimate goal: block attack at the source

1. Ingress filtering (RFC 2827, 2000)

Big problem: DDoS with spoofed source IPs

Question: how to find packet origin?

38

Ingress filtering policy: ISP only forwards packets

with legitimate source IP. (see also SAVE protocol)

ISP Internet

Implementation problems

ALL ISPs must do this. Requires global trust.

� If 10% of ISPs do not implement ⇒ no defense

Another non-solution: enforce source IP at peer AS

39

Can transit AS validate packet source IP? No …

R1
R2

R3 R4
dest

Source AS Transit AS Dest AS

2. Traceback [Savage et al. ’00]

Goal:

� Given set of attack packets

� Determine path to source

How: change routers to record info in packets

40

How: change routers to record info in packets

Assumptions:

� Most routers remain uncompromised

� Attacker sends many packets

� Route from attacker to victim remains relatively
stable

Simple method

Write path into network packet

� Each router adds its own IP address to packet

� Victim reads path from packet

Problem:

41

Problem:

� Requires space in packet

� Path can be long

� No extra fields in current IP format

� Changes to packet format too much to expect

Better idea

DDoS involves many
packets on same path

Store one link in each
packet

R6 R7 R8

A4 A5A1 A2 A3

42

packet

� Each router
probabilistically stores
own address

� Fixed space regardless
of path length

R9 R10

R12

V

Edge Sampling

Data fields written to packet:

� Edge: start and end IP addresses

� Distance: number of hops since edge stored

Marking procedure for router R

43

Marking procedure for router R

if coin turns up heads (with probability p) then

write R into start address

write 0 into distance field

else

if distance == 0 write R into end field

increment distance field

Edge Sampling: picture

Packet received

� R1 receives packet from source or another router

� Packet contains space for start, end, distance

44

R1 R2 R3

packet s e d

Edge Sampling: picture

Begin writing edge

� R1 chooses to write start of edge

� Sets distance to 0

45

R1 R2 R3

packet R1 0

Edge Sampling

Finish writing edge

� R2 chooses not to overwrite edge

� Distance is 0

�Write end of edge, increment distance to 1

46

packet R1 R2 1

R1 R2 R3

Edge Sampling

Increment distance

� R3 chooses not to overwrite edge

� Distance >0

� Increment distance to 2

47

packet R1 R2 2

R1 R2 R3

Path reconstruction

Extract information from attack packets

Build graph rooted at victim

� Each (start,end,distance) tuple provides an edge

48

packets needed to reconstruct path

E(X) <

where p is marking probability, d is length of path

ln(d)

p(1-p)d-1

Details: where to store edge

Identification field

� Used for fragmentation

� Fragmentation is rare

� 16 bits

Version Header Length

Type of Service
Total Length

Identification
Flags

Time to Live
Protocol

Fragment Offset

Identification

49

Store edge in 16 bits?

� Break into chunks

� Store start + end

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

offset distance edge chunk

0 2 3 7 8 15

More traceback proposals

Advanced and Authenticated Marking Schemes for IP
Traceback

� Song, Perrig. IEEE Infocomm ’01

� Reduces noisy data and time to reconstruct paths

50

An algebraic approach to IP traceback

� Stubblefield, Dean, Franklin. NDSS ’02

Hash-Based IP Traceback

� Snoeren, Partridge, Sanchez, Jones, Tchakountio,
Kent, Strayer. SIGCOMM ‘01

Problem: Reflector attacks [Paxson ’01]

Reflector:

� A network component that responds to packets

� Response sent to victim (spoofed source IP)

Examples:

51

Examples:

� DNS Resolvers: UDP 53 with victim.com source

� At victim: DNS response

� Web servers: TCP SYN 80 with victim.com source

� At victim: TCP SYN ACK packet

� Gnutella servers

DoS Attack

Single Master

Many bots to
generate flood

52

Zillions of reflectors to
hide bots

� Kills traceback and
pushback methods

Capability based defense

53

Capability based defense

Anderson, Roscoe, Wetherall.

� Preventing internet denial-of-service with
capabilities. SIGCOMM ‘04.

Yaar, Perrig, and Song.

54

Yaar, Perrig, and Song.

� Siff: A stateless internet flow filter to mitigate DDoS
flooding attacks. IEEE S&P ’04.

Yang, Wetherall, Anderson.

� A DoS-limiting network architecture.
SIGCOMM ’05

Capability based defense

Basic idea:

� Receivers can specify what packets they want

How:

Sender requests capability in SYN packet

55

� Sender requests capability in SYN packet

� Path identifier used to limit # reqs from one source

� Receiver responds with capability

� Sender includes capability in all future packets

� Main point: Routers only forward:

� Request packets, and

� Packets with valid capability

Capability based defense

Capabilities can be revoked if source is attacking

� Blocks attack packets close to source

56

R1
R2

R3 R4
dest

Source AS Transit AS Dest AS

Attack packets
dropped

Pushback Traffic Filtering

57

Pushback filtering

Mahajan, Bellovin, Floyd, Ioannidis, Paxson, Shenker.
Controlling High Bandwidth Aggregates in the Network.
Computer Communications Review ‘02.

Ioannidis, Bellovin.

58

Ioannidis, Bellovin.
Implementing Pushback: Router-Based Defense
Against DoS Attacks. NDSS ’02

Argyraki, Cheriton.
Active Internet Traffic Filtering: Real-Time Response to
Denial-of-Service Attacks. USENIX ‘05.

Pushback Traffic Filtering

Assumption: DoS attack from few sources

59

Iteratively block attacking network segments.

Overlay filtering

60

Overlay filtering

Keromytis, Misra, Rubenstein.
SOS: Secure Overlay Services. SIGCOMM ‘02.

D. Andersen. Mayday.

Distributed Filtering for Internet Services.

61

Distributed Filtering for Internet Services.

Usenix USITS ‘03.

Lakshminarayanan, Adkins, Perrig, Stoica.
Taming IP Packet Flooding Attacks. HotNets ’03.

Take home message:

Denial of Service attacks are real.
Must be considered at design time.

Sad truth:

� Current Internet is ill-equipped to handle DDoS

62

� Current Internet is ill-equipped to handle DDoS
attacks

Many good proposals for core redesign.

Spam Email

CS 155 Spring 2008

How email works: SMTP
(RFC 821, 1982)

Some SMTP Commands:

MAIL FROM: <reverse-path>

RCPT TO: <forward-path>

RCPT TO: <forward-path>

Repeated
for each
recipient RCPT TO: <forward-path>

If unknown recipient: response “550 Failure reply”

DATA

email headers and contents

VRFY username (Often disabled)

� 250 (user exists) or 550 (no such user)

.

recipient

Email in the early 1980’s

Network 1
Mail

Network 2

Network 3

Mail
relay

Mail
relay

sender

recipient

• Mail Relay: forwards mail to next hop.

• Sender path includes path through relays.

Spoofed email

SMTP: designed for a trusting world …

Data in MAIL FROM totally under control of sender

� … an old example of improper input validation � … an old example of improper input validation

Recipient’s mail server:

� Only sees IP address of direct peer

� Recorded in the first From header

The received header

Sending spoofed mail to myself:

From someone@somewhere.com (172.24.64.20) ...

Received: from cs-smtp-1.stanford.edu Received: from cs-smtp-1.stanford.edu

Received: from smtp3.stanford.edu

Received: from cipher.Stanford.EDU

Received header inserted by relays --- untrustworthy

From header inserted by recipient mail server

From
relays

Spam Blacklists

RBL: Realtime Blackhole Lists

� Includes servers or ISPs that generate lots of spam

� spamhaus.org , spamcop.net

Effectiveness (stats from spamhaus.org):

� RBL can stop about 15-25% of incoming spam at
SMTP connection time,

� Over 90% of spam with message body URI checks

Spammer goal:

� Evade blacklists by hiding its source IP address.

Spamming techniques

Open relays

SMTP Relay forwards mail to destination

1. Bulk email tool connects via SMTP (port 25)

2. Sends list of recipients (via RCPT TO command)

3. Sends email body --- once for all recipients

4. Relay delivers message4. Relay delivers message

Honest relay:

� Adds Received header revealing source IP

� Hacked relay does not

Example: bobax worm

Infects machines with high bandwidth

� Exploits MS LSASS.exe buffer overflow vulnerability

Slow spreading:

Spreads on manual command from operator� Spreads on manual command from operator

� Then randomly scans for vulnerable machines

On infected machine: (spam zombie)

� Installs hacked open mail relay. Used for spam.

� Once spam zombie added to RBL:

�Worm spreads to other machines

Open HTTP proxies

Web cache (HTTP/HTTPS proxy) -- e.g. squid

Squid
CONNECT xyz.com 443

ClientHello Web

xyz.com
URL: HTTPS://xyz.com

ClientHello

To spam: CONNECT SpamRecipient-IP 25

SMTP Commands

Squid becomes a mail proxy …

Squid
Web
Cache

ClientHello Web
Server

ServerHello

ServerHello

Finding proxies

Squid manual: (squid.conf)

acl Safe_ports port 80 443

http_access deny !Safe_ports

� URLs for other ports will be denied

Similar problem with SOCKS proxies

Some open proxy and open relay listing services:

� http://www.multiproxy.org/
http://www.stayinvisible.com/
http://www.blackcode.com/proxy/
http://www.openproxies.com/ (20$/month)

Open Relays vs. Open Proxies

Relay vs. proxy:

� Relay takes list of address and send msg to all

� Proxy: spammer must send msg body to each � Proxy: spammer must send msg body to each
recipient through proxy.

⇒ zombies typically provide hacked mail relays.

Thin pipe / Thick pipe method

Spam source has

� High Speed Broadband connection (HSB)

� Controls a Low Speed Zombie (LSZ)

LSZ
TCP handshake

� Assumes no ingress filtering at HSB’s ISP

� Hides IP address of HSB. LSZ is blacklisted.

Target
SMTP
Server

HSB

LSZ

TCP Seq #s

SMTP bulk mail

(Source IP = LSZ)

Harvesting emails

Will not discuss here …

Lots of ways:

� majordomo who command

SMTP VRFY command� SMTP VRFY command

� Web pages

� Dictionary harvesting

Obvious lesson:

� Systems should protect user info

Bulk email tools (spamware)

Automate:

� Message personalization� Message personalization

� Also test against spam filters (e.g. spamassassin)

� Mailing list and proxy list management

Send-Safe bulk emailer

Anti-spam methods

Will not discuss filtering methods …

The law: CAN-SPAM act (Jan. 2004)

Bans false or misleading header information

� To: and From: headers must be accurate

Prohibits deceptive subject lines

Requires an opt-out method

Requires that email be identified as advertisement

� ... and include sender's physical postal address

Also prohibits various forms of email harvesting
and the use of proxies

Effectiveness of CAN-SPAM

Enforced by the FTC:

� FTC spam archive spam@uce.gov

� Penalties: 11K per act

Dec ’05 FTC report on effectiveness of CAN-SPAM:

� 50 cases in the US pursued by the FTC

� No impact on spam originating outside the US

� Open relays hosted on bot-nets make it difficult
to collect evidence

http://www.ftc.gov/spam/

Sender verification I: SPF

Goal: prevent spoof email claiming to be from HotMail

� Why? Bounce messages flood HotMail system

hotmail.com:

DNS

hotmail.com:
SPF record:

64.4.33.7
64.4.33.8

Recipient
Mail
Server
(MUA)

Sender

MAIL FROM
xyz@hotmail.com

hotmail.com

64.4.33.7
64.4.33.8

Is SenderIP
in list?

More precisely: hotmail.com TXT v=spf1 a:mailers.hotmail.com -all

Sender verification II: DKIM

Domain Keys Identified Mail (DKIM)

� Same goal as SPF. Harder to spoof.

Basic idea:Basic idea:

� Sender’s MTA signs email

� Including body and selected header fields

� Receiver’s MUA checks sig

� Rejects email if invalid

� Sender’s public key managed by DNS

� Subdomain: _domainkey.hotmail.com

DKIM header example

DKIM-Signature: a=rsa-sha1; q=dns;
d=hotmail.com (domain)
s=may2006; c=relaxed/simple; (selector)
t=1117574938; x=1118006938; (time/exp)
h=from:to:subject:date; (header)

Recipient’s MUA will query for DNS TXT record of

may2006._domainkey.hotmail.com

h=from:to:subject:date; (header)
b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSb (sig)

av+yuU4zGeeruD00lszZVoG4ZHRNiYzR

Graylists

Recipient’s mail server records triples:

� (sender email, recipient email, peer IP)

� Mail server maintains DB of triples

First time: triple not in DB:First time: triple not in DB:

� Mail server sends 421 reply: “I am busy”

� Records triple in DB

Second time (after 5 minutes): allow email to pass

Triples kept for 3 days (configurable)

Easy to defeat but currently works well.

Whitelisting: DOEmail

User specifies list of allowable senders

� All other senders must solve CAPTCHA to
enable email deliveryenable email delivery

� Simple UI to add incoming senders to whitelist

86

THE END

87

