
Basic web security model

Elie Bursztein CS155

Vulnerability Stats: web is “winning”

Source: MITRE CVE trends

Majority of vulnerabilities now found in web software

Web security: two sides

  Web browser: (client side)
  Attacks target browser security weaknesses
  Result in:

 Malware installation (keyloggers, bot-nets)
 Document theft from corporate network
 Loss of private data

  Web application code: (server side)
  Runs at web site: banks, e-merchants, blogs
  Written in PHP, ASP, JSP, Ruby, …
  Many potential bugs: XSS, XSRF, SQL injection
  Attacks lead to stolen CC#, defaced sites.

Credits

Adam Barth, Collin Jackson,
John Mitchell, Dan Boneh
and the entire websec team

http://crypto.stanford.edu/websec

Outline

   Web Refresher:

   Security User Interface

  Goals of a browser
  When is it safe to type my password?

   Same-Origin Policy
  How sites are isolated
  Opting out of isolation
  Frame hijacking
  Navigation policy

   Cookie security

   Browser security design

Web Refresher

HTTP protocol

   HTTP is
  widely used
  Simple
  Stateless
  Unencrypted

URLs

   Global identifiers of network-retrievable documents

   Example:
http://stanford.edu:81/class?name=cs155#homework

   Special characters are encoded as hex:
  %0A = newline
  %20 or + = space, %2B = + (special exception)

Protocol

Hostname
Port Path

Query

Fragment

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

GET: no side effect. POST: possible side effect.

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Cookies

11

Security User Interface

When is it safe to type my password?

Safe to type your password?

12

Outline

   Web Refresher:

   Security User Interface

  Goals of a browser
  When is it safe to type my password?

   Same-Origin Policy
  How sites are isolated
  Opting out of isolation
  Frame hijacking
  Navigation policy

   Cookie security

   Browser security design

Safe to type your password?

14

Safe to type your password?

15

Safe to type your password?

16

???

???

Safe to type your password?

17

18

Same-Origin Policy

How does the browser isolate different sites?

Outline

   Web Refresher:

   Security User Interface

  Goals of a browser
  When is it safe to type my password?

   Same-Origin Policy
  How sites are isolated
  Opting out of isolation
  Frame hijacking
  Navigation policy

   Cookie security

   Browser security design

Policy Goals

   Safe to visit an evil web site

   Safe to visit two pages at the same time
  Address bar
 distinguishes them

   Allow safe delegation

Components of browser security
policy

   Frame to Frame relationships
  canScript(A,B)

  Can Frame A execute a script that reads or writes DOM
 elements of Frame B?

  canNavigate(A,B)
  Can Frame A change the origin of content for Frame B?

   Frame to cookie relationships
  readCookie(A,S), writeCookie(A,S)

  Can Frame A read/write cookies from origin S?

   SecurityIndicator (W) [ssl lock icon]
  Is the security indicator displayed for window W?

Popup windows

  With hyperlinks
click here

  With JavaScript
mywin = window.open(“http://www.b.com”, “foo”,

“width=10,height=10”)
  Navigating named window re-uses existing one
  Can access properties of remote window:

 mywin.document.body
 mywin.location = “http://www.c.com”;

Windows Interact

23

Are all interactions good?

24

Frames

  Modularity
  Brings together content

from multiple sources
  Client-side aggregation

  Delegation
  Frame can draw only on its

own rectangle

src = 7.gmodules.com/...
name = remote_iframe_7

src = google.com/…
name = awglogin

Frames and iFrames

   … but says nothing about where embedded content is from

awglogin

Address bar says nothing about origin of embedded content
•  frames (ads), scripts, flash objects, CSS

<iframe name=awglogin
 src=“https://www.google.com/
 accounts/ServiceLoginBox”
style=“width:19em; height:16.4em”

>

Masups: lots of frames (gadgets)

27

Need for isolation - mashups

Malicious gadget should not affect other gadgets

Window Policy Anomaly

top.frames[1].location = "http://www.attacker.com/...";
top.frames[2].location = "http://www.attacker.com/...";

...

30

A Guninski Attack

awglogin

window.open("https://attacker.com/", "awglogin");

What should the policy be?

31

Child

Sibling

Descendant

Frame Bust

Browser Policy
 IE 6 (default) Permissive
 IE 6 (option) Child
 IE7 (no Flash) Descendant
 IE7 (with Flash) Permissive
 Firefox 2 Window
 Safari 3 Permissive
 Opera 9 Window

 HTML 5 Child

Legacy Browser Behavior

Browser Policy
 IE7 (no Flash) Descendant
 IE7 (with Flash) Descendant
 Firefox 3 Descendant
 Safari 3 Descendant
 Opera 9 (many policies)
 HTML 5 Descendant

Adoption of Descendant Policy

Library import

<script src=https://seal.verisign.com/getseal?
host_name=a.com></script>

•  Script has privileges of imported page, NOT source server.
•  Can script other pages in this origin, load more scripts
•  Other forms of importing

Pages can embed content from many
sources (example)

   Frames: <iframe src=“//site.com/frame.html” > </iframe>

   Scripts: <script src=“//site.com/script.js” > </script>

   CSS:

<link rel="stylesheet" type="text /css” href=“//site/com/theme.css" />

Objects (flash): [using swfobject.js script]
 <script>
 var so = new SWFObject(‘//site.com/flash.swf', …);
 so.addParam(‘allowscriptaccess', ‘always');
 so.write('flashdiv');
 </script>

35

Cross-origin Interaction

Sites often need to communicate:
  Google AdSense:
 <script src="http://googlesyndication.com/show_ads.js">

  Mashups
  Gadget aggregators (e.g. iGoogle or live.com)

   Primary method: script inclusion; site A does:

   <script src=//siteB.com/script.js>

•  Script from B runs in A’s origin: full control over A’s DOM

•  Note: to communicate with B, site A gives B full control !!

Mashups

Need for isolation: embedded
content

38

3rd party ad should not read/write enclosing DOM

Recent Developments

  Cross-origin network requests

  Access-Control-Allow-Origin: <list of domains>

  Access-Control-Allow-Origin: *

  Cross-origin client side communication

  Client-side messaging via navigation (older
browsers)

  postMessage (newer browsers)

Site B
Site A

Site A context
 Site B context

window.postMessage

   New API for inter-frame communication

  Supported in latest betas of many browsers

  A network-like channel between frames

Add a contact

Share contacts

postMessage syntax

frames[0].postMessage("Attack at dawn!",
 "http://b.com/");

window.addEventListener("message", function (e) {
 if (e.origin == "http://a.com") {
 ... e.data ... }
}, false);

Attack at dawn!

Why include “targetOrigin”?

  What goes wrong?
 frames[0].postMessage("Attack at dawn!");

   Messages sent to frames, not principals
  When would this happen?

42

Data export

   Many ways to send information to other origins
 <form action="http://www.bank.com/">
 <input name="data" type="hidden" value="hello">
 </form>

   No user involvement required

   Cannot read back response

   Read response only from your origin

   Some port are restricted (SMTP)

Same Origin Requests with
XMLHttpRequest

<script>
var xhr = new XMLHttpRequest();

xhr.open("POST", "http://www.example.com:81/foo/
example.cgi", true); // asynchronous

xhr.send("Hello world!");
xhr.onload = function() {
 if (xhr.status == 200) {
 alert(xhr.responseText);
 }}
</script>

prepare request

read response

Sending a Cross-Domain GET

   Data must be URL encoded

   Browser sends:
 GET file.cgi?foo=1&bar=x%20y HTTP/1.1
 Host: othersite.com
 …

⇒  Any web page can send info to any site

   Denial of Service (DoS) using GET:
  a popular site can DoS another site [Puppetnets ’06]

Sending a Cross-Domain POST

<form method="POST" action="http://othersite.com/file.cgi" encoding="text/
plain">

<input type="hidden" name=“Hello world" value=“4">
</form>

<script>document.forms[0].submit()</script>

   Hidden iframe can do this in background
 ⇒ user visits a malicious page, browser submits
 form on behalf of user

 ⇒ e.g. page re-programs user’s home router (XSRF)

   Can’t send to some restricted ports, like 25 (SMTP)

submit
post

Cookie Security

How to make HTTP statefull securely ?

Outline

   Web Refresher:

   Security User Interface

  Goals of a browser
  When is it safe to type my password?

   Same-Origin Policy
  How sites are isolated
  Opting out of isolation
  Frame hijacking
  Navigation policy

   Cookie security

   Browser security design

Same origin policy: “high level”

Review: Same Origin Policy (SOP) for DOM:

  Origin A can access origin B’s DOM if match on
 (scheme, domain, port)

Today: Same Original Policy (SOP) for cookies:

  Generally speaking, based on:
 ([scheme], domain, path)

optional

scheme://domain:port/path?params

scope

Setting/deleting cookies by server

•  Delete cookie by setting “expires” to date in past

•  Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 domain = (when to send) ;
 path = (when to send)
 secure = (only send over SSL);
 expires = (when expires) ;
 HttpOnly (later)

if expires=NULL:
this session only

Scope setting rules (write SOP)

domain: any domain-suffix of URL-hostname, except TLD
 example: host = “login.site.com”

 ⇒ login.site.com can set cookies for all of .site.com
 but not for another site or TLD

 Problematic for sites like .stanford.edu

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

Cookies are identified by (name,domain,path)

   Both cookies stored in browser’s cookie jar;
 both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Reading cookies on server (read SOP)

Browser sends all cookies in URL scope:

•  cookie-domain is domain-suffix of URL-domain, and

•  cookie-path is prefix of URL-path, and

•  [protocol=HTTPS if cookie is “secure”]

Goal: server only sees cookies in its scope

Browser
Server GET //URL-domain/URL-path

Cookie: NAME = VALUE

Examples

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary order)

Client side read/write: document.cookie

   Setting a cookie in Javascript:
 document.cookie = “name=value; expires=…; ”

   Reading a cookie: alert(document.cookie)
 prints string containing all cookies available for

 document (based on [protocol], domain, path)

   Deleting a cookie:
 document.cookie = “name=; expires= Thu, 01-Jan-70”

document.cookie often used to customize page in Javascript

javascript: alert(document.cookie)

Javascript URL

Displays all cookies for current document

Viewing/deleting cookies in Browser UI

Cookie protocol problems

Server is blind:
  Does not see cookie attributes (e.g. secure)
  Does not see which domain set the cookie

Server only sees: Cookie: NAME=VALUE

Interaction with the DOM SOP

Cookie SOP: path separation
 x.com/A does not see cookies of x.com/B

Not a security measure:
 DOM SOP: x.com/A has access to DOM of x.com/B

 <iframe src=“x.com/B"></iframe>
 alert(frames[0].document.cookie);

Path separation is done for efficiency not security:

 x.com/A is only sent the cookies it needs

HttpOnly Cookies IE6 SP1, FF2.0.0.5

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

 HttpOnly

•  Cookie sent over HTTP(s), but not accessible to scripts

•  cannot be read via document.cookie

•  Also blocks access from XMLHttpRequest headers

•  Helps prevent cookie theft via XSS

 … but does not stop most other risks of XSS bugs.

(not Safari)

Browser security design

How to build a secure browser ?

Outline

   Web Refresher:

   Security User Interface

  Goals of a browser
  When is it safe to type my password?

   Same-Origin Policy
  How sites are isolated
  Opting out of isolation
  Frame hijacking
  Navigation policy

   Cookie security

   Browser security design

Approach

   Fact: Browsers will always have bugs

   Goal: Reduce the harm

Frequency of
interactions
with attacker

Percentage of
time vulnerability

is unpatched

Damage if
attack works

Outline

Frequency of
interactions
with attacker

Percentage of
time vulnerability

is unpatched

Damage if
attack works

1. Preventing the Introduction

2. Vulnerability Response

3. Failure Containment

PREVENTING THE
INTRODUCTION

Frequency of
interactions
with attacker

Percentage of
time vulnerability

is unpatched

Damage if
attack works

Drive-by downloads

Provos et al. "All your
iFRAMES Point to Us"

   Silently installs software when
web page is loaded

   Increase exposure by
compromising other sites and
insert code into them

   Sites owners unaware they are
participating in an attack

World of Warcraft keylogger

   Flash Player exploit used to install keylogger

   Links to malicious SWF posted on forums

   "Solution": Disable hyperlinks on forum

Scaling it up to the entire web

   1.3% of the incoming
search queries to Google
returned at a least one
malware site

   Visit sites with an army of
browsers in VMs, check
for changes to local
system

   Indicate potentially
harmful sites in search
results

Now do it in the browser

Helping the webmaster out

Introductions are easy

  Impressions are
cheap ($1 = 2000)

  Ad that is harmless
today may be
malicious tomorrow

  Possible mitigations:
 <iframe
security=restricted>
 <iframe sandbox>

VULNERABILITY RESPONSE

Frequency of
interactions
with attacker

Percentage of
time

vulnerability is
unpatched

Damage if
attack works

Closing the vulnerability window

   Delay publication
  Coordinate with security researchers
  Offer prizes for responsibly disclosed security bugs

   Make patch available faster

   Deploy patch faster

Discovery Publication Patch available Patch deployed

Obstacles to patch deployment

   Interrupts work flow

   Requires adminstrator privileges

   Risk of breaking things

   Separate update

mechanisms

   Silent approach:
GoogleUpdate.exe

Getting better, but not fast enough

Frei et al. Examination of vulnerable online Web browser populations and the "insecurity iceberg"

FAILURE CONTAINMENT

Frequency of
interactions
with attacker

Percentage of
time vulnerability

is unpatched

Damage if
attack
works

Severity

Arbitrary Code
Execution File Theft Universal XSS

"Critical"

"High"
"Medium"

Protected Mode IE

   IE7 in Vista is a "low rights" process

   Can prompt user to get more privileges

IE7 Containment Goals

   Arbitrary code execution won't let attacker:
  Install software
  Copy files to startup folder
  Change homepage or search provider setting

   Can we do more?

Containment Goals

Universal XSS Arbitrary Code Execution File Theft

Chromium Security Architecture

  Browser ("kernel")
  Full privileges (file

system, networking)
  Coarse-grained security

policies protect local
system

  Rendering engine
  Sandboxed
  Fine-grained same origin

policy enforcement

  One process per plugin

  Sandboxing optional

Barth et al. "The Security
Architecture of the Chromium
Browser"

Preventing File Theft

  File Downloads.
 Renderer can only write files to

My Documents\Downloads
  File Uploads.

 Renderer is granted ability to upload file using
browser kernel's file picker.

  Network Requests.
 Can only request web-safe schemes (http, https,

ftp)
 Dedicated renderers for file://

Task Allocation

Is the "kernel" too complex?

   Total CVEs:

   Arbitrary code execution vulnerabilities:

Another approach: Cookie Blocking

  Block the "Cookie" header
for cross-domain resource
loads

  Third-party cookie
blocking already does this
for privacy

  Third-party frames are ok

  Cross-subdomain might

be ok
Open question: How many sites does
this break compared to content type
filtering?

Conclusion

Frequency of
interactions
with attacker

Percentage of
time vulnerability

is unpatched

Damage if
attack works

1. Preventing the Introduction

2. Vulnerability Response

3. Failure Containment

